Advertisement

Hydrobiologia

, Volume 822, Issue 1, pp 203–216 | Cite as

Cladocera in shallow lakes from the Ecuadorian Andes show little response to recent climate change

  • A. L. Labaj
  • N. Michelutti
  • J. P. Smol
Primary Research Paper
  • 210 Downloads

Abstract

Lakes of the Andean páramo are critical water reservoirs for millions of people. Páramo ecosystems have experienced anthropogenic warming faster than the global average. Recent paleolimnological work from Cajas National Park (southern Ecuador) revealed striking shifts in diatoms and Cladocera linked to climate change. However, the impacts on shallow lakes (< 5 m deep), which are numerically dominant on the landscape, remain poorly understood. Here, we use paleolimnology to investigate cladoceran species changes and responses to climate change in three shallow waterbodies from Cajas. Each system supported abundant littoral Cladocera. The deepest site (~ 4 m) contained the highest proportion of pelagic taxa, while the shallowest (~ 0.3 m) contained almost exclusively littoral taxa. Cladoceran assemblages in these shallow lakes reflect littoral habitat, likely partly influenced by shifting precipitation, and in one site, construction of a small rock dam. The cladoceran assemblage shifts do not align with regional temperature increases and reduced wind speeds, contrasting the ecological responses previously recorded in nearby deeper lakes. Although these polymictic, ice-free shallow systems are not immune to climate-related change, algal and cladoceran assemblages in nearby deeper lakes are responding earlier and more sensitively to recent climate changes, largely through changes to lake thermal stratification regimes.

Keywords

Paleolimnology Zooplankton Stratification Páramo Ponds Cajas National Park 

Notes

Acknowledgements

We thank Chris Grooms for assistance in the field. We also wish to thank the staff of Cajas National Park and ETAPA (in particular Juan Carlos Quezada Ledesma, Pablo Vernardo Mosquera Vintimilla and José Caceres) for assistance with research permits and logistics. Two anonymous reviewers provided helpful comments on this manuscript. This work was funded by a Natural Sciences and Engineering Research Council of Canada (NSERC) award to JPS, an NSERC postgraduate award to ALL, and a Queen’s University Travel Award to ALL.

Supplementary material

10750_2018_3681_MOESM1_ESM.jpg (1.9 mb)
Online Resource 1 Air temperature and wind speed from the Cañar meteorological station, located ~ 30 km east of Cajas. A LOESS smoother (polynomial degree = 1) with span 0.05 (air temperature) and 0.33 (wind speed) was used to visualize trends in the data. Supplementary material 1 (JPEG 1916 kb)
10750_2018_3681_MOESM2_ESM.jpg (1.2 mb)
Online Resource 2 Photograph of the dam constructed at an outlet stream of Apicocha. Supplementary material 2 (JPEG 1197 kb)
10750_2018_3681_MOESM3_ESM.jpg (1.1 mb)
Online Resource 3 210Pb activity and age-depth model for each of the three shallow lakes. Supplementary material 3 (JPEG 1150 kb)
10750_2018_3681_MOESM4_ESM.jpg (2 mb)
Online Resource 4 Photomicrographs of each of the unidentified, numbered taxa. Supplementary material 4 (JPEG 2016 kb)
10750_2018_3681_MOESM5_ESM.jpg (621 kb)
Online Resource 5 Average rarefied species richness of each of the shallow (grey) and deep (black) lakes. Dashed lines represent means of shallow (grey) and deep (black) lakes. Supplementary material 5 (JPEG 621 kb)
10750_2018_3681_MOESM6_ESM.jpg (2.8 mb)
Online Resource 6 Photograph of Apicocha, showing high water mark on rocks and shoreline. Supplementary material 6 (JPEG 2866 kb)

References

  1. Appleby, P. G., 2001. Chronostratigraphic techniques in recent sediments. In Last, W. M. & J. P. Smol (eds), Tracking environmental change using lake sediments, Vol. 1., Basin analysis, coring, and chronological techniques Springer, Dordrecht: 171–203.CrossRefGoogle Scholar
  2. Bos, D. G. & B. F. Cumming, 2003. Sedimentary cladoceran remains and their relationship to nutrients and other limnological variables in 53 lakes from British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 60: 1177–1189.CrossRefGoogle Scholar
  3. Brecher, H. H. & L. G. Thompson, 1993. Measurement of the retreat of Qori Kalis Glacier in the tropical Andes of Peru by terrestrial photogrammetry. Photogrammetric Engineering and Remote Sensing 59: 1017–1022.Google Scholar
  4. Brodersen, K. P., M. C. Whiteside & C. Lindegaard, 1998. Reconstruction of trophic state in Danish lakes using subfossil chydorid (Cladocera) assemblages. Canadian Journal of Fisheries and Aquatic Sciences 55: 1093–1103.CrossRefGoogle Scholar
  5. Buytaert, W., R. Célleri, B. De Bièvre, F. Cisneros, G. Wyseure, J. Deckers & R. Hofstede, 2006. Human impact on the hydrology of the Andean páramos. Earth-Science Reviews 79: 53–72.CrossRefGoogle Scholar
  6. Coronel, J. S., X. Aguilera, S. Decleck & L. Brendonck, 2009. Resting egg bank reveals high cladoceran species richness in high-altitude temporary peat land pools. Revista Boliviana de Ecología y Conservación Ambiental 25: 51–67.Google Scholar
  7. Delachaux, T., 1918. Cladocères des Andes péruviennes. Bulletin de la Société Neuchâteloise des Sciences Naturelles 43: 18–38.Google Scholar
  8. Espinosa, C., 2005. Payment for water-based environmental services: Ecuador’s experiences, lessons learned and ways forward. IUCN Water, Nature and Economics Technical Paper No. 2, IUCN, Ecosystems and Livelihoods Group Asia, Colombo, Sri Lanka.Google Scholar
  9. Foster, P., 2001. The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews 55: 73–106.CrossRefGoogle Scholar
  10. Francou, B., P. Ribstein, P. Wagnon, E. Ramirez & B. Pouyaud, 2005. Glaciers of the tropical Andes: indicators of global climate variability. In Bugmann, H. K. M. & M. A. Reasoner (eds), Huber UM. Global change and mountain regions. Advances in global change research. Springer, Dodrecht: 187–204.Google Scholar
  11. Giles M, N. Michelutti & J. P. Smol, 2018. Long-term limnological change in the Ecuadorian páramo: comparing the ecological responses to climate warming of shallow versus deep lakes. Freshwater Biology.  https://doi.org/10.1111/fwb.13159.CrossRefGoogle Scholar
  12. Glew, J. R., 1988. A portable extruding device for close interval sectioning of unconsolidated core samples. Journal of Paleolimnology 1: 235–239.CrossRefGoogle Scholar
  13. Glew, J. R., 1989. A new trigger mechanism for sediment samplers. Journal of Paleolimnology 2: 241–243.CrossRefGoogle Scholar
  14. Hansen, B. C. S., D. T. Rodbell, G. O. Seltzer, B. León, K. R. Young & M. Abbott, 2003. Late-glacial and Holocene vegetational history from two sites in the western Cordillera of southwestern Ecuador. Palaeogeography, Palaeoclimatology, Palaeoecology 194: 79–108.CrossRefGoogle Scholar
  15. Herzog, S. K., R. Martínez, P. M. Jørgensen & H. Tiessen (eds), 2011. Climate change and biodiversity in the tropical Andes. Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE), New York.Google Scholar
  16. Hofmann, W., 1998. Cladocerans and chironomids as indicators of lake level changes in north temperate lakes. Journal of Paleolimnology 19: 55–62.CrossRefGoogle Scholar
  17. Hulme, M. & D. Viner, 1998. A climate change scenario for the tropics. Climatic Change 39: 145–176.CrossRefGoogle Scholar
  18. Jeziorski, A., N. D. Yan, A. M. Paterson, A. M. DeSellas, M. A. Turner, D. S. Jeffries, B. Keller, R. C. Weeber, D. K. McNicol, M. E. Palmer, K. McIver, K. Arseneau, B. K. Ginn, B. F. Cumming & J. P. Smol, 2008. The widespread threat of calcium decline in fresh waters. Science 322: 1374–1377.CrossRefPubMedGoogle Scholar
  19. Jeziorski, A., B. Keller, A. M. Paterson, C. M. Greenaway & J. P. Smol, 2013. Aquatic ecosystem responses to rapid recovery from extreme acidification and metal contamination in lakes near Wawa, Ontario. Ecosystems 16: 209–223.CrossRefGoogle Scholar
  20. Korhola, A., 1999. Distribution patterns of Cladocera in subarctic Fennoscandian lakes and their potential in environmental reconstruction. Ecography 22: 357–373.CrossRefGoogle Scholar
  21. Korhola, A. & M. Rautio, 2001. Cladocera and other brachiopod crustaceans. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking environmental change using lake sediments, Vol. 4., Zoological indicators Springer, Dordrecht: 5–41.CrossRefGoogle Scholar
  22. Korhola, A., S. Sorvari, M. Rautio, P. G. Appleby, J. A. Dearing, Y. Hu, N. Rose, A. Lami & N. G. Cameron, 2002. A multi-proxy analysis of climate impacts on the recent development of subarctic Lake Saanajärvi in Finnish Lapland. Journal of Paleolimnology 28: 59–77.CrossRefGoogle Scholar
  23. Korosi, J. B. & J. P. Smol, 2012a. An illustrated guide to the identification of cladoceran subfossils from lake sediments in northeastern North America: part 1 – the Daphniidae, Leptodoridae, Bosminidae, Polyphemidae, Holopedidae, Sididae, and Macrothricidae. Journal of Paleolimnology 48: 571–586.CrossRefGoogle Scholar
  24. Korosi, J. B. & J. P. Smol, 2012b. An illustrated guide to the identification of cladoceran subfossils from lake sediments in northeastern North America: part 2 – the Chydoridae. Journal of Paleolimnology 48: 587–622.CrossRefGoogle Scholar
  25. Kruk, C., L. Rodríguez-Gallego, M. Meerhoff, F. Quintans, G. Lacerot, N. Mazzeo, F. Scasso, J. C. Paggi, E. T. H. M. Peeters & M. Scheffer, 2009. Determinants of biodiversity in subtropical shallow lakes (Atlantic coast, Uruguay). Freshwater Biology 54: 2628–2641.CrossRefGoogle Scholar
  26. Kurek, J., J. B. Korosi, A. Jeziorski & J. P. Smol, 2010. Establishing reliable minimum count sizes for cladoceran subfossils sampled from lake sediments. Journal of Paleolimnology 44: 603–612.CrossRefGoogle Scholar
  27. Labaj, A. L., J. Kurek, A. Jeziorski & J. P. Smol, 2015. Elevated metal concentrations inhibit biological recovery of Cladocera in previously acidified boreal lakes. Freshwater Biology 60: 347–359.CrossRefGoogle Scholar
  28. Labaj, A. L., N. Michelutti & J. P. Smol, 2017. Changes in cladoceran assemblages from tropical high mountain lakes during periods of recent climate change. Journal of Plankton Research 39: 211–219.Google Scholar
  29. Labaj, A. L., N. Michelutti & J. P. Smol, 2018. Annual stratification patterns in tropical mountain lakes reflect altered thermal regimes in response to climate change. Fundamental and Applied Limnology.  https://doi.org/10.1127/fal/2018/1151.CrossRefGoogle Scholar
  30. López-Blanco, C. & A. Y. Sinev, 2016. Cladocera biodiversity in La Tembladera Lake (Ecuador): a paleolimnological approach. Crustaceana 89: 1611–1637.CrossRefGoogle Scholar
  31. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. Journal of Paleolimnology 18: 395–420.CrossRefGoogle Scholar
  32. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1998. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. Journal of Paleolimnology 19: 443–463.CrossRefGoogle Scholar
  33. Marsicano, L. J., J. L. Hartranft, P. A. Siver & J. S. Hamer, 1995. An historical account of water quality changes in Candlewood Lake, Connecticut, over a sixty year period using paleolimnology and ten years of monitoring data. Lake and Reservoir Management 11: 15–28.CrossRefGoogle Scholar
  34. Michelutti, N., J. M. Blais, B. F. Cumming, A. M. Paterson, K. Rühland, A. P. Wolfe & J. P. Smol, 2010. Do spectrally inferred determinations of chlorophyll a reflect trends in lake trophic status? Journal of Paleolimnology 43: 205–217.CrossRefGoogle Scholar
  35. Michelutti, N., A. P. Wolfe, C. A. Cooke, W. O. Hobbs, M. Vuille & J. P. Smol, 2015. Climate change forces new ecological states in tropical Andean lakes. PLoS ONE 10: e0115338.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Michelutti, N. & J. P. Smol, 2016. Visible spectroscopy reliably tracks trends in paleo-production. Journal of Paleolimnology 56: 253–265.CrossRefGoogle Scholar
  37. Michelutti, N., A. L. Labaj, C. Grooms & J. P. Smol, 2016. Equatorial mountain lakes show extended periods of thermal stratification with recent climate change. Journal of Limnology 75: 403–408.Google Scholar
  38. Minvielle, M. & R. D. Garreaud, 2011. Projecting rainfall changes over the South American Altiplano. Journal of Climate 24: 4577–4583.CrossRefGoogle Scholar
  39. Mosquera, P. V., H. Hampel, R. F. Vázquez, M. Alonso & J. Catalan, 2017. Abundance and morphometry changes across the high-mountain lake-size gradient in the tropical Andes of Southern Ecuador. Water Resources Research 53: 7269–7280.CrossRefGoogle Scholar
  40. Nevalainin, L., K. Sarmaja-Korjonen & T. P. Luoto, 2011. Sedimentary Cladocera as indicators of past water-level changes in shallow northern lakes. Quaternary Research 75: 430–437.CrossRefGoogle Scholar
  41. Peña, E. J., H. Sandoval, O. Zuñiga & M. Torres, 2009. Estimates of carbon reservoirs in high-altitude wetlands in the Colombian Andes. Journal of Agriculture and Rural Development in the Tropics and Subtropics 110: 115–126.Google Scholar
  42. Rautio, M., S. Sorvari & A. Korhola, 2000. Diatom and crustacean zooplankton communities, their seasonal variability and representation in the sediments of subarctic Lake Saanajärvi. Journal of Limnology 59 (Supplement 1): 81–96.Google Scholar
  43. Rühland, K. M., A. M. Paterson & J. P. Smol, 2015. Lake diatom responses to warming: reviewing the evidence. Journal of Paleolimnology 54: 1–35.CrossRefGoogle Scholar
  44. Scheffer, M., G. J. van Geest, K. Zimmer, E. Jeppesen, M. G. Butler, M. A. Hanson, S. Declerck & L. De Meester, 2006. Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds. Oikos 112: 227–231.CrossRefGoogle Scholar
  45. Schelske, C. L., A. Peplow, M. Brenner & C. N. Spencer, 1994. Low-background gamma counting: applications for 210Pb dating of sediments. Journal of Paleolimnology 10: 115–128.CrossRefGoogle Scholar
  46. Smol, J. P., A. P. Wolfe, H. J. B. Birks, M. S. V. Douglas, V. J. Jones, A. Korhola, R. Pienitz, K. Rühland, S. Sorvari, D. Antoniades, S. J. Brooks, M.-A. Fallu, M. Hughes, B. E. Keatley, T. E. Laing, N. Michelutti, L. Nazarova, M. Nyman, A. M. Paterson, B. Perren, R. Quinlan, M. Rautio, E. Saulnier-Talbot, S. Siitonen, N. Solovieva & J. Weckström, 2005. Climate-driven regime shifts in the biological communities of arctic lakes. Proceedings of the National Academy of Sciences of the United States of America 102: 4397–4402.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Smol, J. P., 2008. Pollution of lakes and rivers: A paleoenvironmental perspective. Blackwell Publishing, Malden: 383.Google Scholar
  48. Smol, J. P. & M. S. V. Douglas, 2007. From controversy to consensus: making the case for recent climate change in the Arctic using lake sediments. Frontiers in Ecology and the Environment 5: 466–474.CrossRefGoogle Scholar
  49. Steinitz-Kannan, M., 1997. The lakes in Andean protected areas of Ecuador. George Wright Forum 14: 33–43.Google Scholar
  50. Sweetman, J. N., E. LaFace, K. M. Rühland & J. P. Smol, 2008. Evaluating the response of Cladocera to recent environmental changes in lakes from the central Canadian Arctic treeline region. Arctic, Antarctic, and Alpine Research 40: 584–591.CrossRefGoogle Scholar
  51. Sweetman, J. N., K. M. Rühland & J. P. Smol, 2010. Environmental and spatial factors influencing the distribution of cladocerans in lakes across the central Canadian Arctic treeline region. Journal of Limnology 69: 76–87.CrossRefGoogle Scholar
  52. Szeroczyńska, K. & K. Sarmaja-Korjonen, 2007. Atlas of subfossil Cladocera from central and northern Europe. Friends of the Lower Vistula Society, Świecie: 83.Google Scholar
  53. ter Braak, C. J. F. & P. Šmilauer, 2012. Canoco 5, Windows release (5.00). Microcomputer Power, Ithaca.Google Scholar
  54. Torres, L. E. & K. Rylander, 2006. Diversity and abundance of littoral cladocerans and copepods in nine Ecuadorian highland lakes. Revista de Biología Tropical 54: 131–137.CrossRefPubMedGoogle Scholar
  55. Vergara, W., A. M. Deeb, A. M. Valencia, R. S. Bradley, B. Francou, A. Zarzar, A. Grünwaldt & S. M. Haeussling, 2007. Economic impacts of rapid glacier retreat in the Andes. EOS 88: 261–268.CrossRefGoogle Scholar
  56. Vijverberg, J. & M. Boersma, 1997. Long-term dynamics of small-bodied and large-bodied cladocerans during the eutrophication of a shallow reservoir, with special attention for Chydorus sphaericus. Hydrobiologia 360: 233–242.CrossRefGoogle Scholar
  57. Viviroli, D., D. R. Archer, W. Buytaert, H. J. Fowler, G. B. Greenwood, A. F. Hamlet, Y. Huang, G. Koboltschnig, M. I. Litaor, J. I. López-Blanco, S. Lorentz, B. Schädler, H. Schreier, K. Schwaiger, M. Vuille & R. Woods, 2011. Climate change and mountain water resources: overview and recommendations for research, management and policy. Hydrology and Earth System Sciences 15: 471–504.CrossRefGoogle Scholar
  58. Vuille, M., 2013. Climate change and water resources in the tropical Andes. Inter-American Development Bank. Technical Note # IDB-TN-515.Google Scholar
  59. Vuille, M. & R. S. Bradley, 2000. Mean annual temperature trends and their vertical structure in the tropical Andes. Geophysical Research Letters 27: 3885–3888.CrossRefGoogle Scholar
  60. Vuille, M., B. Francou, P. Wagnon, I. Juen, G. Kaser, B. G. Mark & R. S. Bradley, 2008. Climate change and tropical Andean glaciers: past, present and future. Earth-Science Reviews 89: 79–96.CrossRefGoogle Scholar
  61. Winder, M. & D. E. Schindler, 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85: 2100–2106.CrossRefGoogle Scholar
  62. Wolfe, A. P., R. D. Vinebrooke, N. Michelutti, B. Rivard & B. Das, 2006. Experimental calibration of lake-sediment spectral reflectance to chlorophyll a concentrations: methodology and paleolimnological validation. Journal of Paleolimnology 36: 91–100.CrossRefGoogle Scholar
  63. Yan, N. D., W. Keller, K. M. Somers, T. W. Pawson & R. E. Girard, 1996. Recovery of crustacean zooplankton communities from acid and metal contamination: comparing manipulated and reference lakes. Canadian Journal of Fisheries and Aquatic Sciences 53: 1301–1327.CrossRefGoogle Scholar
  64. Yatigammana, S. K. & B. F. Cumming, 2017. Cladocera assemblages from reservoirs in Sri Lanka and their relationship to measured limnological variables. Lakes and Reservoirs: Research and Management 22: 247–261.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Paleoecological Environmental Assessment and Research Laboratory (PEARL), Department of BiologyQueen’s UniversityKingstonCanada

Personalised recommendations