Advertisement

Large and deep perialpine lakes: a paleolimnological perspective for the advance of ecosystem science

  • Monica Tolotti
  • Nathalie Dubois
  • Manuela Milan
  • Marie-Elodie Perga
  • Dietmar Straile
  • Andrea Lami
LARGE AND DEEP PERIALPINE LAKES Review Paper

Abstract

The present paper aims at reviewing general knowledge of large European perialpine lakes as provided by sediment studies, and at outlining the contribution, from several lines of evidence, of modern paleolimnology in both interpreting past lake ecological evolution and forecasting lake responses to future human impacts. A literature survey mainly based on papers published in international journals indexed on ISI-Wos and Scopus from 1975 to April 2017 has been conducted on the 20 perialpine lakes with zmax ≥ 100 m and lake area ≥ 10 km2, and on 4 shallower perialpine lakes representing hotspots of extensive neo- and paleo-limnological research. By pinpointing temporal and spatial differences in paleolimnological studies conducted in the Alpine countries, the review identifies knowledge gaps in the perialpine area, and shows how sediment-based reconstructions represent a powerful tool, in mutual support with limnological surveys, to help predicting future scenarios through the “past-forward” principle, which consists in reconstructing past lake responses to conditions comparable to those to come. The most recent methodological developments of sediment studies show the potential to cope with the increasing ecosystem variability induced by climate change, and to produce innovative and crucial information for tuning future management and sustainable use of Alpine waters.

Keywords

Perialpine lakes Lake sediments Human impact Eutrophication Paleoclimate Global change 

Notes

Acknowledgements

The authors thank Martin Dokulil and Roland Schmidt for suggestions on an earlier version of the manuscript and two anonymous reviewers for their constructive comments. A particular thanks goes to all the funded projects and initiatives, which made possible the collection of the information shared in this review paper, and which are acknowledged in the references cited.

References

  1. Adrian, R., C. M. O’Reilly, H. Zagarese, S. B. Baines, D. O. Hessen, W. Keller, D. M. Livingstone, R. Sommaruga, D. Straile, E. Van Donk, G. A. Weyhenmeyer & M. Winder, 2009. Lakes as sentinels of climate change. Limnology and Oceanography 54: 2283–2297.PubMedPubMedCentralGoogle Scholar
  2. Alefs, J. & J. Müller, 1999. Differences in the eutrophication dynamics of Ammersee and Starnberger See (Southern Germany), reflected by the diatom succession in varve-dated sediments. Journal of Paleolimnology 21: 395–407.Google Scholar
  3. Alric, B., J. P. Jenny, V. Berthon, F. Arnaud, C. Pignol, J.-L. Reyss, P. Sabatier & M.-E. Perga, 2013. Local forcings affect zooplankton responses to climate warming. Ecology 94: 2767–2780.PubMedGoogle Scholar
  4. Alric, B., M. Möst, I. Domaizon, C. Pignol, P. Spaak & M.-E. Perga, 2016. Local human pressures influence gene flow in a hybridizing Daphnia species complex. Journal of Evolutionary Biology 29: 720–735.PubMedGoogle Scholar
  5. Ambrosetti, W., L. Barbanti & N. Sala, 2003. Residence time and physical processes in lakes. Journal of Limnology 62: 1–15.Google Scholar
  6. Anadon, P., A. Moscariello, J. Rodriguez-Lazaro & M. L. Filippi, 2006. Holocene environmental changes of Lake Geneva (Lac Leman) from stable isotopes (δ13C, δ18O) and trace element records of ostracod and gastropod carbonates. Journal of Paleolimnology 35: 593–616.Google Scholar
  7. Anselmetti, F. S., R. Bühler, D. Finger, S. Girardclos, A. Lancini, C. Rellstab & M. Sturm, 2007. Effects of Alpine hydropower dams on particle transport and lacustrine sedimentation. Aquatic Sciences 69: 179–198.Google Scholar
  8. Appleby, P. G. & F. Oldfield, 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5: 1–8.Google Scholar
  9. Arnaud, F., M. Revel-Rolland, D. Bosch, T. Winiarski, M. Desmet, N. Tribovillard & N. Givelet, 2004. A 300 year history of lead contamination in northern French Alps reconstructed from distant lake sediment records. Journal of Environmental Monitoring 6: 448–456.PubMedGoogle Scholar
  10. Arnaud, F., S. Revillon, M. Debret, M. Revel, E. Chapron, J. Jacob, C. Giguet-Covex, J. Poulenard & M. Magny, 2012. Lake Bourget regional erosion patterns reconstruction reveals Holocene NW European Alps soil evolution and paleohydrology. Quaternary Science Reviews 51: 81–92.Google Scholar
  11. Arnold, C. G., M. Berg, S. R. Müller, U. Dommann & R. P. Schwarzenbach, 1998. Determination of organotin compounds in water, sediments, and sewage sludge using perdeuterated internal standards, accelerated solvent extraction, and large-volume-injection GC/MS. Analytical Chemistry 70: 3094–3101.Google Scholar
  12. Asioli, A., F. S. Medioli & R. T. Patterson, 1996. Thecamoebians as a tool for reconstruction of paleoenvironments in OMSE Italian lakes in the foothills of the Southern Alps (Orta, Varese, and Candia). Journal of Foraminferal Research 26: 248–263.Google Scholar
  13. Auer, I., R. Böhm, A. Jurkovic, W. Lipa, A. Orlik, R. Potzmann, et al., 2007. HISTALP – historical instrumental climatological surface time series of the greater Alpine region 1760–2003. International Journal of Climatology 27: 17–46.Google Scholar
  14. Battarbee, R. W., V. J. Jones, R. J. Flower, N. G. Cameron, H. Bennion, L. Carvalho & S. Juggins, 2001. Diatoms. In Last, W. M. & J. P. Smol (eds), Tracking Environmental Change Using Lake Sediments, Vol. 3., Terrestrial, Algal, and Siliceous Indicators Kluwer Academic Publishers, Dordrecht: 155–202.Google Scholar
  15. Battarbee, R. W., N. J. Anderson, H. Bennion & G. L. Simpson, 2012. Combining limnological and palaeolimnological data to disentangle the effects of nutrient pollution and climate change on lake ecosystems: problems and potential. Freshwater Biology 57: 2091–2106.Google Scholar
  16. Bechtel, A. & C. J. Schubert, 2009. A biogeochemical study of sediments from the eutrophic Lake Lugano and the oligotrophic Lake Brienz, Switzerland. Organic Geochemistry 40: 1100–1114.Google Scholar
  17. Beck, C., 2009. Late Quaternary lacustrine paleo-seismic archives in north-western Alps: examples of earthquake-origin assessment of sedimentary disturbances. Earth-Science Reviews 96: 327–344.Google Scholar
  18. Beck, C., P. Van Rensbergen, M. De Batist, F. Berthier, S. Lallier & F. Manalt, 2001. The Late Quaternary sedimentary infill of Lake Annecy (northwestern Alps): an overview from two seismic-reflection surveys. Journal of Paleolimnology 25: 149–161.Google Scholar
  19. Becker-van Slooten, K. & J. Tarradellas, 1995. Organotins in Swiss lakes after their ban: assessment of water, sediment, and Dreissena polymorpha contamination over a four-year period. Archives of Environmental Contamination and Toxicology 29: 384–392.Google Scholar
  20. Beniston, M., 2006. Mountain weather and climate: a general overview and a focus on climatic change in the Alps. Hydrobiologia 526: 3–16.Google Scholar
  21. Bennet, K. D. & K. J. Willis, 2001. Pollen. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments, Vol. 4., Zoological Indicators Kluwer Academic Publishers, Dordrecht: 5–32.Google Scholar
  22. Bennion, H., S. Qunsam & R. Schmidt, 1995. The validation of diatom-phosphorus transfer functions: an example from Mondsee, Austria. Freshwater Biology 34: 271–283.Google Scholar
  23. Bennion, H., R. W. Battarbee, C. D. Sayer, G. L. Simpson & T. A. Davidson, 2011. Defining reference conditions and restoration targets for lake ecosystems using palaeolimnology: a synthesis. Journal of Paleolimnology 45: 533–544.Google Scholar
  24. Bennion, H., T. A. Davidson, C. D. Sayer, G. Simpson, N. L. Rose & J. O. Sadler, 2015. Harnessing the potential of the multi-indicator palaeolimnological approach: an assessment of the nature and causes of ecological changes in a eutrophic shallow lake. Freshwater Biology 60: 1423–1442.Google Scholar
  25. Berthon, V., A. Marchetto, F. Rimet, E. Dormia, J. P. Jenny, C. Pignol & M.-E. Perga, 2013. Trophic history of French sub-alpine lakes over the last ~ 150 years: phosphorus reconstruction and assessment of taphonomic biases. Journal of Limnology 72: 417–429.Google Scholar
  26. Berthon, V., B. Alric, F. Rimet & M.-E. Perga, 2014. Sensitivity and responses of diatoms to climate warming in lakes heavily influenced by humans. Freshwater Biology 59: 1755–1767.Google Scholar
  27. Bettinetti, R., S. Quadroni, E. Boggio & S. Galassi, 2016. Recent DDT and PCB contamination in the sediment and biota of the Como Bay (Lake Como, Italy). Science of the Total Environment 542: 404–410.PubMedGoogle Scholar
  28. Bini, A., M. B. Cita & M. Gaetani, 1978. Southern Alpine Lakes – hypothesis of an erosional origin related to the Messinian entrenchment. Marine Geology 27: 271–288.Google Scholar
  29. Bini, A., D. Corbari, P. Falletti, M. Fassina, C. R. Perotti & A. Piccin, 2007. Morphology and geological setting of Iseo Lake (Lombardy) through multibeam bathymetry and high-resolution seismic profiles. Swiss Journal of Geosciences 100: 23–40.Google Scholar
  30. Birks, H. J. B., 1998. Numerical tools in palaeolimnology – progresses, potential and problems. Journal of Palaeolimnology 20: 307–332.Google Scholar
  31. Birks, H. J. B., 2010. Numerical methods for the analysis of diatom assemblage data. In Smol, J. P. & E. F. Stroemer (eds), The Diatoms. Applications for the Environmental and Earth Sciences, 2nd ed. Cambridge University Press, Cambridge: 23–54.Google Scholar
  32. Birks, H. H. & H. J. B. Birks, 2006. Multi-proxies studies in palaeolimnology. Vegetation History and Archaeobotany 15: 235–251.Google Scholar
  33. Blaga, C. I., G.-J. Reichart, A. F. Lotter, F. Anselmetti & J. S. Sinninghe Damsté, 2013. A TEX86 lake record suggests simultaneous shifts in temperature in Central Europe and Greenland during the last deglaciation. Geophysical Research Letters 40: 948–953.Google Scholar
  34. Bogdal, C., P. Schmid, M. Kohler, C. E. Müller, S. Iozza, T. D. Bucheli, M. Scheringer & K. Hungerbühler, 2008. Sediment record and atmospheric deposition of brominated flame retardants and organochlorine compounds in Lake Thun, Switzerland: lessons from the past and evaluation of the present. Environmental Science and Technology 42: 6817–6822.PubMedGoogle Scholar
  35. Bogdal, C., P. Schmid, M. Zennegg, F. S. Anselmetti, M. Scheringer & K. Hungerbühler, 2009. Blast from the past: melting glaciers as a relevant source for persistent organic pollutants. Environmental Science and Technology 43: 8173–8177.PubMedGoogle Scholar
  36. Bogdal, C., M. Scheringer, P. Schmid, M. Bläuenstein, M. Kohler & K. Hungerbühler, 2010. Levels, fluxes and time trends of persistent organic pollutants in Lake Thun, Switzerland: combining trace analysis and multimedia modeling. Science of the Total Environment 408: 3654–3663.PubMedGoogle Scholar
  37. Bollhöfer, A., A. Mangini, A. Lenhard, M. Wessels, F. Giovanoli & B. Schwarz, 1994. High resolution 210Pb-dating of Lake Constance sediments: stable lead in Lake Constance. Environmental Geology 24: 267–274.Google Scholar
  38. Bonacina, C., G. Bonomi & C. Monti, 1986. Oligochaete cocoon remains as evidence of past lake pollution. Hydrobiologia 143: 395–400.Google Scholar
  39. Boucherle, M. M. & H. Züllig, 1990. Cladoceran remains as evidence of change in trophic state in three Swiss lakes. Hydrobiologia 103: 141–146.Google Scholar
  40. Brauer, A. & J. Casanova, 2001. Chronology and depositional processes of the laminated sediment record from Lac d’Annecy, French Alps. Journal of Paleolimnology 25: 163–177.Google Scholar
  41. Brede, N., C. Sandrock, D. Straile, P. Spaak, T. Jankowski, B. Streit & K. Schwenk, 2009. The impact of human-made ecological changes on the genetic architecture of Daphnia species. Proceedings of the National Academy of Sciences of the United States of America 106: 4758–4763.PubMedPubMedCentralGoogle Scholar
  42. Bruel, R., A. Marchetto, A. Bernard, A. Lami, P. Sabatier, V. Frossard & M.-E. Perga, 2018. Seeking alternative stable states in a deep lake. Freshwater Biology 63: 553–568.Google Scholar
  43. Buchholz, B., E. Laczko, N. Pfennig, M. Rohmer & S. Neunlist, 1993. Hopanoids of a recent sediment from Lake Constance as eutrophication markers. FEMS Microbiology Ecology 102: 217–223.Google Scholar
  44. Buraschi, E., F. Salerno, C. Monguzzi, G. Barbiero & G. Tartari, 2005. Characterization of the Italian lake-types and identification of their reference sites using anthropogenic pressure factors. Journal of Limnology 64: 75–84.Google Scholar
  45. Cantonati, M., N. Angeli, L. Virtanen, A. Z. Wojtal, J. Gabrieli, E. Falasco, I. Lavoie, S. Morin, A. Marchetto, C. Fortin & S. Smirnova, 2014. Achnanthidium minutissimum (Bacillariophyta) valve deformities as indicators of metal enrichment in diverse widely-distributed freshwater habitats. Science of the Total Environment 475: 201–215.PubMedGoogle Scholar
  46. Capo, E., D. Debroas, F. Arnaud & I. Domaizon, 2015. Is planktonic diversity well recorded in sedimentary DNA? Toward the reconstruction of past Protistan diversity. Microbial Ecology 70: 865–875.PubMedGoogle Scholar
  47. Capo, E., D. Debroas, F. Arnaud, T. Guillemot, V. Bichet, L. Millet, E. Gauthier, C. Massa, A.-L. Develle, C. Pignol, F. Lejerowicz & I. Domaizon, 2016. Long-term dynamics in microbial eukaryotes communities: a palaeolimnological view based on sedimentary DNA. Molecular Ecology 25: 5925–5943.PubMedGoogle Scholar
  48. Carstens, D., M. F. Lehmann, T. B. Hofstetter & C. J. Schubert, 2013. Amino acid nitrogen isotopic composition patterns in lacustrine sedimenting matter. Geochimica et Cosmochimica Acta 121: 328–338.Google Scholar
  49. Cattaneo, A., A. Asioli, P. Comoli & M. Manca, 1998. Organism response in a chronically polluted lake supports hypothesized link between stress and size. Limnology and Oceanography 43: 1938–1943.Google Scholar
  50. Chapron, E., P. Van Rensbergen, C. Beck, M. De Batist & A. Paillet, 1996. Lacustrine sedimentary records of brutal events in Lake Le Bourget (Northwestern Alps-Southern Jura). Quaternaire Année 7: 155–168.Google Scholar
  51. Chapron, E., C. Beck, M. Pourchet & J.-F. Deconinck, 1999. 1822 Earthquake-triggered homogenite in Lake Le Bourget (NW Alps). Terra Nova 11: 86–92.Google Scholar
  52. Chapron, E., M. Desmet, T. De Putter, M. F. Loutre, C. Beck & J. F. Deconinck, 2002. Climatic variability in the northwestern Alps, France, as evidenced by 600 years of terrigenous sedimentation in Lake Le Bourget. The Holocene 12: 177–185.Google Scholar
  53. Chapron, E., F. Arnaud, H. Noël, M. Revel, M. Desmet & L. Perdereau, 2005. Rhone River flood deposits in Lake Le Bourget: a proxy for Holocene environmental changes in the NW Alps, France. Boreas 34: 404–416.Google Scholar
  54. Ciceri, E., S. Recchia, C. Dossi, L. Yang & R. E. Sturgeon, 2008. Validation of an isotope dilution, ICP-MS method based on internal mass bias correction for the determination of trace concentrations of Hg in sediment cores. Talanta 74: 642–647.PubMedGoogle Scholar
  55. Council of the European Communities, 1979. Council Directive of 21 December 1978 Prohibiting the Placing on the Market and Use of Plant Protection Products Containing Certain Active Substances. Official Journal L 33/36 8.2.79.Google Scholar
  56. Creer, K. M., L. Molyneux, J. P. Vernet & J. J. Wagner, 1975. Palaeomagnetic dating of 1-metre cores of sediment from Lake Geneva. Earth and Planetary Science Letters 28: 127–132.Google Scholar
  57. Crespin, J., F. Sylvestre, A. Alexandre, C. Sonzogni, C. Paillès & M.-E. Perga, 2010. Re-examination of the thermo-dependent relationship between δ18Odiatoms and δ18Olake water. Implications for palaeoclimatic applications. Journal of Paleolimnology 44: 547–557.Google Scholar
  58. Czuczwa, J. M., F. Niessen & R. Hites, 1985. Historical record of polychlorinated dibenzo-p-dioxins and dibenzofurans in Swiss lake sediments. Chemosphere 14: 1175–1179.Google Scholar
  59. Czymzik, M., P. Dulski, B. Plessen, U. Von Grafenstein, R. Naumann & A. Brauer, 2010. A 450 year record of spring–summer flood layers in annually laminated sediments from Lake Ammersee (southern Germany). Water Resources Research 46: W11528.Google Scholar
  60. Czymzik, M., R. Muscheler & A. Brauer, 2016. Solar modulation of flood frequency in Central Europe during spring and summer on inter-annual to millennial time-scales. Climate of the Past Discussions 11: 4833–4850.Google Scholar
  61. D’Alelio, D., A. Gandolfi, A. Boscaini, G. Flaim, M. Tolotti & N. Salmaso, 2011. Planktothrix populations in subalpine lakes (Northern Italy): differential selection of strains with strong gas vesicles as a function of lake depth, morphometry and circulation regime. Freshwater Biology 56: 1481–1493.Google Scholar
  62. Danielopol, D. L., A. Baltanás, T. Namiotko, W. Geiger, M. Pichler, M. Reina & G. Roidmayr, 2008. Developmental trajectories in geographically separated populations of non-marine ostracods: morphometric applications for palaeoecological studies. Senckenbergiana lethaea 88: 183–193.Google Scholar
  63. De Candolle, A. P., 1825. Notice sur la matière qui a colorè en rouge de lac de Morat au printemps de 1825. Mémoires Socieété Physiques et d’Historie naturel de Genève. (in French).Google Scholar
  64. De Jong, R. & C. Kamenik, 2011. Validation of a chrysophyte stomatocyst-based cold-season climate reconstruction from high-Alpine Lake Silvaplana, Switzerland. Journal of Quaternary Science 26: 268–275.Google Scholar
  65. Debret, M., E. Chapron, M. Desmet, M. Rolland-Revel, O. Magand, A. Trentesaux, V. Bout-Roumazeille, J. Nomade & F. Arnaud, 2010. North western Alps Holocene paleohydrology recorded by flooding activity in Lake Le Bourget, France. Quaternary Science Reviews 29: 2185–2200.Google Scholar
  66. Di Cesare, A., E. M. Eckert, A. Teruggi, D. Fontaneto, R. Bertoni, C. Callieri & G. Corno, 2015. Constitutive presence of antibiotic resistance genes within the bacterial community of a large subalpine lake. Molecular Ecology 24: 3888–3900.PubMedGoogle Scholar
  67. Dokulil, M. T., 2013. Impact of climate warming on European inland waters. Inland Waters 4: 27–40.Google Scholar
  68. Dokulil, M. T. & K. Teubner, 2005. Do phytoplankton communities correctly track trophic changes? An assessment using directly measured and palaeolimnological data. Freshwater Biology 50: 1594–1604.Google Scholar
  69. Domaizon, I., O. Savichtcheva, D. Debroas, F. Arnaud, C. Villar, C. Pignol, B. Alric & M.-E. Perga, 2013. DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages. Biogeosciences 10: 3817–3838.Google Scholar
  70. Dominik, J., A. Mangini & G. Müller, 1981. Determination of recent deposition rates in Lake Constance with radioisotopic methods. Sedimentology 28: 653–677.Google Scholar
  71. Dong, X., H. Bennion, S. C. Maberly, C. D. Sayer, G. L. Simpson & R. W. Battarbee, 2012. Nutrients exert a stronger control than climate on recent diatom communities in Esthwaite Water: evidence from monitoring and palaeolimnological records. Freshwater Biology 57: 2044–2056.Google Scholar
  72. Drescher-Schneider, R. & W. Papesch, 1998. A contribution towards the reconstruction of Eemian vegetation and climate in Central Europe: first results of pollen and oxygen-isotope investigations from Mondsee, Austria. Vegetation History and Archaeobotany 7: 235–240.Google Scholar
  73. Dubois, N., É. Saulnier-Talbot, K. Mills, P. Gell, R. Battarbee, H. Bennion, S. Chawchai, X. Dong, P. Francus, R. Flower, D. F. Gomes, I. Gregory-Eaves, S. Humane, G. Kattel, J.-P. Jenny, P. Langdon, J. Massaferro, S. McGowan, A. Mikomägi, N. Y. M. Ngoc, A. S. Ratnayake, M. Reid, N. Rose, J. Saros, D. Schillereff, M. Tolotti & B. Valero-Garcés, 2018. First human impacts and responses of aquatic systems: a review of palaeolimnological records from around the world. The Anthropocene Review 5: 28–68.Google Scholar
  74. Engstrom, D. & H. E. Wight Jr., 1984. Chemical stratigraphy in lake sediments. In Haworth, E. & J. Lund (eds), Lake Sediments and Environmental History. University of Minnesota Press, Minneapolis: 11–67.Google Scholar
  75. European Commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Official Journal L327:1-72.Google Scholar
  76. European Commission, 2003. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). River and Lakes – Typology, Reference Conditions and Classification Systems. Guidance document no. 10. http://www.waterframeworkdirective.wdd.moa.gov.cy/docs/GuidanceDocuments/Guidancedoc10REFCOND.pdf.
  77. Fanetti, D., F. S. Anselmetti, E. Chapron, M. Sturm & L. Vezzoli, 2008. Megaturbidite deposits in the Holocene basin fill of Lake Como (Southern Alps, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 259: 323–340.Google Scholar
  78. Faure, F., M. Corbaz, H. Baecher & L. de Alencastro, 2012. Pollution due to plastics and microplastics in Lake Geneva and in the Mediterranean Sea. Archives des Sciences 65: 157–164.Google Scholar
  79. Ficker, H., M. Luger & M. Gassner, 2017. From dimictic to monomictic: empirical evidence of thermal regime transitions in three deep alpine lakes in Austria induced by climate change, 2017. Freshwater Biology 62: 1335–1345.Google Scholar
  80. Finckh, P., K. Kelts & A. Lambert, 1984. Seismic stratigraphy and bedrock forms in perialpine lakes. Geological Society of America Bulletin 95: 1118–1128.Google Scholar
  81. Frossard, V., L. Millet, V. Verneaux, J. P. Jenny, F. Arnaud, M. Magny & M.-E. Perga, 2013. Depth-specific responses of a chironomid assemblage to contrasting anthropogenic pressures: a palaeolimnological perspective from the last 150 years. Freshwater Biology 59: 26–40.Google Scholar
  82. Frossard, V., V. Verneaux, L. Millet, M. Magny & M.-E. Perga, 2015. Changes in carbon sources fueling benthic secondary production over depth and time: coupling Chironomidae stable carbon isotopes to larval abundance. Oecologia 178: 603–614.PubMedGoogle Scholar
  83. Garibaldi, L., V. Mezzanotte, M. C. Brizzio, M. Rogora & R. Mosello, 1999. The trophic evolution of Lake Iseo as related to its holomixis. Journal of Limnology 58: 10–19.Google Scholar
  84. Gauthier, E. & H. Richard, 2009. Bronze Age at Lake Bourget (NW Alps, France): vegetation, human impact and climatic change. Quaternary International 200: 111–119.Google Scholar
  85. George, G. (ed.), 2010. The Impact of Climate Change on European Lakes. Aquatic Ecology Series, 4. Springer, Dordrecht: 507.Google Scholar
  86. Gherardi, F., S. Bertolino, M. Bodon, S. Casellato, S. Cianfanelli, M. Ferraguti, E. Lori, G. Mura, A. Nocita, N. Riccardi, G. Rossetti, E. Rota, R. Scalera, S. Zerunian & E. Tricarico, 2008. Animal xenodiversity in Italian inland waters: distribution, modes of arrival, and pathways. Biological Invasions 10: 435–454.Google Scholar
  87. Giger, W., M. Sturm, H. Sturm, C. Schaffner, G. Bonani, R. Balzer, H. J. Hofmann, E. Morenzoni, E. Nessi, M. Suter & W. Wölfli, 1984. 14C/12C-ratios in organic matter and hydrocarbons extract from dated lakes sediments. Nuclear Instruments and Methods in Physics Research B5: 394–397.Google Scholar
  88. Giguet-Covex, C., F. Arnaud, J. Poulenard, D. Enters, J.-L. Reyss, L. Millet, J. Lazzarotto & O. Vidal, 2010. Sedimentological and geochemical records of past trophic state and hypolimnetic anoxia in large, hard-water Lake Bourget, French Alps. Journal of Paleolimnology 43: 171–190.Google Scholar
  89. Girardclos, S., J. Fiore, A. M. Rachoud-Schneider, I. Baster & W. Wildi, 2005. Petit-Lac (western Lake Genéva) environment and climate history from deglaciation to the present: a synthesis. Boreas 34: 417–433.Google Scholar
  90. Gobiet, A., S. Kotlarski, M. Beniston, G. Heinrich, J. Rajczak & M. Stoffel, 2014. 21st Century climate change in the European Alps – a review. Science of the Total Environment 493: 1138–1151.PubMedGoogle Scholar
  91. Grim, J., 1968. Ein Beitrag zur Geschichte der naturkundlichen Erforschung des Bodensees. Schriften des Vereins für Geschichte des Bodensees 86: 257–282. (in German).Google Scholar
  92. Guilizzoni, P. & A. Lami, 1988. Sub-fossil pigments as a guide to the phytoplankton history of the acidified Lake Orta (N. Italy). Verhandlungen der Internationalen Vereinigung von Limnologen 23: 874–879.Google Scholar
  93. Guilizzoni, P., G. Bonomi, G. Galanti & D. Ruggiu, 1982. Basic trophic status and recent development of some Italian lakes as revealed by plant pigments and other chemical components in sediment cores. Memorie dell’Istituto Italiano di Idrobiologia 40: 79–98.Google Scholar
  94. Guilizzoni, P., G. Bonomi, G. Galanti & D. Ruggiu, 1983. Relationships between sedimentary pigments and primary production: evidence from core analyses of twelve Italian lakes. Hydrobiologia 103: 103–106.Google Scholar
  95. Guilizzoni, P., A. Lami, A. Marchetto, P. G. Appleby & F. Alvisi, 2001. Fourteen years of palaeolimnological research of a past industrial polluted lake (L. Orta, Northern Italy): an overview. Journal of Limnology 60: 249–262.Google Scholar
  96. Guilizzoni, P., A. Marchetto, A. Lami, S. Gerli & S. Musazzi, 2011. Use of sedimentary pigments to infer past phosphorus concentration in lakes. Journal of Paleolimnology 45: 433–445.Google Scholar
  97. Guilizzoni, P., S. N. Levine, M. Manca, A. Marchetto, A. Lami, A. Ambrosetti, A. Brauer, S. Gerli, E. A. Carrara, A. Rolla, L. Guzzella & D. A. L. Vignati, 2012. Ecological effects of multiple stressors on a deep lake (Lago Maggiore, Italy) integrating neo and palaeolimnological approaches. Journal of Limnology 71: 1–22.Google Scholar
  98. Guzzella, L., 1996. PCBs and organochlorine pesticides in Lake Orta (Northern Italy) sediments. In: Douglas Evans, R., J. Wisniewski & J. R. Wisniewski (eds), The interactions between sediments and water. Water, Air and Soil Pollution 99: 245–254.Google Scholar
  99. Guzzella, L., S. Novati, N. Casatta, C. Roscioli, L. Valsecchi, A. Binelli, M. Parolini, N. Solcà, R. Bettinetti, M. Manca, M. Mazzoni, R. Piscia, P. Volta, A. Marchetto, A. Lami & L. Marziali, 2018. Spatial and temporal trends of target organic and inorganic micropollutants in Lake Maggiore and Lake Lugano (Italian–Swiss water bodies): contamination in sediments and biota. Hydrobiologia.  https://doi.org/10.1007/s10750-017-3494-7.Google Scholar
  100. Hairston Jr., N. G., W. Lampert, C. E. Cáceres, C. L. Holtmeier, L. J. Weider, U. Gaedke, J. M. Fischer, J. A. Fox & D. M. Post, 1999. Lake ecosystems: rapid evolution revealed by dormant eggs. Nature 401: 446.Google Scholar
  101. Hall, R. I. & J. P. Smol, 2010. Diatoms as indicators of lake eutrophication. In Smol, J. P. & E. F. Stroemer (eds), The Diatoms: Applications for the Environmental and Earth Sciences, 2nd ed. Cambridge University Press, Cambridge: 122–151.Google Scholar
  102. Hanisch, S., M. Wessels, F. Niessen & A. Schwalb, 2009. Late Quaternary lake response to climate change and anthropogenic impact: biomarker evidence from Lake Constance sediments. Journal of Paleolimnology 41: 393–406.Google Scholar
  103. Heiri, O. & A. F. Lotter, 2005. Holocene and Lateglacial summer temperature reconstruction in the Swiss Alps based on fossil assemblages of aquatic organism: a review. Boreas 34: 506–516.Google Scholar
  104. Hilbe, M. & F. S. Anselmetti, 2014. Signatures of slope failures and river-delta collapses in a perialpine lake (Lake Lucerne, Switzerland). Sedimentology 61: 1883–1907.Google Scholar
  105. Hilbe, M., M. Strupler, L. Hansen, R. S. Eilertsen, M. Van Daele, M. De Baptist & F. S. Anselmetti, 2016. Morain ridges in fjord-type, perialpine Lake Lucerne, central Switzerland. Geological Society, London, Memoirs 46: 69–70.Google Scholar
  106. Hofmann, W., 1998. The response of Bosmina (Eubosmina) to eutrophication of Upper Lake Constance: the subfossil record. Archiv für Hydrobiologie, Special Issue Advances in Limnology 53: 275–283.Google Scholar
  107. Hsü, K. J. & K. Kelts, 1985. Swiss lakes as a geological laboratory. Part I: turbidity currents. Naturwissenschaften 72: 315–321.Google Scholar
  108. Imhof, H. K., N. P. Ivleva, J. Schmidt, R. Niessner & C. Laforsch, 2013. Contamination of beach sediments of a subalpine lake with microplastic particles. Current Biology 23: 867–868.Google Scholar
  109. IPCC, 2013. Climate change 2013: the physical science basis. In Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P. M. Midgley (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge: 1535 pp.Google Scholar
  110. Irlweck, K., 1991. Distribution of 137(134)Cs in lake sediments from Mondsee (Austria) before and after the Chernobyl Accident. Radiochimica Acta 52–53: 23–236.Google Scholar
  111. Jacob, J., J.-R. Disnar, F. Arnaud, E. Gauthier, Y. Billaud, E. Chapron & G. Bardoux, 2009. Impacts of new agricultural practices on soil erosion during the Bronze Age in the French Prealps. The Holocene 19: 241–249.Google Scholar
  112. Jankowski, T. & D. Straile, 2003. A comparison of egg-bank and long-term plankton dynamics of two Daphnia species, D. hyalina and D. galeata: potentials and limits of reconstruction. Limnology and Oceanography 48: 1948–1955.Google Scholar
  113. Jankowski, T., D. M. Livingstone, H. Bührer, R. Forster & P. Niederhauser, 2006. Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: implications for a warmer world. Limnology and Oceanography 51: 815–819.Google Scholar
  114. Jenny, J. P., F. Arnaud, J. M. Dorioz, C. Giguet-Covex, V. Frossard, P. Sabatier, L. Millet, J.-L. Reyss, K. Tachikawa, E. Bard, C. Pignol, F. Soufi, O. Romeyer & M.-E. Perga, 2013. A spatiotemporal investigation of varved sediments highlights the dynamics of hypolimnetic hypoxia in a large hard-water lake over the last 150 years. Limnology and Oceanography 58: 1395–1408.Google Scholar
  115. Jenny, J. P., F. Arnaud, B. Alric, J. M. Dorioz, P. Sabatier, M. Meybeck & M.-E. Perga, 2014. Inherited hypoxia: a new challenge for reoligotrophicated lakes under global warming. Global Biogeochemical Cycles 28: 1413–1423.Google Scholar
  116. Jenny, J.-P., P. Francus, A. Normandeau, F. Lapointe, M.-E. Perga, A. Ojala, A. Schimmelmann & B. Zolitschka, 2016. Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Global Change Biology 22: 1481–1489.PubMedGoogle Scholar
  117. Jochimsen, M. C., R. Kuemmerlin & D. Straile, 2013. Compensatory dynamics and the stability of phytoplankton biomass during four decades of eutrophication and oligotrophication. Ecology Letters 16: 81–89.PubMedGoogle Scholar
  118. Juggins, S., 2013. Quantitative reconstructions in palaeolimnology: new paradigm or sick science? Quaternary Science Reviews 64: 20–32.Google Scholar
  119. Juggins, S., N. J. Anderson, J. R. Hobbs & A. Heathcote, 2013. Reconstructing epilimnetic total phosphorus using diatoms: statistical and ecological constraints. Journal of Paleolimnology 49: 373–390.Google Scholar
  120. Jung, S., F. Arnaud, P. Bonte, G. Chebbo, C. Lorgeoux, T. Winiarski & B. Tassin, 2008. Temporal evolution of urban wet weather pollution: analysis of PCB and PAH in sediment cores from Lake Bourget, France. Water Science and Technology 57: 1503–1510.PubMedGoogle Scholar
  121. Kamenik, C. & R. Schmidt, 2005. Chrysophyte resting stages: a tool for reconstructing winter/spring climate from Alpine lake sediments. Boreas 34: 477–489.Google Scholar
  122. Kämpf, L., A. Braure, P. Dulski, A. Lami, A. Marchetto, S. Gerli, W. Ambrosetti & P. Guilizzoni, 2012. Detrital layers marking flood events in recent sediments of Lago Maggiore (N. Italy) and their comparison with instrumental data. Freshwater Biology 57: 2076–2090.Google Scholar
  123. Kämpf, L., P. Müller, H. Höller, B. Plessen, R. Naumann, H. Thoss, A. Güntner, B. Merz & A. Brauer, 2015. Hydrological and sedimentological processes of flood layer formation in Lake Mondsee. The Depositional Record 1: 18–37.Google Scholar
  124. Kerfoot, W. C., J. A. Robbins & L. J. Weider, 1999. A new approach to historical reconstruction: combining descriptive and experimental limnology. Limnology and Oceanography 44: 1232–1247.Google Scholar
  125. Klee, R. & R. Schmidt, 1987. Eutrophication of Mondsee (Upper Austria) as indicated by the diatom stratigraphy of a sediment core. Diatom Research 2: 55–76.Google Scholar
  126. Kober, B., M. Wessels, A. Bollhöfer & A. Mangini, 1999. Pb isotopes in sediments of Lake Constance, Central Europe constrain the heavy metal pathways and the pollution history of the catchment. Geochimica et Cosmochimica Acta 63: 1293–1303.Google Scholar
  127. Kolkwitz, R. & M. Marsson, 1908. Ökologie der pflanzlichen Saprobien. Berichte der Deutsche Botanische Gesellschaften 26: 505–519. (in German).Google Scholar
  128. Kremer, K., G. Simpson & S. Girardclos, 2012. Giant Lake Geneva tsunami in AD 563. Nature Geoscience 5: 756–757.Google Scholar
  129. Kremer, K., F. Marillier, M. Hilbe, G. Simpson, D. Dupuy, B. J. F. Yrro, A. M. Rachoud-Schneider, P. Corboud, B. Bellwald, W. Wildi & S. Girardclos, 2014. Lake dwellers occupation gap in Lake Geneva (France–Switzerland) possibly explained by an earthquake-mass movement-tsunami event during Early Bronze Age. Earth and Planetary Science Letters 385: 28–39.Google Scholar
  130. Kremer, K., J. P. Corella, T. Adatte, E. Garniner, G. Zehnhäusern & S. Girardclos, 2015. Origin of turbidites in deep Lake Geneva (France–Switzerland) in the last 1500 years. Journal of Sedimentological Research 85: 1455–1465.Google Scholar
  131. Lallas, P. L., 2001. The Stockholm Convention on Persistent Organic Pollutants. The American Journal of International Law 95: 692–708.Google Scholar
  132. Lambert, A. & K. J. Hsü, 1979. Non-annual cycles of varve-like sedimentation in Walensee, Switzerland. Sedimentology 26: 453–461.Google Scholar
  133. Lappi, E., 2008. L’epopea dei grandi lavori idroelettrici in Giudicarie nell’archivio fotografico di Dante Ongari. Bollettino SAT nr. 2 del II trimestre. Biblioteca della Montagna SAT/Biblioteca di valle delle Giudicarie Esteriori, supplemento. http://www.sat.tn.it/immagini/bollettino/2008_2_ongari.pdf. (in Italian).
  134. Lauterbach, S., E. Chapron, A. Brauer, M. Hüls, A. Gilli, F. Arnaud, A. Piccin, J. Nomade, M. Desmet, U. Von Grafenstein & DecLakes Participants, 2012. A sedimentary record of Holocene surface runoff events and earthquake activity from Lake Iseo (Southern Alps, Italy). The Holocene 22: 749–760.Google Scholar
  135. Leavitt, P. R., 1993. A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. Journal of Paleolimnology 9: 109–127.Google Scholar
  136. Leavitt, P. R., S. C. Fritz, N. J. Anderson, P. A. Baker, T. Blenckner, L. Bunting, J. Catalan, D. J. Conley, W. O. Hobbs, E. Jeppesen, A. Korhola, S. McGowan, K. Rühland, J. A. Rusak, G. L. Simpson, N. Solovieva & J. Werneo, 2009. Paleolimnological evidence of the effects on lakes of energy and mass transfer from climate and humans. Limnology and Oceanography 54: 2330–2348.Google Scholar
  137. Lepori, F. & J. J. Roberts, 2017. Effects of internal phosphorus loadings and food-web structure on the recovery of a deep lake from eutrophication. Journal of Great Lakes Research 43: 255–264.Google Scholar
  138. Liechti, R., 2015. Heavy metal distribution in the sediments of Lake Walen. Master Thesis, ETH Zürich.Google Scholar
  139. Lister, G. S., 1988. A 15,000-year isotopic record from Lake Zürich of deglaciation and climatic change in Switzerland. Quaternary Research 29: 129–141.Google Scholar
  140. Lister, G., K. Kelts, R. Schmid, G. Bonani, H. Hofmann, E. Morenzoni, M. Nessi, M. Suter & W. Wölfli, 1984. Correlation of the paleoclimatic record in lacustrine sediment sequences: 14C dating by AMS. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 5: 389–393.Google Scholar
  141. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1998. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. Journal of Paleolimnology 19: 443–463.Google Scholar
  142. Magny, M., 2004. Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. Quaternary International 113: 65–79.Google Scholar
  143. Magny, M., O. Peyron, E. Gauthier, Y. Rouèche, A. Bordon, Y. Billaud, E. Chapron, A. Marguet, P. Pétrequin & B. Vannière, 2009. Quantitative reconstruction of climatic variations during the Bronze and Early Iron Ages based on pollen and lake-level data in the NW Alps, France. Quaternary International 200: 102–110.Google Scholar
  144. Magny, M., F. Arnaud, H. Holzhauser, E. Chapron, M. Debret, M. Desmet, A. Leroux, L. Millet, M. Revel & B. Vannièr, 2010. Solar and proxy-sensitivity imprints on paleohydrological records for the last millennium in west-central Europe. Quaternary Research 73: 173–179.Google Scholar
  145. Magny, M., F. Arnaud, Y. Billaud & A. Marguet, 2012. Lake-level fluctuations at Lake Bourget (eastern France) around 4500–3500? Cal. a BP and their palaeoclimatic and archaeological implications. Journal of Quaternary Science 27: 494–502.Google Scholar
  146. Manca, M. & R. Comoli, 1995. Temporal variations of fossil Cladocera in the sediments of Lake Orta (N. Italy) over the last 400 years. Journal of Paleolimnology 14: 113–122.Google Scholar
  147. Manca, M., N. Cavicchioni & G. Morabito, 2000. First observations on the effect of complete overturn of Lake Maggiore on plankton and primary production. International Review of Hydrobiology 85: 209–222.Google Scholar
  148. Manca, M., B. Torretta, P. Comoli, S. L. Amsinck & E. Jeppesen, 2007. Major changes in trophic dynamics in large, deep sub-alpine Lake Maggiore from 1940s to 2002: a high resolution comparative palaeo–neolimnological study. Freshwater Biology 52: 2256–2269.Google Scholar
  149. Marchetto, A. & R. Bettinetti, 1995. Reconstruction of the phosphorus history of two deep, subalpine Italian lakes from sedimentary diatoms, compared with long-term chemical measurements. Memorie dell’ Istituto Italiano di Idrobiologia 53: 27–38.Google Scholar
  150. Marchetto, A. & S. Musazzi, 2001. Comparison between sedimentary and living diatoms in Lago Maggiore (N. Italy): implications of using transfer functions. Journal of Limnology 60: 19–26.Google Scholar
  151. Marchetto, A., A. Lami, S. Musazzi, J. Massaferro, L. Langone & P. Guilizzoni, 2004. Lake Maggiore (N. Italy) trophic history: fossil diatom, plant pigments, and chironomids, and comparison with long-term limnological data. Quaternary International 113: 97–110.Google Scholar
  152. Menotti, F. (ed.), 2004. Living on the Lake in Prehistoric Europe – 150 Years of Lake-Dwelling Research. Routledge, London: 286.Google Scholar
  153. Mighall, T. M., P. W. Abrahams, J. P. Grattan, D. Hayes, S. Timberlake & S. Forsyth, 2002. Geochemical evidence for atmospheric pollution derived from prehistoric copper mining at Copa Hill, Cwmystwyth, mid-Wales, UK. Science of the Total Environment 292: 69–80.PubMedGoogle Scholar
  154. Milan, M., 2016. Long-term development of subalpine lakes: effects of nutrients, climate and hydrological variability as assessed by biological and geochemical sediment proxies. PhD Thesis, Univ. Umeå, Sweden. ISBN 978-91-7601-396-0.Google Scholar
  155. Milan, M., C. Bigler, N. Salmaso, G. Guella & M. Tolotti, 2015. Multiproxy reconstruction of a large and deep subalpine lake’s ecological history since the Middle Ages. Journal of Great Lakes Research 41: 982–994.Google Scholar
  156. Milan, M., C. Bigler, M. Tolotti & K. Szeroczyńska, 2017. Effects of long term nutrient and climate variability on subfossil Cladocera in a deep, subalpine lake (Lake Garda, Northern Italy). Journal of Paleolimnology 58: 335–351.Google Scholar
  157. Millet, K., C. Giguet-Covex, V. Verneaux, J.-C. Druart, T. Adatte & F. Arnaud, 2010. Reconstruction of the recent history of a large deep prealpine lake (Lake Bourget, France) using subfossil chironomids, diatoms, and organic matter analysis: towards the definition of a lake-specific reference state. Journal of Paleolimnology 44: 963–978.Google Scholar
  158. Mills, K., D. Schillereff, E. Saulnier-Talbot, P. Gell, N. J. Anderson, F. Arnaud, X. Dong, M. Jones, S. McGowan, J. Masaferro, H. Moorhouse, L. Perez & D. B. Ryves, 2017. Deciphering long-term records of natural variability and human impact as recorded in lake sediments: the palaeolimnological conundrum. WIREs Water 2017(4): e1195.Google Scholar
  159. Monchamp, M.-E., J.-C. Walser, F. Pomati & P. Spaak, 2016. Sedimentary DNA reveals cyanobacterial community diversity over 200 years in two perialpine lakes. Applied and Environmental Microbiology 82: 6472–6482.PubMedPubMedCentralGoogle Scholar
  160. Monchamp, M.-E., P. Spaak, I. Domaizon, N. Dubois, D. Bouffard & F. Pomati, 2018. Homogenization of lake cyanobacterial communities over a century of climate change and eutrophication. Nature Ecology and Evolution 2: 317–324.PubMedGoogle Scholar
  161. Monna, F., J. Dominik, J. L. Loizeau, M. Elpardos & P. Arpagaus, 1999. Origin and evolution of Pb in sediments of Lake Geneva (Switzerland–France). Establishing a stable Pb record. Environmental Science and Technology 33: 2850–2857.Google Scholar
  162. Monod, R., P. Blanc, C. Corvi, R. Revaclier, R. Wattenhofer & P. Zahner, 1984. Evolution physico-chimique, Le Léman, synthèse 1957–1982. International Committee for the Protection of the Water of Lake Geneva (CIPEL), Lausanne: 89–225. (in French).Google Scholar
  163. Monticelli, D., A. Pozzi, E. Ciceri & B. Giussani, 2011. Interpreting complex trace element profiles in sediment cores from a multi-basin deep lake: the western branch of Lake Como. International Journal of Environmental and Analytical Chemistry 91: 213–229.Google Scholar
  164. Moor, H. C., T. Schaller & M. Sturm, 1996. Recent changes in stable lead isotope ratios in sediments of Lake Zug, Switzerland. Environmental Science and Technology 30: 2928–2933.Google Scholar
  165. Moreno-Mateos, D., E. B. Barbier, P. C. Jones, H. P. Jones, J. Aronson, J. A. López-López, M. L. McCrackin, P. Meli, D. Montoya & J. M. Rey Benayas, 2017. Anthropogenic ecosystem disturbance and the recovery debt. Nature Communications 8: 14163.PubMedPubMedCentralGoogle Scholar
  166. Moscariello, A. & F. Costa, 1987. The Upper Laacher See Tephra in Lake Geneva sediments: paleoenvironmental and paleoclimatological implications. Schweizerische Mineralogische und Petrographische Mitteilungen 77: 175–185.Google Scholar
  167. Mosello, R., R. Bertoni & P. Guilizzoni, 2010. Limnological and paleolimnological research on Lake Maggiore as a contribution to transboundary cooperation between Italy and Switzerland. In Ganoulis, J., A. Aureli & J. Fried (eds), Transboundary Water Resources Management. A Multidisciplinary Approach. Wiley, Weinheim: 160–167.Google Scholar
  168. Möst, M., S. Oexle, S. Markov, D. Aidukaite, L. Baumgartner, H.-B. Stich, M. Wessels, D. Martin-Creuzburg & P. Spaak, 2015. Population genetic dynamics of an invasion reconstructed from the sediment egg bank. Molecular Ecology 24: 4074–4093.PubMedGoogle Scholar
  169. Müller, M. D., 1984. Tributyltin detection at trace levels in water and sediments using GC with flame-photometric detection and GC–MS. Fresenius’ Zeitschrift für analytische Chemie 317: 32–36.Google Scholar
  170. Müller, B. U., 1999. Paraglacial sedimentation and denudation processes in an Alpine valley of Switzerland. An approach to the quantification of sediment budgets. Geodinamica Acta 12: 291–301.Google Scholar
  171. Müller, G. & R. A. Gees, 1970. Distribution and thickness of quaternary sediments in the Lake Constance Basin. Sedimentary Geology 4: 81–87.Google Scholar
  172. Müller, G., G. Grimmer & H. Böhnke, 1977. Sedimentary record of heavy metals and polycyclic aromatic hydrocarbons in Lake Constance. Naturwissenschaften 64: 427–431.PubMedGoogle Scholar
  173. Naeher, S., A. Gilli, R. P. North, Y. Hamann & C. J. Schubert, 2013. Tracing bottom water oxygenation with sedimentary Mn/Fe ratios in Lake Zürich, Switzerland. Chemical Geology 352: 125–133.Google Scholar
  174. Naffrechoux, E., N. Cottin, C. Pignol, F. Arnaud, J. P. Jenny & M.-E. Perga, 2015. Historical profiles of PCB in dated sediment cores suggest recent lake contamination through the “halo effect”. Environmental Science and Technology 49: 1303–1310.PubMedGoogle Scholar
  175. Namiotko, T., D. L. Danielopol, U. von Grafenstein, S. Lauterbach, A. Brauer, N. Andersen, M. Hüls, K. Milecka, A. Baltanás, W. Geiger & DecLakes Participants, 2015. Palaeoecology of Late Glacial and Holocene profundal Ostracoda of pre-Alpine lake Mondsee (Austria) – a base for further (palaeo-) biological research. Palaeogeography, Palaeoclimatology, Palaeoecology 419: 23–36.Google Scholar
  176. Nauwerck, A., 1988. Veränderungen im Zooplankton des Mondsees 1943–1988. Berichte der Naturwissenschaftlich-Medizinischen Vereinigung in Salzburg 9: 101–133. (in German).Google Scholar
  177. Nellier, Y.-M., M.-E. Perga, N. Cottin, P. Fanget & E. Naffrechoux, 2015. Particle-dissolved phase partition of polychlorinated biphenyls in high altitude Alpine Lakes. Environmental Science and Technology 49: 9620–9628.PubMedGoogle Scholar
  178. Neukirch, S., 1990. Pigmente in Sedimenten des Bodensee-Untersee als Indikatoren der Bioproduktion (Kern US 8707). Berichte der römisch-germanischen Kommission 71: 279–286. (in German).Google Scholar
  179. Newrkla, P. & N. Wijegoonawardana, 1987. Vertical distribution and abundance of benthic invertebrates in profundal sediments of Mondsee, with special reference to oligochaetes. Aquatic Oligochaeta. Developments in Hydrobiology 40: 227–234.Google Scholar
  180. Niessen, F., L. Wick, G. Bonani, C. Chondrogianni & C. Siegenthaler, 1992. Aquatic system response to climatic and human changes: productivity, bottom water oxygen status, and sapropel formation in Lake Lugano over the last 10000 years. Aquatic Sciences 54: 257–276.Google Scholar
  181. Nipkow, F., 1920. Vorläufige Mitteilungen uber Untersuchungen des Schlammabsatzes im Zürichsee. Schweizer Zeitschrift für Hydrologie 1: 101–123. (in German).Google Scholar
  182. O’Reilly, C. M., S. Sharma, D. K. Gray, S. E. Hampton, G. S. Read, et al., 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research Letters 42: 10773–10781.Google Scholar
  183. Perga, M.-E., M. Desmet, D. Enters & J. Reyss, 2010. A century of bottom-up- and top-down-driven changes on a lake planktonic food web: a paleoecological and paleoisotopic study of Lake Annecy, France. Limnology and Oceanography 55: 803–816.Google Scholar
  184. Perga, M.-E., V. Frossard, J. P. Jenny, B. Alric, F. Arnaud, V. Berthon, J. L. Black, I. Domaizon, C. Giguet-Covex, A. Kirkham, M. Magny, M. Manca, A. Marchetto, L. Millet, C. Paillès, C. Pignol, J. Poulenard, F. Rimet. Reyss & P. Sabatim, 2015. High-resolution paleolimnology opens new management perspectives for lakes adaptation to climate warming. Frontiers in Ecology and Evolution 3: 1–17.Google Scholar
  185. Perga, M.-E., S. C. Maberly, J.-P. Jenny, B. Alric, C. Pignol & E. Naffrechoux, 2016. A century of human-driven changes in the carbon dioxide concentration of lakes. Global Biogeochemical Cycles 30: 93–104.Google Scholar
  186. Petri, M., 2006. Water quality of Lake Constance. In Handbook of Environmental Chemistry, Vol. 5. Springer, Berlin: 127–138.Google Scholar
  187. Piscia, R., P. Guilizzoni, D. Fontaneto, D. A. L. Vignati, P. B. Appleby & M. Manca, 2012. Dynamics of rotifer and cladoceran resting stages during copper pollution and recovery in a subalpine lake. Annales de Limnologie - International Journal of Limnology 48: 151–160.Google Scholar
  188. Piscia, R., M. Colombini, B. Ponti, R. Bettinetti, D. Monticelli, V. Rossi & M. Manca, 2015. Lifetime response of contemporary versus resurrected Daphnia galeata Sars (Crustacea, Cladocera) to Cu(II) chronic exposure. Bulletin of Environmental Contamination and Toxicology 94: 46–51.PubMedGoogle Scholar
  189. Piscia, R., S. Tabozzi, R. Bettinetti, L. Nevalainen & M. Manca, 2016. Unexpected increases in rotifer resting egg abundances during the period of contamination of Lake Orta. Journal of Limnology 75: 76–85.Google Scholar
  190. Poma, G., C. Roscioli & L. Guzzella, 2014. PBDE, HBCD, and novel brominated flame retardant contamination in sediments from Lake Maggiore (Northern Italy). Environmental Monitoring and Assessment 186: 7683–7692.PubMedGoogle Scholar
  191. Powers, L., J. P. Weme, A. J. Vanderwoude, J. S. Sinninghe Damsté, E. C. Hopmans & S. Schouten, 2010. Applicability and calibration of the TEX86 paleothermometer in lakes. Organic Geochemistry 41: 404–413.Google Scholar
  192. Provini, A., S. Galassi, L. Guzzella & G. Valli, 1995. PCB profiles in sediments of Lakes Maggiore, Como and Garda (Italy). Marine and Freshwater Research 46: 129–136.Google Scholar
  193. Putyrskaya, V., E. Klemt & S. Röllin, 2009. Migration of 137Cs in tributaries, lake water and sediment of Lago Maggiore (Italy, Switzerland) – analysis and comparison with Lago di Lugano and other lakes. Journal of Environmental Radioactivity 100: 35–48.PubMedGoogle Scholar
  194. Radić, V., A. Bliss, A. C. Beedlow, R. Hock, E. Milles & J. G. Cogley, 2014. Regional and global projection of twenty first century glacier mass changes in response to climatic scenarios from global climate models. Climate Dynamics 42: 37–58.Google Scholar
  195. Rasmussen, S. O., K. K. Andersen, A. M. Svensson, J. P. Steffensen, B. M. Vinther, H. B. Clausen, M.-L. Siggaard-Andersen, S. J. Johnsen, L. B. Larsen, D. Dahl-Jensen, M. Bigler, R. Röthlisberger, H. Fischer, K. Goto-Azuma, M. E. Hansson & U. Ruth, 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research 111: D06102.Google Scholar
  196. Ravera, O. & G. Parise, 1978. Eutrophication of Lake Lugano ‘read’ by means of planktonic remains in the sediment. Schweizerische Zeitschrift für Hydrologie 40: 40–50.Google Scholar
  197. Renberg, I., R. Bindler & M. L. Brannvall, 2001. Using the historical atmospheric lead-deposition record as a chronological marker in sediment deposits in Europe. The Holocene 11: 511–516.Google Scholar
  198. Revel-Rolland, M., F. Arnaud, E. Chapron, M. Desmet, N. Givelet, C. Alibert & M. McCulloch, 2005. Sr and Nd isotopes as tracers of clastic sources in Lake Le Bourget sediment (NW Alps, France) during the Little Ice Age: palaeohydrology implications. Chemical Geology 224: 183–200.Google Scholar
  199. Rogora, M., R. Mosello, S. Arisci, M. C. Brizzio, A. Barbieri, R. Balestrini, P. Waldner, M. Schmitt, M. Stähli, A. Thimonier, M. Kalina, H. Puxbaum, U. Nickus, E. Ulrich & A. Probst, 2006. An overview of atmospheric deposition chemistry over the Alps: present status and long-term trends. Hydrobiologia 562: 17–40.Google Scholar
  200. Rösch, M., 1993. Prehistoric land use as recorded in a lake-shore core at Lake Constance. Vegetation History and Archaeobotany 2: 213–232.Google Scholar
  201. Ruggiu, D., A. Luglié, A. Cattaneo & P. Panzani, 1998. Paleoecological evidence for diatom response to metal pollution in Lake Orta (N. Italy). Journal of Paleolimnology 20: 333–345.Google Scholar
  202. Salmaso, N. & R. Mosello, 2010. Limnological research in the deep southern subalpine lakes: synthesis, directions and perspectives. Advances in Oceanography and Limnology 1: 29–66.Google Scholar
  203. Salmaso, N., F. Buzzi, L. Cerasino, L. Garibaldi, B. Leoni, G. Morabito, M. Rogora & M. Simona, 2014. Influence of atmospheric modes of variability on the limnological characteristics of large lakes south of the Alps: a new emerging paradigm. Hydrobiologia 731: 31–48.Google Scholar
  204. Salmaso, N., A. Boscaini, C. Capelli, L. Cerasino, M. Milan, S. Putelli & M. Tolotti, 2015. Historical colonisation patterns of Dolichospermum lemmermannii (Cyanobacteria) in a deep lake south of the Alps. Advance in Oceanography and Limnology 6: 33–45.Google Scholar
  205. Santschi, P. H., S. Bollhalder, K. Farrenkothen, A. Lueck, S. Zingg & M. Sturm, 1988. Chernobyl radionuclides in the environment: tracers for the tight coupling of atmospheric, terrestrial, and aquatic geochemical processes. Environmental Science and Technology 22: 510–516.PubMedGoogle Scholar
  206. Savichtcheva, O., D. Debroas, R. Kurmayer, C. Villar, J. P. Jenny, F. Arnaud, M.-E. Perga & I. Domaizon, 2011. Quantitative PCR enumeration of total/toxic Planktothrix rubescens and total Cyanobacteria in preserved DNA isolated from lake sediments. Applied and Environmental Microbiology 77: 8744–8753.PubMedPubMedCentralGoogle Scholar
  207. Savichtcheva, O., D. Debroas, M.-E. Perga, F. Arnaud, C. Villar, E. Lyautey, A. Kirkham, C. Chardon, B. Alric & I. Domaizon, 2015. Effects of nutrients and warming on Planktothrix dynamics and diversity: a palaeolimnological view based on sedimentary DNA and RNA. Freshwater Biology 60: 31–49.Google Scholar
  208. Scheffer, M., 1998. Ecology of Shallow Lakes. Kluwer Academic Publisher, Dordrecht: 357.Google Scholar
  209. Scheffer, M., S. Barrett, S. R. Carpenter, C. Folke, A. J. Green, M. Holmgren, et al., 2015. Creating a safe operating space for iconic ecosystems. Science 347: 1317–1319.PubMedGoogle Scholar
  210. Schelske, C. L., H. Züllig & M. Boucherle, 1987. Limnological investigation of biogenic silica sedimentation and silica biogeochemistry in Lake St. Moritz and Lake Zürich. Schweizer Zeitung für Hydrologie 49: 42–50.Google Scholar
  211. Schindler, C., 1976. Eine geologische Karte des Zuerichsees und ihre Deutung. Eclogae Geologicae Helvetiae 69: 125–138. (in German).Google Scholar
  212. Schmidt, R., 1991. Diatomeenanalytische Auswertung laminierter Sediemnte für die Beurteilung trophischer Langzeittrends am Beispiel des Mondsees (Öberösterreich). Wasser und Abwasser 35: 109–123. (in German).Google Scholar
  213. Schnellmann, M., 2004. Late Quaternary mass movements in a perialpine lake (Lake Lucerne, Switzerland) – sedimentary processes, natural hazards and paleoseismic reconstructions. PhD Thesis, ETH Zürich, Zürich: 132 pp.Google Scholar
  214. Schnellmann, M., F. S. Anselmetti, G. Giardini & J. A. McKenzie, 2005. Mass movement-induced fold-and-thrust belt structures in unconsolidated sediments in Lake Lucerne (Switzerland). Sedimentology 52: 271–289.Google Scholar
  215. Schnellmann, M., F. S. Anselmetti, D. Giardini & J. A. McKenzie, 2006. 15,000 Years of mass-movement history in Lake Lucerne: implications for seismic and tsunami hazards. Eclogae Geologicae Helvetiae 99: 409–428.Google Scholar
  216. Schuler, S., E. Wieland, P. H. Santschi, M. Sturm, A. Lueck, S. Bollhalder, J. Beer, G. Bonani, H. J. Hofmann, M. Suter & W. Wolfli, 1991. A multitracer study of radionuclides in Lake Zurich, Switzerland: 1. Comparison of atmospheric and sedimentary fluxes of 7Be, 10Be, 210Pb, 210Po, and 137Cs. Journal of Geophysical Research 96: 17051–17065.Google Scholar
  217. Schwalb, A., W. Dean, H. Güde, S. Hanisch, S. Sobek & M. Wessels, 2013. Benthic ostracode δ13C as sensor for Early Holocene establishment of modern circulation patterns in Central Europe. Quaternary Science Reviews 66: 112–122.Google Scholar
  218. Siegenthaler, C., W. Finger, K. Kelts & S. Wang, 1987. Earthquake and seiche deposits in Lake Lucerne, Switzerland. Eclogae Geologicae Helvetiae 80: 241–260.Google Scholar
  219. Smith, V. H. & D. W. Schindler, 2009. Eutrophication science: where do we go from here? Trends in Ecology and Evolution 24: 201–207.PubMedGoogle Scholar
  220. Smol, J. P., 2008. Pollution of Lakes and Rivers: A Paleoenvironmental Perspective. Blackwell Publishing, Malden: 383.Google Scholar
  221. Sommer, S., S. Nandini, S. S. S. Sarma, A. Ozgula & D. Fontaneto, 2016. Rotifers in Lake Orta: a potential ecological and evolutionary model system. Journal of Limnology 75: 67–75.Google Scholar
  222. Straile, D., D. M. Livingstone, G. A. Weyhenmeyer & D. G. George, 2003. The response of freshwater ecosystems to climate variability associated with the North Atlantic Oscillation. In Hurrell, J. W., Y. Kushnir, G. Ottersen & M. Visbeck (eds), The North Atlantic Oscillation. Climatic Significance and Environmental Impact. American Geophysical Union, Washington, DC: 263–279.Google Scholar
  223. Straile, D., O. Kerimoglu, F. Peeters, M. C. Jochimsen, R. Kümmerlin, K. Rinke & K.-O. Rothhaupt, 2010. Effects of a half a millennium winter on a deep lake – a shape of things to come? Global Change Biology 16: 2844–2856.Google Scholar
  224. Strasser, M., S. Stegmann, F. Bussmann, F. S. Anselmetti, B. Rick & A. Kopf, 2007. Quantifying subaqueous slope stability during seismic shaking: Lake Lucerne as model for ocean margins. Marine Geology 240: 77–97.Google Scholar
  225. Strasser, M., K. Monecke, M. Schnellmann & F. S. Anselmetti, 2013. Lake sediments as natural seismographs: a compiled record of Late Quaternary earthquakes in Central Switzerland and its implication for Alpine deformation. Sedimentology 60: 319–341.Google Scholar
  226. Strupler, M., M. Hilbe, F. S. Anselmetti, A. J. Kopf, T. Fleischmann & M. Strasser, 2017. Probabilistic stability evaluation and seismic triggering scenarios of submerged slopes in Lake Zurich (Switzerland). Geo-marine Letters 37: 241–258.Google Scholar
  227. Swierczynski, T., S. Lauterbach, P. Dulski & A. Brauer, 2013a. Late Neolithic Mondsee Culture in Austria: living on lakes and living with flood risk? Climate of the Past 9: 1601–1612.Google Scholar
  228. Swierczynski, T., S. Lauterbach, P. Dulski, J. Delgado, B. Merz & A. Brauer, 2013b. Mid- to late Holocene flood frequency changes in the northeastern Alps as recorded in varved sediments of Lake Mondsee (Upper Austria). Quaternary Science Reviews 80: 78–90.Google Scholar
  229. Szeroczyńska, K. & K. Sarmaja-Korjonen, 2007. Atlas of Sub-fossil Cladocera from Central and Northern Europe. Friends of the Lower Vistula Society, Swiecie: 84.Google Scholar
  230. Thevenon, F. & F. S. Anselmetti, 2007. Charcoal and fly-ash particles from Lake Lucerne sediments (Central Switzerland) characterized by image analysis: anthropologic, stratigraphic and environmental implications. Quaternary Science Reviews 26: 2631–2643.Google Scholar
  231. Thevenon, F. & J. Poté, 2012. Water pollution history of Switzerland recorded by sediments of the large and deep perialpine Lakes Lucerne and Geneva. Water, Air and Soil Pollution 223: 6157–6169.Google Scholar
  232. Thevenon, F., N. D. Graham, M. Chiaradia, P. Arpagaus, W. Wildi & J. Poté, 2011. Local to regional scale industrial heavy metal pollution recorded in sediments of large freshwater lakes in Central Europe (Lakes Geneva and Lucerne) over the last centuries. Science of the Total Environment 412–413: 239–247.PubMedGoogle Scholar
  233. Thevenon, F., S. B. Wirth, M. Fujak, J. Pote & S. Girardclos, 2013. Human impact on the transport of terrigenous and anthropogenic elements to peri-alpine lakes (Switzerland) over the last decades. Aquatic Sciences 75: 413–424.Google Scholar
  234. Thompson, R. & K. Kelts, 1974. Holocene sediments and magnetic stratigraphy from Lakes Zug and Zürich, Switzerland. Sedimentology 21: 577–596.Google Scholar
  235. Timms, B. V., 1992. Lake Geomorphology. Gleneagles Publishing, Adelaide: 180.Google Scholar
  236. Tolotti, M., M. Milan & K. Szeroczyńska, 2016. Subfossil Cladocera as a powerful tool for paleoecological reconstruction. Advances in Oceanography and Limnology 7: 125–130.Google Scholar
  237. Vernet, J. P. & P.-Y. Favarger, 1982. Climatic and anthropogenic effects on the sedimentation and geochemistry of Lakes Bourget, Annecy and Leman. Hydrobiologia 92: 643–650.Google Scholar
  238. Viaroli, P., R. Azzoni, M. Bartoli, P. Iacumin, D. Longhi, R. Mosello, M. Rogora, G. P. Rossetti, N. Salmaso & D. Nizzoli, 2018. Persistence of meromixis and its effects on redox conditions and trophic status in Lake Idro (Southern Alps, Italy). Hydrobiologia (this issue).Google Scholar
  239. Vignati, D. A. L., R. Bettinetti & A. Marchetto, 2016. Long-term persistence of sedimentary copper contamination in Lake Orta: potential environmental risks 20 years after liming. Journal of Limnology 75: 107–119.Google Scholar
  240. Vollenweider, R. A. & J. Kerekes, 1982. Eutrophication of Waters, Monitoring, Assessment and Control. OECD, Paris: 154.Google Scholar
  241. Von Grafenstein, U., H. Erlenkeuser, J. Müller & A. Kleinmann-Eisenmann, 1992. Oxygen isotope records of benthic ostracods in Bavarian Lake sediments – reconstruction of late and post glacial air temperatures. Naturwissenschaften 79: 145–152.Google Scholar
  242. Von Grafenstein, U., H. Erlenkeuser, A. Kleinmann, J. Müller & P. Trimborn, 1994. High-frequency climatic oscillations during the last deglaciation as revealed by oxygen-isotope records of benthic organisms (Ammersee, southern Germany). Journal of Paleolimnology 11: 349–357.Google Scholar
  243. Von Grafenstein, U., H. Erlenkeuser, J. Müller, J. Jouzel & S. Johnsen, 1998. The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland. Climate Dynamics 14: 73–81.Google Scholar
  244. Von Gunten, H. R., M. Sturm, H. N. Erten, E. Rössler & E. Wegmiiller, 1987. Sedimentation rates in the central Lake Constance determined with 21~ and 137Cs. Schweizer Zeitschrift für Hydrologie 49: 275–283.Google Scholar
  245. Wakeham, S. G., C. Schaffner & W. Giger, 1980. Polycyclic aromatic hydrocarbons in recent lake sediments – II. Compounds derived from biogenic precursors during early diagenesis. Geochimica et Cosmochimica Acta 44: 415–429.Google Scholar
  246. Walker, I. R., 2001. Midges: chironomidae and related diptera. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments, Vol. 4., Zoological Indicators Kluwer Academic Publisher, Dordrecht: 43–66.Google Scholar
  247. Wang, Z. J., H. El Ghobary, F. Giovanoli & P.-Y. Favarger, 1986. Interpretation of metal profiles in a sediment core from Lake Geneva: metal mobility or pollution. Schweizer Zeitschrift für Hydrologie 48: 1–17.Google Scholar
  248. Weider, L. J., W. Lampert, M. Wessels, J. K. Colburne & P. Limburg, 1997. Long-term genetic shifts in a microcrustacean egg bank associated with anthropogenic changes in the Lake Constance ecosystem. Proceedings of the Royal Society B: Biological Sciences 264: 1613–1618.Google Scholar
  249. Wessels, M., 1998. Natural environmental changes indicated by Late Glacial and Holocene sediments from Lake Constance, Germany. Palaeography, Palaeoclimatology, Palaeoecology 140: 421–432.Google Scholar
  250. Wessels, M., A. Lenhard, F. Giovanoli & A. Bollhöffer, 1995. High resolution time series of lead and zinc in sediments of Lake Constance. Aquatic Sciences 57: 291–304.Google Scholar
  251. Wessels, M., K. Mohaupt, R. Kümmerlin & A. Lenhard, 1999. Reconstructing past eutrophication trends from diatoms and biogenic silica in the sediment and the pelagic one of Lake Constance. Journal of Paleolimnology 21: 171–192.Google Scholar
  252. Wolff, H., 1966. Die Geschichte des Hydrobiologischen Laboratoriums in Kastanienbaum, Luzern. Schweizerische Zeitschrift für Hydrologie 28: 46–56. (in German).Google Scholar
  253. Wolff, C., A. Brauer, J. Nomade & DecLakes Participants, 2006. Varve chronology of the last 3000 years of the sediment record from Lake Mondsee (Upper Austria). Geophysical Research Abstracts 8: 06750.Google Scholar
  254. Wüest, A., M. Zeh & J. D. Ackerman, 2007. Preface: Lake Brienz Project: an interdisciplinary catchment-to-lake study. Aquatic Sciences 69: 173–178.Google Scholar
  255. Wunderlin, T., J. P. Corella, T. Junier, M. Bueche, J. L. Loizeau, S. Girardclos & P. Junier, 2014. Endospore-forming bacteria as new proxies to assess impact of eutrophication in Lake Geneva (Switzerland–France). Aquatic Sciences 76: 103–116.Google Scholar
  256. Wunsam, S. & R. Schmidt, 1995. A diatom-phosphorus transfer function for Alpine and pre-Alpine lakes. Memorie Istituto Italiano Idrobiologia 53: 85–99.Google Scholar
  257. Züllig, H., 1956. Sedimente als Ausdruck des Zustandes eines Gewässers. Schweizerische Zeitschrift für Hydrologie 18: 5–143. (in German).Google Scholar
  258. Züllig, H., 1989. Role of carotenoids in lake sediments for reconstructing trophic history during the Late Quaternary. Journal of Paleolimnology 2: 23–40.Google Scholar
  259. Zweerus, N. L., S. Sommer, D. Fontaneto & A. Ozgul, 2017. Life-history responses to environmental change revealed by resurrected rotifers from a historically polluted lake. Hydrobiologia 796: 121–130.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre (CRI)Fondazione Edmund Mach (FEM)S. Michele all’AdigeItaly
  2. 2.Geological Institute, Department of Earth SciencesETH ZürichZürichSwitzerland
  3. 3.Department of Surface Waters Research and ManagementEawagDübendorfSwitzerland
  4. 4.Limnological InstituteUniversity of KonstanzKonstanzGermany
  5. 5.Institute of Earth Surface Dynamics, GeopolisUniversity of LausanneLausanneSwitzerland
  6. 6.CARRTELINRA-University Savoie-Mont BlancThonon-les-bains CedexFrance
  7. 7.Istituto per lo Studio degli Ecosistemi, ISE-CNRVerbaniaItaly

Personalised recommendations