Advertisement

Hydrobiologia

, Volume 822, Issue 1, pp 143–156 | Cite as

Spatial–temporal patterns of methane dynamics in Lake Taihu

  • Lingling Li
  • Bin Xue
  • Shuchun Yao
  • Yuqiang Tao
  • Renhua Yan
Primary Research Paper

Abstract

Lakes are important source of atmospheric methane (CH4). Especially for large and shallow lakes, accurate CH4 emission budgets must consider the spatial and seasonal heterogeneity which characterize these ecosystems. CH4 concentrations in sediment and lake water and CH4 fluxes from sediment were analysed in selected open water areas of Lake Taihu, the third largest freshwater lake in China, to test the hypothesis that CH4 concentrations and fluxes differ both spatially and temporally in relation to biological and environmental features. The results showed that Lake Taihu was a source of CH4 throughout the year. The observed CH4 concentrations and fluxes were higher in the north-western and south-eastern areas of the lake, and lower in the central area. This spatial heterogeneity in methane emissions was mainly related to local organic matter content, plant characteristics, deposition rate and sediment features. Seasonally, CH4 showed stronger emissions in summer. These results suggest that the analysis of CH4 dynamics in shallow lakes should consider the habitat heterogeneity and the different sources of organic matter. Furthermore, the CH4 emission budget should at least include high and low temperature periods to decrease temporal bias.

Keywords

Methane in lake sediment Spatial heterogeneity Deposition rate Organic matter Temperature 

Notes

Acknowledgements

The authors are very grateful to Mr. Jingkui Tao and Dr. Longjuan Cheng for their support and help with the fieldwork. Special thanks are given to the reviewers for their constructive comments and suggestions. This research was supported by the Chinese National Science Foundation (41372185), Chinese National Science Foundation (41573129), the National Basic Science and Technology Special Project (2014FY110400), and the UCAS Joint Ph.D. Training Programme.

Supplementary material

10750_2018_3670_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 15 kb)
10750_2018_3670_MOESM2_ESM.xlsx (21 kb)
Supplementary material 2 (XLSX 20 kb)

References

  1. Abril, G. & N. Iversen, 2002. Methane dynamics in a shallow non-tidal estuary (Randers Fjord, Denmark). Marine Ecology Progress Series 230: 171–181.CrossRefGoogle Scholar
  2. Adams, D. D., 2005. Diffuse flux of greenhouse gases – methane and carbon dioxide – at the sediment-water interface of some lakes and reservoirs of the world. In Tremblay, A., L. Varfalvy, C. Roehm & M. Garneau (eds), Greenhouse gas emissions – fluxes and processes. Springer, Berlin: 129–153.Google Scholar
  3. Bastviken, D., J. Cole, M. Pace & L. Tranvik, 2004. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochemical Cycles.  https://doi.org/10.1029/2004GB002238.CrossRefGoogle Scholar
  4. Bastviken, D., J. J. Cole, M. L. Pace & M. C. Van de Bogert, 2008. Fates of methane from different lake habitats: connecting whole-lake budgets and CH4 emissions. Journal of Geophysical Research-Biogeosciences.  https://doi.org/10.1029/2007JG000608.CrossRefGoogle Scholar
  5. Bastviken, D., A. L. Santoro, H. Marotta, L. Q. Pinho, D. F. Calheiros, P. Crill & A. Enrichprast, 2010. Methane emissions from Pantanal, South America, during the low water season: toward more comprehensive sampling. Environmental Science & Technology 44: 5450–5455.CrossRefGoogle Scholar
  6. Bastviken, D., L. J. Tranvik, J. A. Downing, P. M. Crill & A. Enrich-Prast, 2011. Freshwater methane emissions offset the continental carbon sink. Science 331: 50.CrossRefPubMedGoogle Scholar
  7. Bergman, I., M. Klarqvist & M. Nilsson, 2000. Seasonal variation in rates of methane production from peat of various botanical origins: effects of temperature and substrate quality. Fems Microbiology Ecology 33: 181–189.CrossRefPubMedGoogle Scholar
  8. Berner, R. A., 1980. Early Diagenesis: A Theoretical Approach. Princeton University Press, Princeton.Google Scholar
  9. Borrel, G., D. Jezequel, C. Biderre-Petit, N. Morel-Desrosiers, J.-P. Morel, P. Peyret, G. Fonty & A.-C. Lehours, 2011. Production and consumption of methane in freshwater lake ecosystems. Research in Microbiology 162: 832–847.CrossRefPubMedGoogle Scholar
  10. Broecker, W. S. & T.-H. Peng, 1974. Gas exchange rates between air and sea. Tellus 26: 21–35.CrossRefGoogle Scholar
  11. Cai, Z. C. & A. R. Mosier, 2000. Effect of NH4Cl addition on methane oxidation by paddy soils. Soil Biology and Biochemistry 32: 1537–1545.CrossRefGoogle Scholar
  12. Cai, Z. C., G. Y. Shen, X. Y. Yan, H. Tsuruta, K. Yagi & K. Minami, 1998. Effects of soil texture, soil temperature and Eh on methane emissions from rice paddy fields. Acta Pedologica Sinica 35: 145–154.Google Scholar
  13. Casper, P., 1992. Methane production in lakes of different trophic state. Archiv für Hydrobiologie 37: 149–154.Google Scholar
  14. Casper, P., 1996. Methane production in littoral and profundal sediments of an oligotrophic and a eutrophic lake. Archiv für Hydrobiologie 48: 253–259.Google Scholar
  15. Casper, P., A. L. D. S. Furtado & D. D. Adams, 2003. Biochemistry and diffuse fluxes of greenhouse gases and dinitrogen from the sediments of oligotrophic Lake Stechlin, northern Germany. Archiv für Hydrobiologie 58: 53–71.Google Scholar
  16. Chen, Y., B. Qin, K. Teubner & M. T. Dokulil, 2003. Long-term dynamics of phytoplankton assemblages: microcystis-domination in Lake Taihu, a large shallow lake in China. Journal of Plankton Research 25: 445–453.CrossRefGoogle Scholar
  17. Dai, X. L., P. Q. Qian, L. Ye & T. Song, 2016. Changes in nitrogen and phosphorus concentrations in Lake Taihu, 1985–2015. Journal of Lake Sciences 28: 935–943.CrossRefGoogle Scholar
  18. Duan, H., R. Ma, X. Xu, F. Kong, S. Zhang, W. Kong, J. Hao & L. Shang, 2009. Two-decade reconstruction of algal blooms in China’s Lake Taihu. Environmental Science & Technology 43: 3522.CrossRefGoogle Scholar
  19. Ettwig, K. F., M. K. Butler, D. Le Paslier, E. Pelletier, S. Mangenot, M. M. M. Kuypers, F. Schreiber, B. E. Dutilh, J. Zedelius, D. de Beer, J. Gloerich, H. J. C. T. Wessels, T. van Alen, F. Luesken, M. L. Wu, K. T. van de Pas-Schoonen, H. J. M. O. den Camp, E. M. Janssen-Megens, K.-J. Francoijs, H. Stunnenberg, J. Weissenbach, M. S. M. Jetten & M. Strous, 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464: 543–548.CrossRefPubMedGoogle Scholar
  20. Fan, X. F. & P. Xing, 2016. The vertical distribution of sediment archaeal community in the (Black Bloom) disturbing Zhushan Bay of Lake Taihu. Archaea 2016: 1–8.CrossRefGoogle Scholar
  21. Fernández, J. E., F. Peeters & H. Hofmann, 2014. Importance of the autumn overturn and anoxic conditions in the hypolimnion for the annual methane emissions from a temperate lake. Environmental Science & Technology 48: 7297–7304.CrossRefGoogle Scholar
  22. Fuchs, A., E. Lyautey, B. Montuelle & P. Casper, 2016. Effects of increasing temperatures on methane concentrations and methanogenesis during experimental incubation of sediments from oligotrophic and mesotrophic lakes. Journal of Geophysical Research: Biogeosciences 121: 1394–1406.Google Scholar
  23. Furlanetto, L. M., C. C. Marinho, C. Palma-Silva, E. F. Albertoni, M. P. Figueiredo-Barros & F. D. A. Esteves, 2012. Methane levels in shallow subtropical lake sediments: dependence on the trophic status of the lake and allochthonous input. Limnologica 42: 151–155.CrossRefGoogle Scholar
  24. Gudasz, C., D. Bastviken, K. Steger, K. Premke, S. Sobek & L. J. Tranvik, 2010. Temperature-controlled organic carbon mineralization in lake sediments. Nature 466: 478–481.CrossRefPubMedGoogle Scholar
  25. Hofmann, H., 2013. Spatiotemporal distribution patterns of dissolved methane in lakes: how accurate are the current estimations of the diffusive flux path? Geophysical Research Letters 40: 2779–2784.CrossRefGoogle Scholar
  26. Huttunen, J. T., T. S. Vaisanen, S. K. Hellsten, M. Heikkinen, H. Nykanen, H. Jungner, A. Niskanen, M. O. Virtanen, O. V. Lindqvist, O. S. Nenonen & P. J. Martikainen, 2002. Fluxes of CH4, CO2, and N2O in hydroelectric reservoirs Lokka & Porttipahta in the northern boreal zone in Finland. Global Biogeochemical Cycles.  https://doi.org/10.1029/2000gb001316.CrossRefGoogle Scholar
  27. Jenkinson, D. S., 1981. The fate of plant and animal residues in soil. In Greenland, D. J. & M. H. B. Hayes (eds), Chemistry of Soil Processes. Wiley, Hoboken.Google Scholar
  28. Kelly, C. & D. Chynoweth, 1980. Comparison of in situ and in vitro rates of methane release in freshwater sediments. Applied and Environmental Microbiology 40: 287–293.PubMedPubMedCentralGoogle Scholar
  29. Liikanen, A. & P. J. Martikainen, 2003. Effect of ammonium and oxygen on methane and nitrous oxide fluxes across sediment-water interface in a eutrophic lake. Chemosphere 52: 1287–1293.CrossRefPubMedGoogle Scholar
  30. Lovley, D. R. & E. J. P. Phillips, 1987. Rapid assay for microbially reducible ferric iron in aquatic sediments. Applied & Environmental Microbiology 53: 1536–1540.Google Scholar
  31. Luo, L. C., B. Q. Qin & G. W. Zhu, 2004. Sediment distribution pattern mapped from the combination of objective analysis and geostatistics in the large shallow Taihu Lake, China. Journal of Environmental Sciences 16: 908.Google Scholar
  32. Marinho, C. C., C. Palma Silva, E. F. Albertoni, C. Trindade & F. D. A. Esteves, 2009. Seasonal dynamics of methane in the water column of two subtropical lakes differing in trophic status. Brazilian Journal of Biology 69: 281–287.CrossRefGoogle Scholar
  33. Miller, D. N., W. C. Ghiorse & J. B. Yavitt, 1999. Seasonal patterns and controls on methane and carbon dioxide fluxes in forested swamp pools. Geomicrobiology Journal 16: 325–331.CrossRefGoogle Scholar
  34. Natchimuthu, S., I. Sundgren, M. Gålfalk, L. Klemedtsson, P. Crill, Å. Danielsson & D. Bastviken, 2016. Spatio-temporal variability of lake CH4 fluxes and its influence on annual whole lake emission estimates. Limnology and Oceanography 61: S13–S26.CrossRefGoogle Scholar
  35. Nordi, K. A., B. Thamdrup & C. J. Schubert, 2013. Anaerobic oxidation of methane in an iron-rich Danish freshwater lake sediment. Limnology and Oceanography 58: 546–554.CrossRefGoogle Scholar
  36. Nusslein, B. & R. Conrad, 2000. Methane production in eutrophic Lake Plusssee: seasonal change, temperature effect and metabolic processes in the profundal sediment. Archiv für Hydrobiologie 149: 597–623.CrossRefGoogle Scholar
  37. Nusslein, B., K. J. Chin, W. Eckert & R. Conrad, 2001. Evidence for anaerobic syntrophic acetate oxidation during methane production in the profundal sediment of subtropical Lake Kinneret (Israel). Environmental Microbiology 3: 460–470.CrossRefPubMedGoogle Scholar
  38. Qin, B. Q., 2008. Lake Taihu, China: Dynamics and Environmental Change. Springer, New York.CrossRefGoogle Scholar
  39. Qin, B. Q., W. P. Hu, G. Gao, L. C. Luo & J. S. Zhang, 2004. Dynamics of sediment resuspension and the conceptual schema of nutrient release in the large shallow Lake Taihu, China. Chinese Science Bulletin 49: 54–64.CrossRefGoogle Scholar
  40. Qin, B. Q., P. Z. Xu, Q. L. Wu, L. C. Luo & Y. L. Zhang, 2007. Environmental issues of lake Taihu, China. Hydrobiologia 581: 3–14.CrossRefGoogle Scholar
  41. Rinta, P., D. Bastviken, J. Schilder, M. Van Hardenbroek, T. Stötter & O. Heiri, 2017. Higher late summer methane emission from central than northern European lakes. Journal of Limnology 76: 52–67.Google Scholar
  42. Reeburgh, W. S., 1976. Methane consumption in cariaco trench waters and sediments. Earth and Planetary Science Letters 28: 337–344.CrossRefGoogle Scholar
  43. Saunois, M., P. Bousquet, B. Poulter, A. Peregon, P. Ciais, J. G. Canadell, E. J. Dlugokencky, G. Etiope, D. Bastviken, S. Houweling, G. Janssens-Maenhout, F. N. Tubiello, S. Castaldi, R. B. Jackson, M. Alexe, V. K. Arora, D. J. Beerling, P. Bergamaschi, D. R. Blake, G. Brailsford, V. Brovkin, L. Bruhwiler, C. Crevoisier, P. Crill, C. Curry, C. Frankenberg, N. Gedney, L. Höglund-Isaksson, M. Ishizawa, A. Ito, F. Joos, H.-S. Kim, T. Kleinen, P. Krummel, J.-F. Lamarque, R. Langenfelds, R. Locatelli, T. Machida, S. Maksyutov, K. C. McDonald, J. Marshall, J. R. Melton, I. Morino, V. Naik, S. Doherty, F.-J. W. Parmentier, P. K. Patra, C. Peng, S. Peng, G. P. Peters, I. Pison, C. Prigent, R. Prinn, M. Ramonet, W. J. Riley, M. Saito, R. Schroeder, I. J. Simpson, R. Spahni, P. Steele, A. Takizawa, B. F. Thornton, H. Tian, Y. Tohjima, N. Viovy, A. Voulgarakis, M. van Weele, G. van der Werf, R. Weiss, C. Wiedinmyer, D. J. Wilton, A. Wiltshire, D. Worthy, D. B. Wunch, X. Xu, Y. Yoshida, B. Zhang, Z. Zhang & Q. Zhu, 2016. The global methane budget: 2000–2012. Earth System Science Data Discussions 8: 697–751.CrossRefGoogle Scholar
  44. Schwarz, J. I. K., W. Eckert & R. Conrad, 2008. Response of the methanogenic microbial community of a profundal lake sediment (Lake Kinneret, Israel) to algal deposition. Limnology & Oceanography 53: 113–121.CrossRefGoogle Scholar
  45. Schilder, J., D. Bastviken, M. van Hardenbroek, P. Kankaala, P. Rinta, T. Stötter & O. Heiri, 2013. Spatial heterogeneity and lake morphology affect diffusive greenhouse gas emission estimates of lakes. Geophysical Research Letters 40: 5752–5756.CrossRefGoogle Scholar
  46. Schilder, J., D. Bastviken, M. V. Hardenbroek & O. Heiri, 2016. Spatiotemporal patterns in methane flux and gas transfer velocity at low wind speeds: implications for upscaling studies on small lakes. Journal of Geophysical Research: Biogeosciences 121: 1456–1467.Google Scholar
  47. Sheng, D., Z. Xu & Y. Gao, 2010. Cause and impact analysis of black water cluster in Taihu Lake. Water Resources Protection 26: 41–44.Google Scholar
  48. Song, J. M., Y. F. Xu & W. P. Hu, 2008. Carbon Biogeochemistry of Chinese Offshore and Lakes. Science Press, Beijing: 424–493.Google Scholar
  49. Sweerts, J. P. R., C. A. Kelly, J. W. Rudd, R. Hesslein & T. E. Cappenberg, 1991. Similarity of whole-sediment molecular diffusion coefficients in freshwater sediments of low and high porosity. Limnology and Oceanography 36: 335–341.CrossRefGoogle Scholar
  50. Thebrath, B., F. Rothfuss, M. Whiticar & R. Conrad, 1993. Methane production in littoral sediment of Lake Constance. Fems Microbiology Ecology 11: 279–289.CrossRefGoogle Scholar
  51. van den Pol-van Dasselaar, A. & O. Oenema, 1999. Methane production and carbon mineralisation of size and density fractions of peat soils. Soil Biology & Biochemistry 31: 877–886.CrossRefGoogle Scholar
  52. Van der Nat, F.-J. W. A., J. F. C. De Brouwer, J. J. Middelburg & H. J. Laanbroek, 1997. Spatial distribution and inhibition by ammonium of methane oxidation in intertidal freshwater marshes. Applied and Environmental Microbiology 63: 4734–4740.Google Scholar
  53. Wang, H., J. Lu, W. Wang, L. Yang & C. Yin, 2006. Methane fluxes from the littoral zone of hypereutrophic Taihu Lake, China. Journal of Geophysical Research.  https://doi.org/10.1029/2005JD006864.CrossRefGoogle Scholar
  54. Wang, S. M., 1998. Chinese Lakes. Science Press, Beijing.Google Scholar
  55. Wassmann, R. & M. S. Aulakh, 2000. The role of rice plants in regulating mechanisms of methane missions. Biology and Fertility of Soils 31: 20–29.CrossRefGoogle Scholar
  56. Wu, Q. L., Y. H. Hu, W. C. Li, K. N. Chen & J. Z. Pan, 2000. Tendency of swampiness of East Taihu Lake and its causes. Acta Scientiae Circumstantiae 20: 275–279.Google Scholar
  57. Xing, P., H. Li, Q. Liu & J. Zheng, 2012. Composition of the archaeal community involved in methane production during the decomposition of Microcystis blooms in the laboratory. Canadian Journal of Microbiology 58: 1153–1158.CrossRefPubMedGoogle Scholar
  58. Xing, Y. P., P. Xie, H. Yang, L. Y. Ni, Y. S. Wang & K. W. Rong, 2005. Methane and carbon dioxide fluxes from a shallow hypereutrophic subtropical Lake in China. Atmospheric Environment 39: 5532–5540.CrossRefGoogle Scholar
  59. Yamamoto, S., J. B. Alcauskas & T. E. Crozier, 1976. Solubility of methane in distilled water and seawater. Journal of Chemical and Engineering Data 21: 78–80.CrossRefGoogle Scholar
  60. Yang, H., P. Xie, L. Ni & R. J. Fower, 2011. Underestimation of CH4 emission from freshwater Lakes in China. Environmental Science & Technology 45: 4203–4204.CrossRefGoogle Scholar
  61. Yang, M., J. Yu, Z. Li, Z. Guo, M. Burch & T.-F. Lin, 2008. Taihu Lake not to blame for Wuxi’s woes. Science 319: 158.CrossRefPubMedGoogle Scholar
  62. Zhu, J. G., W. P. Hu & C. H. Hu, 2010. Distribution of deposition rate of Lake Taihu and its health assessment. Resources and Environment in the Yangtze Basin 19: 703–706.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Lingling Li
    • 1
    • 2
  • Bin Xue
    • 1
    • 3
  • Shuchun Yao
    • 1
  • Yuqiang Tao
    • 1
  • Renhua Yan
    • 1
  1. 1.State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
  2. 2.University of the Chinese Academy of SciencesBeijingChina
  3. 3.Nanjing University of Information Science and TechnologyNanjingChina

Personalised recommendations