, Volume 820, Issue 1, pp 215–226 | Cite as

Effects of bottom-feeding fish juveniles on the vertical distribution of a meiofaunal community

  • Sebastian WeberEmail author
  • Nabil Majdi
  • Walter Traunspurger
Primary Research Paper


The distribution pattern of benthic meiofauna in freshwater ecosystems reflects a trade-off between residences in the high-risk, but productive, sediment surface versus the safer, but physiologically harsher, conditions deeper in the sediment. In this study, we used field enclosures and exclosures in a natural freshwater pond to investigate the effects of the juvenile common carp (Cyprinus carpio) on the distribution patterns of meiofaunal assemblages. Carp fed voraciously on meiofauna, reducing within few days the density and biomass of nematodes, oligochaetes, and microcrustaceans but not of rotifers, in the upper (0–2 cm) as well as deeper (2–4 cm) sediment layers. However, fish predation had less impact on the populations of nematodes and oligochaetes in the deeper sediment than in the surface sediment, as evidenced by reductions of 65 versus 80%, respectively. An analysis of the gut contents of carp indicated a high degree of omnivory, including the frequent consumption of meiofaunal organisms and also demonstrated the importance of meiobenthic invertebrates as prey for juvenile bottom-feeding fishes.


Cyprinus carpio Food-web Meiobenthos Top–down control Vertical distribution 



We thank the organic farm Meyer zu Theenhausen (Werther, Germany) for the use of their ponds in this study and Hubert Spieth for background information and constructive comments. Jana Jarczak provided support both in the field and in the laboratory. Two anonymous reviewers and Associate Editor in Chief Diego Fontaneto gave helpful comments that improved the manuscript considerably. Sebastian Weber received a doctoral grant from the Scholarship Programme of the German Federal Environmental Foundation (DBU, Osnabrück, Germany).


  1. Aarnio, K., 2000. Experimental evidence of predation by juvenile flounder, Platichthys flesus, on a shallow water meiobenthic community. Journal of Experimental and Marine Biology and Ecology 246: 15–138.CrossRefGoogle Scholar
  2. Abada, A. E. A., N. F. Ghanim, A. H. Sherif & N. A. Salama, 2017. Benthic freshwater nematode community dynamics under conditions of Tilapia aquaculture in Egypt. African Journal of Aquatic Science 42: 381–387.CrossRefGoogle Scholar
  3. Alheit, J. & W. Scheibel, 1982. Benthic harpacticoids as a food source for fish. Marine Biology 70: 141–147.CrossRefGoogle Scholar
  4. Bates, D., M. Maechler, B. Bolker & S. Walker, 2015. Fitting linear mixed-effects models using Ime4. Journal of Statistical Software 67: 1–48.CrossRefGoogle Scholar
  5. Beier, S. & W. Traunspurger, 2003. Seasonal distribution of free-living nematodes in the Krähenbach, a fine-grained submountain carbonate stream in southwest Germany. Nematology 5: 113–136.CrossRefGoogle Scholar
  6. Bergtold, M. & W. Traunspurger, 2004. The benthic community in the profundal of Lake Brunnsee: seasonal and spatial patterns. Archiv für Hydrobiologie 160: 527–554.CrossRefGoogle Scholar
  7. Billheimer, L. E. & B. C. Coull, 1988. Bioturbation and recolonization of meiobenthos in juvenile spot (Pisces) feeding pits. Estuarine, Coastal and Shelf Science 27: 335–340.CrossRefGoogle Scholar
  8. Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. Stevens & J. S. S. White, 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology and Evolution 24: 127–135.CrossRefPubMedGoogle Scholar
  9. Bollens, S. M. & B. W. Frost, 1991. Diel vertical migration in zooplankton: rapid individual response to predators. Journal of Plankton Research 13: 1359–1365.CrossRefGoogle Scholar
  10. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28–35.CrossRefPubMedGoogle Scholar
  11. Coull, B. C., M. A. Palmer & P. E. Myer, 1989. Controls on the vertical distribution of meiobenthos in mud: field and flume studies with juvenile fish. Marine Ecology Progress Series 55: 133–139.CrossRefGoogle Scholar
  12. Cross, R. E. & M. C. Curran, 2004. Recovery of meiofauna in intertidal feeding pits created by rays. Southeasters Naturalist 3: 219–230.CrossRefGoogle Scholar
  13. Dineen, G. & A. L. Robertson, 2010. Subtle top–down control of a freshwater meiofaunal assemblage by juvenile fish. Freshwater Biology 55: 1818–1830.CrossRefGoogle Scholar
  14. Dole-Olivier, M. J., D. M. P. Galassi, P. Marmonier & M. C. Des Chatelliers, 2000. The biology and ecology of lotic microcrustaceans. Freshwater Biology 44: 63–91.CrossRefGoogle Scholar
  15. Easton, J. & M. Gophen, 2003. Diel variation in the vertical distribution of fish and plankton in Lake Kinneret: a 24 h study of ecological overlap. Hydrobiologia 491: 91–100.CrossRefGoogle Scholar
  16. Effenberger, M., S. Diel, M. Gerth & C. D. Matthaei, 2011. Patchy bed disturbance and fish predation independently influence the distribution of stream invertebrates and algae. Journal of Animal Ecology 80: 603–614.CrossRefPubMedGoogle Scholar
  17. Falconi, R., T. Renzulli & F. Zaccanti, 2006. Survival and reproduction in Aeolosoma viride (Annelida, Aphanoneura). Hydrobiologia 564: 95–99.CrossRefGoogle Scholar
  18. Feller, R. J. & R. M. Warwick, 1988. Energetics. In Higgins, R. P. & H. Thiel (eds), Introduction to the Study of Meiofauna. Smithsonian Institution Press, Washington, DC: 181–196.Google Scholar
  19. Fischer, J. R., R. M. Krogman & M. C. Quist, 2013. Influence of native and non-native benthivorous fishes on aquatic ecosystem degradation. Hydrobiologia 711: 187–199.CrossRefGoogle Scholar
  20. Fitzhugh, G. R. & J. W. Fleeger, 1985. Goby (Pisces: gobiidae) interactions with meiofauna and small macrofauna. Bulletin of Marine Science 36: 436–444.Google Scholar
  21. Giere, O., 2009. Meiobenthology—the Microscopic Motile Fauna of Aquatic Sediments. Springer-Verlag, Berlin.Google Scholar
  22. Gilby, B. L., I. R. Tibbetts, J. Van Bourg, L. Delisle & D. D. Burfeind, 2017. Predator presence alters prey diet composition but not quantity in tide pool fish interactions. Hydrobiologia 795: 257–265.CrossRefGoogle Scholar
  23. Gliwicz, M. Z., 1986. Predation and the evolution of vertical migration of zooplankton. Nature 320: 746–748.CrossRefGoogle Scholar
  24. Greene, W., 2008. Functional forms for the negative binomial model for count data. Economics Letters 99: 585–590.CrossRefGoogle Scholar
  25. Kerfoot, W. C. & A. Sih, 1987. Predation: Direct and Indirect Impacts in Aquatic Communities. University Press of New England, London.Google Scholar
  26. Kornijow, R., 1997. The impacts of predation by perch on the size-structure of Chironomus larvae—the role of vertical distribution of the prey in the bottom sediments, and habitat complexity. Hydrobiologia 342(343): 207–213.CrossRefGoogle Scholar
  27. Kornijow, R., G. J. Measey & B. Moss, 2016. The structure of the littoral: effects of waterlily density and perch predation on sediment and plant-associated macroinvertebrate communities. Freshwater Biology 61: 32–50.CrossRefGoogle Scholar
  28. Lammens, E.H.R.R., J. Geursen & A.L.G. Schuurmans, 1986. Diet shifts, feeding efficiency and coexistence of bream (Abramis brama), roach (Rutilus rutilus) and white bream (Blicca bjoerkna) in hypertrophic lakes. In: Kullander SO & Fernholm B (eds) Proc. Fifth Congress of European Ichthyologists, Swedish Museum of Natural History, pp. 153–162.Google Scholar
  29. Majdi, N., W. Traunspurger, J. S. Richardson & A. Lecerf, 2015. Small stonefly predators affect microbenthic and meiobenthic communities in stream leaf packs. Freshwater Biology 60: 1930–1943.CrossRefGoogle Scholar
  30. Majdi, N., I. Threis & W. Traunspurger, 2017. It’s the little things that count: meiofaunal density and production in the sediment of two headwater streams. Limnology and Oceanography 62: 151–163.CrossRefGoogle Scholar
  31. Maria, T. F., M. G. Silva Filho, T. P. Souza, J. Vanaverbeke, A. Vanreusel & A. M. Esteves, 2017. Is the vertical distribution of meiofauna similar in two contrasting microhabitats A case study of a macrotidal sandy beach. Journal of Experimental Marine Biology and Ecology. Scholar
  32. Nickum, J. G., H. L. Bart, P. R. Bowser, I. E. Greer, C. Hubbs, J. A. Jenkins, R. MacMillan, J. W. Rachlin, J. D. Rose, P. W. Sorensen, et al., 2004. Guidelines for the use of fishes in research. American Fisheries Society, Bethesda.Google Scholar
  33. Persson, A. & C. Brönmark, 2002. Foraging capacities and effects of competitive release on ontogenetic diet shift in bream (Abramis brama). Oikos 96: 271–286.CrossRefGoogle Scholar
  34. Persson, A. & J. M. Svensson, 2006. Vertical distribution of benthic responses to fish predators, and effects on algae and suspended material. Aquatic Ecology 40: 85–95.CrossRefGoogle Scholar
  35. Pfannkuche, O. & H. Thiel, 1988. Sample processing. In Higgins, R. P. & H. Thiel (eds), Introduction to the Study of Meiofauna. Smithsonian Institution Press, Washington: 134–145.Google Scholar
  36. R Core Team, 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  37. Reiss, J. & J. M. Schmid-Araya, 2008. Existing in plenty: abundance, biomass and diversity of ciliates and meiofauna in small streams. Freshwater Biology 53: 652–668.CrossRefGoogle Scholar
  38. Ricci, C. & M. Balsamo, 2000. The biology and ecology of lotic rotifers and gastrotrichs. Freshwater Biology 44: 15–28.CrossRefGoogle Scholar
  39. Scholz, D. S., L. L. Matthews & R. J. Feller, 1991. Detecting selective digestion of meiobenthic prey by juvenile spot Leiostomus xanthurus (Pisces) using immunoassays. Marine Ecology Progress Series 72: 59–67.CrossRefGoogle Scholar
  40. Schückel, S., A. F. Sell, T. C. Kihara, A. Koeppen, I. Kröncke & H. Reiss, 2012. Meiofauna as food source for small-sized demersal fish in the southern North Sea. Helgoland Marine Research 67: 203–218.CrossRefGoogle Scholar
  41. Sibbing, F. A., 1988. Specialization and limitation in the utilization of food resources by the carp, Cyprinus carpio: a study of the oral food processing. Environmental Biology of Fishes 22: 161–178.CrossRefGoogle Scholar
  42. Sibbing, F. A., 1991. Food capture and oral processing. In Winfield, I. J. & J. S. Nelson (eds), Cyprinid fishes: systematics, biology and exploitation. Chapman & Hall, London: 377–412.CrossRefGoogle Scholar
  43. Spieth, H. R., T. Möller, C. Ptatscheck, A. Kazemi-Dinan & W. Traunspurger, 2011. Meiobenthos provides a food resource for young cyprinids. Journal of Fish Biology 78: 138–149.CrossRefPubMedGoogle Scholar
  44. Teiwes, M., M. Bergtold & W. Traunspurger, 2007. Factors influencing the vertical distribution of nematodes in sediments. Journal of Freshwater Ecology 22: 429–439.CrossRefGoogle Scholar
  45. Thrush, S. F., 1999. Complex role of predators in structuring soft-sediment macrobenthic communities: implications of changes in spatial scale for experimental studies. Australian Journal of Ecology 24: 344–354.CrossRefGoogle Scholar
  46. Traunspurger, W., 1996a. Distribution of benthic nematodes in the littoral of an oligotrophic lake (Königssee, National Park Berchtesgaden, FRG). Archiv für Hydrobiologie 135: 393–412.Google Scholar
  47. Traunspurger, W., 1996b. Distribution of benthic nematodes in the littoriprofundal and profundal of an oligotrophic lake (Königssee, National Park Berchtesgaden, FRG). Archiv für Hydrobiologie 135: 557–575.Google Scholar
  48. Traunspurger, W., 2002. Nematoda. In Rundle, S. D., A. Robertson & J. M. Schmid-Araya (eds), Freshwater meiofauna: biology and ecology. Backhuys Publishers, Leiden: 63–104.Google Scholar
  49. Traunspurger, W. & C. Drews, 1996. Vertical distribution of benthic nematodes in an oligotrophic lake: seasonality, species and age segregation. Hydrobiologia 331: 33–42.CrossRefGoogle Scholar
  50. Traunspurger, W., S. Hoess, A. Witthöft-Mühlmann, M. Wessel & H. Güde, 2012. Meiobenthic community patterns of Lake Constance: relationships to nutrients and abiotic parameters in an oligotrophic deep lake. Fundamental and Applied Limnology 180: 233–248.CrossRefGoogle Scholar
  51. Traunspurger, W., I. Threis & N. Majdi, 2015. Vertical and temporal distribution of free-living nematodes dwelling in two sandy-bed streams fed by helocrene springs. Nematology 17: 923–940.CrossRefGoogle Scholar
  52. Venables, W. N. & B. D. Ripley, 2002. Modern applied statistics with S, 4th ed. Springer, Berlin.CrossRefGoogle Scholar
  53. Vilizzi, L. & A. S. Tarkan, 2015. Experimental evidence for the effects of common carp (Cyprinus carpio L., 1758) on freshwater ecosystems: a narrative review with management directions for Turkish inland waters. Journal of Limnology and Freshwater. Fisheries Research 1(3): 123–149.Google Scholar
  54. Vilizzi, L., A. S. Tarkan & G. H. Copp, 2015. Experimental evidence from causal criteria analysis for the effects of common carp Cyprinus carpio on freshwater ecosystems: a global perspective. Reviews in Fisheries Science & Aquaculture 23: 253–290.CrossRefGoogle Scholar
  55. Vinyard, G. L., 1980. Differential prey vulnerability and predator selectivity effects of evasive prey and on bluegill (Lepomis macrochirus) and pumpkinseed (L. gibbosus) predation. Canadian Journal of Fish and Aquatic Science 37: 2294–2299.CrossRefGoogle Scholar
  56. Weber, M. J. & M. L. Brown, 2009. Effects of common carp on aquatic ecosystems 80 years after ‘carp as a dominant’: ecological insights for fisheries management. Reviews in Fisheries Science & Aquaculture 17: 524–537.CrossRefGoogle Scholar
  57. Weber, M. J. & M. L. Brown, 2015. Biomass-dependent effects of age-0 common carp on aquatic ecosystems. Hydrobiologia 742: 71–80.CrossRefGoogle Scholar
  58. Weber, S. & W. Traunspurger, 2014a. Top-down control on a meiobenthic community by two juvenile freshwater fish species. Aquatic Ecology 48: 465–480.CrossRefGoogle Scholar
  59. Weber, S. & W. Traunspurger, 2014b. Consumption and prey size selection of the nematode Caenorhabditis elegans by different juvenile stages of freshwater fish. Nematology 16: 631–641.CrossRefGoogle Scholar
  60. Weber, S. & W. Traunspurger, 2015. The effects of predation by juvenile fish predation on the meiobenthic community structure in a natural pond. Freshwater Biology 60: 2392–2409.CrossRefGoogle Scholar
  61. Weber, S. & W. Traunspurger, 2016a. Influence of the ornamental red cherry shrimp Neocaridina davidi (Bouvier, 1904) on freshwater meiofaunal assemblages. Limnologica 59: 155–161.CrossRefGoogle Scholar
  62. Weber, S. & W. Traunspurger, 2016b. Effects of juvenile fish predation (Cyprinus carpio L.) on the composition and diversity of free-living freshwater nematode assemblages. Nematology 18: 39–52.CrossRefGoogle Scholar
  63. Weber, S. & W. Traunspurger, 2017. Invasive red swamp crayfish (Procambarus clarkii) and native noble crayfish (Astacus astacus) similarly reduce oligochaetes, epipelic algae, and meiofauna biomass: a microcosm study. Freshwater Science 36: 103–112.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sebastian Weber
    • 1
    • 2
    Email author
  • Nabil Majdi
    • 1
    • 3
  • Walter Traunspurger
    • 1
  1. 1.Animal EcologyBielefeld UniversityBielefeldGermany
  2. 2.Zoo Schwerin gGmbHSchwerinGermany
  3. 3.Université de Toulouse, EcoLab UMR 5245 CNRS, INPT, UPS, ENSATToulouseFrance

Personalised recommendations