, Volume 845, Issue 1, pp 35–53 | Cite as

The large-scale impact of offshore wind farm structures on pelagic primary productivity in the southern North Sea

  • Kaela Slavik
  • Carsten LemmenEmail author
  • Wenyan Zhang
  • Onur Kerimoglu
  • Knut Klingbeil
  • Kai W. Wirtz


The increasing demand for renewable energy is projected to result in a 40-fold increase in offshore wind electricity in the European Union by 2030. Despite a great number of local impact studies for selected marine populations, the regional ecosystem impacts of offshore wind farm (OWF) structures are not yet well assessed nor understood. Our study investigates whether the accumulation of epifauna, dominated by the filter feeder Mytilus edulis (blue mussel), on turbine structures affects pelagic primary productivity and ecosystem functioning in the southern North Sea. We estimate the anthropogenically increased potential distribution based on the current projections of turbine locations and reported patterns of M. edulis settlement. This distribution is integrated through the Modular Coupling System for Shelves and Coasts to state-of-the-art hydrodynamic and ecosystem models. Our simulations reveal non-negligible potential changes in regional annual primary productivity of up to 8% within the OWF area, and induced maximal increases of the same magnitude in daily productivity also far from the wind farms. Our setup and modular coupling are effective tools for system scale studies of other environmental changes arising from large-scale offshore wind farming such as ocean physics and distributions of pelagic top predators.


Offshore wind farm Primary productivity North Sea MOSSCO Modular coupling Biofouling 



This research is funded by the Marine, Coastal and Polar Systems (PACES I) of the Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V. Kaela Slavik is funded by the European Commission Erasmus Mundus Masters Course in Environmental Sciences, Policy and Management (MESPOM). Carsten Lemmen, Onur Kerimoglu and Knut Klingbeil received support from the “Modular System for Shelves and Coasts” (MOSSCO) grant provided by the Bundesministerium für Bildung und Forschung under agreements 03F0667A and 03F0667B; Onur Kerimoglu and Kai W. Wirtz are also supported by the DFG priority programme 1704 “Flexibility matters: Interplay between trait diversity and ecological dynamics using aquatic communities as model system” (DynaTrait) under grant agreement KE 1970/1-1. Knut Klingbeil is furthermore supported by the DFG Collaborative Research Center “Energy Transfers in Atmosphere and Ocean” TRR181. We thank all co-developers of the model coupling framework MOSSCO, foremost M. Hassan Nasermoaddeli and Richard Hofmeister. The authors gratefully acknowledge the computing time granted by the John von Neumann Institute for Computing (NIC) and provided on the supercomputer JURECA at Forschungszentrum Jülich. We are grateful to the open source community that provided many of the tools used in this study, including but not limited to the communities developing ESMF, FABM, GETM and GOTM.


  1. Asmus, R. M. & H. Asmus, 1991. Mussel beds: limiting or promoting phytoplankton? Journal of Experimental Marine Biology and Ecology 148(2): 215–232.CrossRefGoogle Scholar
  2. Bailey, H., K. L. Brookes & P. M. Thompson, 2014. Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future. Aquatic Biosystems 10(1): 8.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Baretta, J. W., W. Ebenhöh & P. Ruardij, 1995. The European Regional Seas Ecosystem Model (ERSEM), a complex marine ecosystem model. Netherlands Journal of Sea Research 33(3/4): 233–246.CrossRefGoogle Scholar
  4. Bayne, B. L. & C. M. Worrall, 1980. Growth and production of mussels Mytilus edulis from two populations. Marine Ecology Progress Series 3: 317–328.CrossRefGoogle Scholar
  5. Bayne, B. L., J. Iglesias & A. J. S. Hawkins, 1993. Feeding behaviour of the mussel, Mytilus edulis: responses to variations in quantity and organic content of the seston. Journal of the Marine Biological Association of the United Kingdom 73(4): 813–829.CrossRefGoogle Scholar
  6. Bessel A (2008) Kentish Flats Offshore Wind Farm Turbine Foundation Faunal Colonisation Diving Survey. Report No. 08/J/1/03/1034/0839. Tech. rep., Kentish Flats Limited, SouthamptonGoogle Scholar
  7. Bohnsack, J. A., 1989. Are high densities of fishes at artificial reefs the result of habitat limitation or behavioral preference? Bulletin of Marine Science 44(2): 631–645.Google Scholar
  8. Borthagaray, A. I. & A. Carranza, 2007. Mussels as ecosystem engineers: their contribution to species richness in a rocky littoral community. Acta Oecologica 31(3): 243–250.CrossRefGoogle Scholar
  9. Bouma, S. & W. Lengkeek, 2012. Benthic communities on hard substrates of the offshore wind farm Egmond aan Zee (OWEZ). Tech. rep, Noordzeewind, Ijmuiden.Google Scholar
  10. Brasseur, S., G. Aarts & E. Meesters, 2012. Habitat preferences of harbour seals in the Dutch coastal area: Analyses and estimate of effects of offshore wind farms. Tech. Rep. Institute for Marine Resources and Ecosystem Studies, Wageningen.Google Scholar
  11. Bruggeman, J. & K. Bolding, 2014. A general framework for aquatic biogeochemical models. Environmental Modelling and Software 61: 249–265.CrossRefGoogle Scholar
  12. Bulleri, F. & L. Airoldi, 2005. Artificial marine structures facilitate the spread of a non-indigenous green alga, Codium fragile ssp. tomentosoides, in the north Adriatic Sea. Journal of Applied Ecology 42(6): 1063–1072.CrossRefGoogle Scholar
  13. Burchard, H., K. Bolding, T. P. Rippeth, A. Stips & J. H. Simpson, 2002. Microstructure of turbulence in the northern North Sea : a comparative study of observations and model simulations. Journal of Sea Research 47: 223–238.CrossRefGoogle Scholar
  14. Buschbaum, C. & L. Gutow, 2005. Mass occurrence of an introduced crustacean (Caprella cf. mutica) in the south-eastern North Sea. Helgoland Marine Research 59: 252–253.CrossRefGoogle Scholar
  15. Carpenter JR, Merckelbach L, Callies U, Clark S, Gaslikova L, Baschek B (2016) Potential impacts of offshore wind farms on North Sea stratification. PLoS ONE 11(8):e0160830PubMedPubMedCentralCrossRefGoogle Scholar
  16. Clausen, I. & H. U. Riisgård, 1996. Growth, filtration and respiration in the mussel Mytilus edulis: no evidence for physiological regulation of the filter-pump to nutritional needs. Marine Ecology Progress Series 141(1–3): 37–45.CrossRefGoogle Scholar
  17. Cloern, J. E., 1996. Phytoplankton bloom dynamics in coastal ecosystems: a review with some general lessons from sustained investigation of San Francisco Bay. California. Reviews of Geophysics 34(2): 127–168.CrossRefGoogle Scholar
  18. Cockcroft, A., 1990. Nitrogen excretion by the surf zone bivalves Donax serra and D. sordidus. Marine Ecology Progress Series 60: 57–65.CrossRefGoogle Scholar
  19. Compton, T. J., S. Holthuijsen, A. Koolhaas, A. Dekinga, J. ten Horn, J. Smith, Y. Galama, M. Brugge, D. van der Wal, J. van der Meer, H. W. van der Veer & T. Piersma, 2013. Distinctly variable mudscapes: distribution gradients of intertidal macrofauna across the Dutch Wadden Sea. Journal of Sea Research 82: 103–116.CrossRefGoogle Scholar
  20. Cranford, P. & P. Hill, 1999. Seasonal variation in food utilization by the suspension-feeding bivalve molluscs Mytilus edulis and Placopecten magellanicus. Marine Ecology Progress Series 190: 223–239.CrossRefGoogle Scholar
  21. Cranford, P., P. Strain, M. Dowd, B. Hargrave, J. Grant & Archambault Mc, 2007. Influence of mussel aquaculture on nitrogen dynamics in a nutrient enriched coastal embayment. Marine Ecology Progress Series 347: 61–78.CrossRefGoogle Scholar
  22. Diederich, S., G. Nehls, J. E. van Beusekom & K. Reise, 2005. Introduced Pacific oysters (Crassostrea gigas) in the northern Wadden Sea: invasion accelerated by warm summers? Helgoland Marine Research 59(2): 97–106.CrossRefGoogle Scholar
  23. Dolmer, P., 2000. Feeding activity of mussels Mytilus edulis related to near-bed currents and phytoplankton biomass. Journal of Sea Research 44(3–4): 221–231.CrossRefGoogle Scholar
  24. Edenhofer, O., R. Pichs Madruga, Y. Sokona & K. Seyboth, 2011. Renewable energy sources and climate change mitigation. Tech. Rep. Intergovernmental Panel on Climate Change, Cambridge.Google Scholar
  25. Eisma, D. & J. Kalf, 1987. Distribution, organic content and particle size of suspended matter in the North Sea. Netherlands Journal of Sea Research 21(4): 265–285.CrossRefGoogle Scholar
  26. Emeis, K. C., J. van Beusekom, U. Callies, R. Ebinghaus, A. Kannen, G. Kraus, I. Kröncke, H. J. Lenhart, I. Lorkowski, V. Matthias, C. Möllmann, J. Pätsch, M. Scharfe, H. Thomas, R. Weisse & E. Zorita, 2015. The North Sea—a shelf sea in the Anthropocene. Journal of Marine Systems 141: 18–33.CrossRefGoogle Scholar
  27. EON Climate & Renewables, 2011. EON Offshore Wind Energy Factbook. Tech. Rep. EON Climate & Renewables, Essen.Google Scholar
  28. Ford, D. A., J. van der Molen, K. Hyder, J. Bacon, R. Barciela, V. Creach, R. McEwan, P. Ruardij & R. Forster, 2017. Observing and modelling phytoplankton community structure in the North Sea. Biogeosciences 14(6): 1419–1444.CrossRefGoogle Scholar
  29. Freire, J. & E. Gonzalez-Gurriaran, 1995. Feeding ecology of the velvet swimming crab Necora puber in mussel raft areas of the Ría de Arousa (Galicia, NW Spain). Marine Ecology Progress Series 119: 139–154.CrossRefGoogle Scholar
  30. Geyer, B., 2014. High-resolution atmospheric reconstruction for Europe 1948–2012: coastDat2. Earth System Science Data 6(1): 147–164.CrossRefGoogle Scholar
  31. Glasby, T. M., S. D. Connell, M. G. Holloway & C. L. Hewitt, 2007. Nonindigenous biota on artificial structures: could habitat creation facilitate biological invasions? Marine Biology 151(3): 887–895.CrossRefGoogle Scholar
  32. Global Wind Energy Council, 2015. Global Wind Report 2015: Annual Market Update. Tech. Rep. Global Wind Energy Council, Brussels.Google Scholar
  33. Gräwe, U., G. Flöser, T. Gerkema, M. Duran-Matute, T. H. Badewien, E. Schulz & H. Burchard, 2016. A numerical model for the entire Wadden Sea: skill assessment and analysis of hydrodynamics. Journal of Geophysical Research: Oceans 121(7): 5231–5251.Google Scholar
  34. Groll, N. & R. Weisse, 2017. A multi-decadal wind-wave hindcast for the North Sea 1949–2014: coastDat2. Earth System Science Data 9(2): 955–968.CrossRefGoogle Scholar
  35. Große, F., N. Greenwood, M. Kreus, H. J. Lenhart, D. Machoczek, J. Pätsch, L. Salt & H. Thomas, 2016. Looking beyond stratification: a model-based analysis of the biological drivers of oxygen deficiency in the North Sea. Biogeosciences 13(8): 2511–2535.CrossRefGoogle Scholar
  36. Gutiérrez, J. L. J., C. G. C. Jones, D. L. D. Strayer & O. O. Iribarne, 2003. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101: 79–90.CrossRefGoogle Scholar
  37. Hill, C., C. DeLuca, V. Balaji, M. Suarez & A. Da Silva, 2004. The architecture of the Earth system modeling framework. Computing in Science and Engineering 6(1): 18–28.CrossRefGoogle Scholar
  38. Ho, A., A. Mbistrova & G. Corb, 2016. The European offshore wind industry key 2015 trends and statistics. Tech. Rep. February. European Wind Energy Association.
  39. Hofmeister, R., C. Lemmen, O. Kerimoglu, K. W. Wirtz, & M. H. Nasermoaddeli, 2014. The predominant processes controlling vertical nutrient and suspended matter fluxes across domains – using the new MOSSCO system form coastal sea sediments up to the atmosphere. In: Lehfeldt, R. & R. Kopmann (eds), 11th International Conference on Hydroscience and Engineering, vol. 28, Hamburg, Germany.Google Scholar
  40. Hofmeister, R., G. Flöser & M. Schartau, 2017. Estuary-type circulation as a factor sustaining horizontal nutrient gradients in freshwater-influenced coastal systems. Geo-Marine Letters 37(2): 179–192.CrossRefGoogle Scholar
  41. Howarth, M., 2001. North Sea circulation. In: Steele, J. H., S. A. Thorpe & K. K. Turekian (eds), Ocean Currents: A Derivative of the Encyclopedia of Ocean Sciences. Elsevier Science, London.Google Scholar
  42. Imhoff, M. L. M., L. Bounoua, T. Ricketts, C. Loucks, R. Harriss & W. T. Lawrence, 2004. Global patterns in human consumption of net primary production. Nature 429(June): 870–873.CrossRefGoogle Scholar
  43. Inger, R., M. J. Attrill, S. Bearhop, A. C. Broderick, W. James Grecian, D. J. Hodgson, C. Mills, E. Sheehan, S. C. Votier, M. J. Witt & B. J. Godley, 2009. Marine renewable energy: potential benefits to biodiversity? An urgent call for research. Journal of Applied Ecology 46(6): 1145–1153.Google Scholar
  44. International Renewable Energy Agency, 2012. Renewable energy technologies: cost analysis series. Tech. Rep. International Renewable Energy Agency, Bonn.Google Scholar
  45. Joschko, T. J., B. Buck, & L. Gutow, 2008. Colonization of an artificial hard substrate by Mytilus edulis in the German Bight. Marine Biology Research 4: 350–360.CrossRefGoogle Scholar
  46. Kaiser, M. J., K. Clarke, H. Hinz & M. Austen, 2006. Global analysis of response and recovery of benthic biota to fishing. Marine Ecology Progress Series 311: 1–14.CrossRefGoogle Scholar
  47. Kaldellis, J. & M. Kapsali, 2013. Shifting towards offshore wind energy – recent activity and future development. Energy Policy 53: 136–148.CrossRefGoogle Scholar
  48. Kerckhof, F., B. Rumes, A. Norro & J. Houziaux, 2012. A comparison of the first stages of biofouling in two offshore wind farms in the Belgian part of the North Sea. In: Degraer, S., R. Brabant & B. Rumes (eds), Offshore Wind Farms in the Belgian Part of the North Sea: Heading for an Understanding of Environmental Impacts. Royal Belgian Institute of Natural Sciences, Brussels: 17–39.Google Scholar
  49. Kerimoglu, O., R. Hofmeister, J. Maerz, R. Riethmüller & K. W. Wirtz, 2017. The acclimative biogeochemical model of the southern North Sea. Biogeosciences 14(19): 4499–4531.CrossRefGoogle Scholar
  50. Klingbeil, K. & H. Burchard, 2013. Implementation of a direct nonhydrostatic pressure gradient discretisation into a layered ocean model. Ocean Modelling 65: 64–77.CrossRefGoogle Scholar
  51. Krause, D. & P. Thörnig, 2016. JURECA: general-purpose supercomputer at Jülich Supercomputing Centre. Journal of Large-Scale Research Facilities (JLSRF) 2: Article 62.
  52. Krone, R., 2012. Offshore Wind Power Reef Effects and Reef Fauna Roles. Ph.D. Thesis, University of Bremen.Google Scholar
  53. Krone, R., L. Gutow, T. J. Joschko & A. Schröder, 2013. Epifauna dynamics at an offshore foundation – implications of future wind power farming in the North Sea. Marine Environmental Research 85: 1–12.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Langhamer, O., D. Wilhelmsson & J. Engström, 2009. Artificial reef effect and fouling impacts on offshore wave power foundations and buoys a pilot study. Estuarine, Coastal and Shelf Science 82(3): 426–432.CrossRefGoogle Scholar
  55. Lemmen C, Hofmeister R, Klingbeil K, Nasermoaddeli MH, Kerimoglu O, Burchard H, Kösters F, Wirtz KW (2018) Modular system for shelves and coasts (MOSSCO v1.0) a flexible and multi-component framework for coupled coastal ocean ecosystem modelling. Geoscientific Model Development 11(3):915–935.CrossRefGoogle Scholar
  56. Leonhard, S., J.Pedersen, B.Moeslund & G. Spanggaard, 2006. Benthic Communities at Horns Rev Before, During and After Construction of Horns Rev Offshore Wind Farm: Final Report. Tech. Rep. Vattenfall AS, Aarhus.Google Scholar
  57. Liaw, A. & M. Wiener, 2002. Classification and regression by randomForest. R News 2(3): 18–22.Google Scholar
  58. Lindeboom, H., H. Kouwenhoven, M. Bergman, S. Bouma, S. Brasseur, R. Daan, R. Fijn, D. De Haan, S. Dirksen & R. Van Hal, 2011. Short-term ecological effects of an offshore wind farm in the Dutch coastal zone: a compilation. Environmental Research Letters 6(3): 1–13.CrossRefGoogle Scholar
  59. Lützen, J., 1999. Styela clava Herdman (Urochordata, Ascidiacea), a successful immigrant to North West Europe: ecology, propagation and chronology of spread. Helgoländer Meeresuntersuchungen 52: 383–391.CrossRefGoogle Scholar
  60. Maar, M., T. G. Nielsen, K. Bolding, H. Burchard & A. W. Visser, 2007. Grazing effects of blue mussel Mytilus edulis on the pelagic food web under different turbulence conditions. Marine Ecology Progress Series 339: 199–213.CrossRefGoogle Scholar
  61. Maar, M., K. Bolding, J. K. Petersen, J. L. Hansen & K. Timmermann, 2009. Local effects of blue mussels around turbine foundations in an ecosystem model of Nysted off-shore wind farm. Denmark. Journal of Sea Research 62(2–3): 159–174.CrossRefGoogle Scholar
  62. McCombs, M., R. Mulligan & L. Boegman, 2014. Offshore wind farm impacts on surface waves and circulation in eastern Lake Ontario. Coastal Engineering 93: 32–39.CrossRefGoogle Scholar
  63. Nasermoaddeli, M., C. Lemmen, G. Stigge, O. Kerimoglu, H. Burchard, K. Klingbeil, R. Hofmeister, M. Kreus, K. Wirtz & F. Kösters, 2017. A model study on the large-scale effect of macrofauna on the suspended sediment concentration in a shallow shelf sea. Estuarine, Coastal and Shelf Science. Scholar
  64. Nehls, G., S.Witte, H. Buttger, N. Dankers, J.Jansen, G.Millat, M. Herlyn, A. Merkert, P. S. Kristensen, M. Ruth, C. Buschbaum & A. Wehrmann, 2009. Beds of blue mussels and Pacific oysters, vol 11. Thematic Report, Wadden Sea Ecosystem, Common Wadden Sea Secretariat, Wilhelmshaven, Germany.Google Scholar
  65. Newell, R., 2004. Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. Journal of Shellfish Research 23(1): 51–62.Google Scholar
  66. Nielsen, T. & M. Maar, 2007. Effects of a blue mussel Mytilus edulis bed on vertical distribution and composition of the pelagic food web. Marine Ecology Progress Series 339: 185–198.CrossRefGoogle Scholar
  67. Norling, P. & N. Kautsky, 2007. Structural and functional effects of Mytilus edulis on diversity of associated species and ecosystem functioning. Marine Ecology Progress Series 351: 163–175.CrossRefGoogle Scholar
  68. Orbis Energy Centre, 2013. Monopiles Support Structures, 4C Offshore 2013-5-5. Online resource. Lowestoft, UK. [accessed 2018–05–05].
  69. OSPAR Commission, 2010. Intertidal Mytilus edulis beds on mixed and sandy sediments. In: Quality Status Report 2010: Case Reports for the OSPAR List of Threatened and/or Declining Species and Habitats Update. Convention for the Protection of the Marine Environment of the North-East Atlantic Commission, Texel.Google Scholar
  70. Otto, L., J. Zimmerman, G. Furnes & M. Mork, 1990. Review of the physical oceanography of the North Sea. Netherlands Journal of Sea Research 26(2–4): 161–238.CrossRefGoogle Scholar
  71. Pätsch, J. & W. Kühn, 2008. Nitrogen and carbon cycling in the North Sea and exchange with the North Atlantic A model study. Part I. Nitrogen budget and fluxes. Continental Shelf Research 28(6): 767–787.CrossRefGoogle Scholar
  72. Phillips, S. J., M. Dudík, J. Elith, C. H. Graham, A. Lehmann, J. Leathwick & S. Ferrier, 2009. Sample selection bias and presence – only distribution models: implications for background and pseudo – absence data. Ecological Applications 19(1): 181–197.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Platis, A., S. K. Siedersleben, J. Bange, A. Lampert, K. Bärfuss, R. Hankers, B. Cañadillas, R. Foreman, J. Schulz-Stellenfleth, B. Djath, T. Neumann & S. Emeis, 2018. First in situ evidence of wakes in the far field behind offshore wind farms. Scientific Reports 8(1): 2163.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Prins, T., A. Smaal & R. Dame, 1997. A review of the feedbacks between bivalve grazing and ecosystem processes. Aquatic Ecology 31(4): 349–359.CrossRefGoogle Scholar
  75. Purkiani, K., J. Becherer, K. Klingbeil & H. Burchard, 2016. Wind-induced variability of estuarine circulation in a tidally energetic inlet with curvature. Journal of Geophysical Research: Oceans 121(5): 3261–3277.Google Scholar
  76. Reise, K. & A. Schubert, 1987. Macrobenthic turnover in the subtidal Wadden Sea: the Norderaue revisited after 60 years. Helgoländer Meeresuntersuchungen 41(1): 69–82.CrossRefGoogle Scholar
  77. Reubens, J., S. Degraer & M. Vincx, 2011. Aggregation and feeding behaviour of pouting (Trisopterus luscus) at wind turbines in the Belgian part of the North Sea. Fisheries Research 108(1): 223–227.CrossRefGoogle Scholar
  78. Ricciardi, A. & E. Bourget, 1998. Weight-to-weight conversion factors for marine benthic macroinvertebrates. Marine Ecology Progress Series 163: 245–251.CrossRefGoogle Scholar
  79. Riis, A. & P. Dolmer, 2003. The distribution of the sea anemone Metridium senile (L.) related to dredging for blue mussels (Mytilus edulis L.) and flow habitat. Ophelia 57(1): 43–52.CrossRefGoogle Scholar
  80. Riisgård, H. U., C. Kittner & D. F. Seerup, 2003. Regulation of opening state and filtration rate in filter-feeding bivalves (Cardium edule, Mytilus edulis, Mya arenaria) in response to low algal concentration. Journal of Experimental Marine Biology and Ecology 284(1–2): 105–127.CrossRefGoogle Scholar
  81. Rijkswaterstaat, 2017. Waterbase. [last accessed 2017–03–30].
  82. Seed, R. & T. H. Suchanek, 1992. Population and community ecology of Mytilus. In: Gosling, E. (ed.) The Mussel Mytilus: Ecology, Physiology, Genetics, and Culture. Elsevier, Amsterdam: p. 589.Google Scholar
  83. Soetaert, K., P. M. Herman & J. J. Middelburg, 1996. A model of early diagenetic processes from the shelf to abyssal depths. Geochimica et Cosmochimica Acta 60(6): 1019–1040.CrossRefGoogle Scholar
  84. Suchanek, T. H., 1978. The ecology of Mytilus edulis L. in exposed rocky intertidal communities. Journal of Experimental Marine Biology and Ecology 31(1): 105–120.CrossRefGoogle Scholar
  85. Thieltges, D., M. Strasser & K. Reise, 2003. The American slipper limpet Crepidula fornicata (L.) in the northern Wadden Sea 70 years after its introduction. Helgoländer Meeresuntersuchungen 57: 27–33.Google Scholar
  86. Tillin, H. M., J. G. Hiddink, S. Jennings & M. J. Kaiser, 2006. Chronic bottom trawling alters the functional composition of benthic invertebrate communities on a sea-basin scale. Marine Ecology Progress Series 318: 31–45.CrossRefGoogle Scholar
  87. Tougaard, J., S. Tougaard, R. C. Jensen, T. Jensen, J. Teilmann, D. Adelung, N. Liebsch, M. Museum & G. Müller, 2006. Harbour seals at Horns Reef before, during and after construction of Horns Rev Offshore Wind Farm. Final report to Vattenfall A/S. Biological Papers from the Fisheries and Maritime Museum No. 5, Esbjerg, Denmark, 2006. Available at
  88. Umlauf, L. & H. Burchard, 2005. Second-order turbulence closure models for geophysical boundary layers. A review of recent work. Continental Shelf Research. Scholar
  89. van Broekhoven, W., K. Troost & H. Jansen, 2014. Nutrient regeneration by mussel Mytilus edulis spat assemblages in a macrotidal system. Journal of Sea Research 88: 36–46.CrossRefGoogle Scholar
  90. van Leeuwen, S. M., J. van der Molen, P. Ruardij, L. Fernand & T. Jickells, 2013. Modelling the contribution of deep chlorophyll maxima to annual primary production in the North Sea. Biogeochemistry 113(1–3): 137–152.CrossRefGoogle Scholar
  91. Waite, R. P., 1989. The Nutritional Biology of Perna canaliculus with Special Reference to Intensive Mariculture Systems. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand.Google Scholar
  92. Walday, M. & T. Kroglund, 2002. The North Sea. Europe’s biodiversity – biogeographical regions and seas. Tech. Rep. European Environment Agency, Brussels.Google Scholar
  93. Weston, K., 2005. Primary production in the deep chlorophyll maximum of the central North Sea. Journal of Plankton Research 27(9): 909–922.CrossRefGoogle Scholar
  94. White, P. & S. Pickett, 1985. The Ecology of Natural Disturbance and Patch Dynamics. Academic Press. Academic Press, London: 3–13.Google Scholar
  95. Widdows, J., P. Fieth & C. M. Worrall, 1979. Relationships between seston, available food and feeding activity in the common mussel Mytilus edulis. Marine Biology 50(3): 195–207.CrossRefGoogle Scholar
  96. Wilhelmsson, D. & T. Malm, 2008. Fouling assemblages on offshore wind power plants and adjacent substrata. Estuarine, Coastal and Shelf Science 79(3): 459–466.CrossRefGoogle Scholar
  97. Wilson, J. & M. Elliott, 2009. The habitat creation potential of offshore wind farms. Wind Energy 12(2): 203–212.CrossRefGoogle Scholar
  98. Wirtz, K. W. & B. Eckhardt, 1996. Effective variables in ecosystem models with an application to phytoplankton succession. Ecological Modelling 92(1): 33–53.CrossRefGoogle Scholar
  99. Wirtz, K. W. & O. Kerimoglu, 2016. Autotrophic stoichiometry emerging from optimality and variable co-limitation. Frontiers in Ecology and Evolution 4.
  100. Zhang, W. & K. Wirtz, 2017. Mutual dependence between sedimentary organic carbon and infaunal macrobenthos resolved by mechanistic modeling. Journal of Geophysical Research: Biogeosciences 122(10): 2509–2526.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Helmholtz Zentrum Geesthacht Zentrum für Material- und KüstenforschungGeesthachtGermany
  2. 2.Future Earth Paris Global HubUniversité Pierre et Marie CurieParisFrance
  3. 3.Leibniz-Institut für Ostseeforschung WarnemündeWarnemündeGermany
  4. 4.Universität HamburgHamburgGermany

Personalised recommendations