, Volume 819, Issue 1, pp 231–242 | Cite as

Flatworms like it round: nematode consumption by Planaria torva (Müller 1774) and Polycelis tenuis (Ijima 1884)

  • Bianca Kreuzinger-JanikEmail author
  • Sonja Kruscha
  • Nabil Majdi
  • Walter Traunspurger
Primary Research Paper


The aim of this study was to enhance current knowledge of thus far largely neglected meiofaunal–macrofaunal trophic channels in freshwater ecosystems. The strength and shape (functional response) of the predator–prey interaction between two freshwater triclad flatworm species (Polycelis tenuis and Planaria torva) and individuals of the nematode species Caenorhabditis elegans were measured in a set of laboratory experiments. We hypothesized that feeding on adult nematodes results in a hyperbolic type II, whereas juvenile prey led to sigmoidal type III functional response and that different habitat textures would affect predation success by providing refuge for prey. However, our results revealed that both flatworm species exhibited type III sigmoidal functional response curves and the smallest predator consistently ingested larger amounts of nematodes. Generally, our results suggest the existence of a strong predator–prey interaction, given that both flatworms daily ingested a significant proportion of their biomass by feeding only on nematodes (up to 30% for P. tenuis). However, P. torva was unable to process nematodes in sandy sediment, and the ingestion rates of both flatworm species were reduced in a complex litter habitat.


Functional response Food web Predator–prey Meiofauna Type III 



We are grateful to Stefanie Gehner for technical assistance and to Birgit Gansfort and Benjamin Wilden for their help with the statistics.

Supplementary material

10750_2018_3642_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 14 kb)


  1. Alexander, M. E., J. T. A. Dick & N. E. O’Connor, 2013. Trait-mediated indirect interactions in a marine intertidal system as quantified by functional responses. Oikos 122: 1521–1531.CrossRefGoogle Scholar
  2. Andrássy, I., 1956. Die Rauminhalts- und Gewichtsbestimmung der Fadenwuermer (Nematoda). Acta Zoologica Budapest 2: 1–15.Google Scholar
  3. Armitage, M. J. & J. O. Young, 1990. The realized food niches of three species of stream-dwelling triclads (Turbellaria). Freshwater Biology 24: 93–100.CrossRefGoogle Scholar
  4. Ball, I. R. & T. B. Reynoldson, 1981. British Planarians. Cambridge University Press, Cambridge.Google Scholar
  5. Barrios-O’Neill, D., J. T. A. Dick, M. C. Emmerson, A. Ricciardi & H. J. MacIsaac, 2015. Predator-free space, functional responses and biological invasions. Functional Ecology 29: 377–384.CrossRefGoogle Scholar
  6. Barrios-O’Neill, D., R. Kelly, J. T. A. Dick, A. Ricciardi, H. J. MacIsaac & M. C. Emmerson, 2016. On the context-dependent scaling of consumer feeding rates. Ecology Letters 19: 668–678.CrossRefPubMedGoogle Scholar
  7. Begon, M., J. L. Harper & C. R. Townsend, 1996. Ecology: individuals, populations, and communities. Blackwell, Oxford.CrossRefGoogle Scholar
  8. Beier, S. & W. Traunspurger, 2003a. Temporal dynamics of meiofauna communities in two small submountain carbonate streams with different grain size. Hydrobiologia 498: 107–131.CrossRefGoogle Scholar
  9. Beier, S. & W. Traunspurger, 2003b. Seasonal distribution of freeliving nematodes in the Krähenbach, a fine- grained submountain carbonate stream in Southwest Germany. Nematology 5: 113–136.CrossRefGoogle Scholar
  10. Beier, S., M. Bolley & W. Traunspurger, 2004. Predator-prey interactions between Dugesia gonocephala and free-living nematodes. Freshwater Biology 49: 77–86.CrossRefGoogle Scholar
  11. Benke, A. C., A. D. Huryn, L. A. Smock & B. Wallace, 1999. Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. Journal of the North American Benthological Society 18: 308–343.CrossRefGoogle Scholar
  12. Bergtold, M. & W. Traunspurger, 2005. Benthic production by micro-, meio-, and macrobenthos in the profundal zone of an oligotrophic lake. Journal of the North American Benthological Society 24: 321–329.CrossRefGoogle Scholar
  13. Bolker, B. M., 2014. bbmle: tools for general maximum likelihood estimation. R Package version 1.0.17.
  14. Feller, R. J. & R. M. Warwick, 1988. Energetics. In Higgins, R. P. & H. Thiel (eds), Introduction to the study of meiofauna. Smithsonian Institution Press, Washington: 181–196.Google Scholar
  15. Findeis, P. M., C. J. Barinaga, J. D. Willet & S. O. Farwell, 1983. Age-synchronous culture of Caenorhabditis elegans: technique and applications. Experimental Gerontology 18: 263–275.CrossRefPubMedGoogle Scholar
  16. Folsom, T. C. & H. F. Clifford, 1978. The population biology of Dugesia tigrina (Platyhelminthes: Turbellaria) in a thermally enriched Alberta, Canada Lake. Ecology 59: 966–975.CrossRefGoogle Scholar
  17. Hakenkamp, C. C., A. Morin & D. L. Strayer, 2002. The functional importance of freshwater meiofauna. In Rundle, S. D., A. L. Robertson & J. M. Schmid-Araya (eds), Freshwater Meiofauna: Biology and Ecology. Backhuys, Leiden: 321–335.Google Scholar
  18. Hassell, M. P., 1978. The dynamics of arthropod predator- prey systems. Princeton University Press, Princeton.Google Scholar
  19. Hassell, M. P., J. H. Lawton & J. R. Beddington, 1976. The components of arthropod predation: I. The prey death-rate. Journal of Animal Ecology 45: 135–164.CrossRefGoogle Scholar
  20. Hassell, M. P., 2000. The Spatial and Temporal Dynamics of Host-Parasitoid Interactions. Oxford University Press, London.Google Scholar
  21. Hildrew, A. G., 1992. Food webs and species interactions. In Calow, P. & G. E. Petts (eds), The Rivers Handbook. Blackwell Scientific Publications, Oxford: 309–330.Google Scholar
  22. Hohberg, K. & W. Traunspurger, 2005. Predator-prey interactions in soil food web: functional response, size-dependent foraging efficiency, and the influence of soil texture. Biology and Fertility of Soils 41: 419–427.CrossRefGoogle Scholar
  23. Holling, C. S., 1959. The components of predation as revealed by a study of small mammal predation of the European pine sawfly. The Canadian Entomologist 91: 293–320.CrossRefGoogle Scholar
  24. Humphries, A. T., M. K. La Peyre & G. A. Decossas, 2011. The effect of structural complexity, prey density, and “predator- free space” on prey survivorship at created oyster reef mesocosms. PLoS ONE 6: e28339.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jennings, J. B., 1957. Studies on feeding, digestion, and food storage in free-living flatworms (Platyhelminthes: Turbellaria). Biological Bulletin 112: 63–80.CrossRefGoogle Scholar
  26. Jeschke, J. M., M. Kopp & R. Tollrian, 2002. Predator functional responses: discriminating between handling and digesting prey. Ecological Monographs 72: 95–112.CrossRefGoogle Scholar
  27. Jeschke, J. M., M. Kopp & R. Tollrian, 2004. Consumer-food systems: why type I functional responses are exclusive to filter feeders. Biological Reviews 79: 337–349.CrossRefPubMedGoogle Scholar
  28. Juliano, S. A., 2001. Nonlinear curve fitting. In Scheiner, S. M. & J. Gurevitch (eds), Design and Analysis of Ecological Experiments, 2nd ed. Oxford University Press, Oxford: 178–196.Google Scholar
  29. Kalinkat, G., U. Brose & B. C. Rall, 2013a. Habitat structure alters top-down control in litter communities. Oecologia 172: 877–887.CrossRefPubMedGoogle Scholar
  30. Kalinkat, G., F. D. Schneider, C. Digel, C. Guill, B. C. Rall & U. Brose, 2013b. Body masses, functional responses and predator-prey stability. Ecology Letters 16: 1126–1134.CrossRefPubMedGoogle Scholar
  31. Majdi, N. & W. Traunspurger, 2015. Free-living nematodes in the freshwater food web: a review. Journal of Nematology 47: 28–44.PubMedPubMedCentralGoogle Scholar
  32. Majdi, N., M. Tackx & E. Buffan- Dubau, 2012. Trophic positioning and microphytobenthic carbon uptake of biofil- dwelling meiofauna in a temperate river. Freshwater Biology 57: 1180–1190.CrossRefGoogle Scholar
  33. Majdi, N., A. Boiché, W. Traunspurger & A. Lecerf, 2014. Predator effects on a detritus-based food web are primarily mediated by non-trophic interactions. Journal of Animal Ecology 83: 953–962.CrossRefPubMedGoogle Scholar
  34. Majdi, N., B. Kreuzinger-Janik & W. Traunspurger, 2016. Effects of flatworm predators on sediment communities and ecosystem functions: a microcosm approach. Hydrobiologia 776: 193–207.CrossRefGoogle Scholar
  35. Majdi, N., I. Threis & W. Traunspurger, 2017. It’s the little things that count: meiofaunal density and production in the sediment of two headwater streams. Limnology and Oceanography 62: 151–163.CrossRefGoogle Scholar
  36. Marinelli, R. L. & B. C. Coull, 1987. Structural complexity and juvenile fish predation on meiobenthos: an experimental approach. Journal of Experimental Marine Biology and Ecology 108: 67–81.CrossRefGoogle Scholar
  37. Mathieu, M., J. Leflaive, L. Ten- Hage, R. de Wit & E. Buffan-Dubau, 2007. Free-living nematodes affect oxygen turnover of artificial diatom biofilms. Aquatic Microbial Ecology 49: 281–291.CrossRefGoogle Scholar
  38. Mckee, M., F. Wrona, G. Scrimgeour & J. Culp, 1997. Importance of consumptive and non-consumptive prey mortality in a coupled predator-prey system. Freshwater Biology 38: 193–201.CrossRefGoogle Scholar
  39. Montoya, J. M., S. L. Pimm & R. V. Solé, 2006. Ecological networks and their fragility. Nature 442: 259–264.CrossRefPubMedGoogle Scholar
  40. Murdoch, W. W. & R. J. Marks, 1973. Predation by coccinellid beetles: experiments on switching. Ecology 54: 160–167.CrossRefGoogle Scholar
  41. Murdoch, W. W., S. Avery & M. E. B. Smyth, 1975. Switching in predatory fish. Ecology 56: 1094–1105.CrossRefGoogle Scholar
  42. Muschiol, D., M. Marković, I. Threis & W. Traunspurger, 2008. Predator-prey relationship between the cyclopoid copepod Diacyclops bicuspidatus and a free-living bacterivorous nematode. Nematology 10: 55–62.CrossRefGoogle Scholar
  43. Oaten, A. & W. W. Murdoch, 1975. Predator switching, functional response, and stability. American Naturalist 109: 299–318.CrossRefGoogle Scholar
  44. Pickavance, J. R., 1971a. The diet of the immigrant Planarian Dugesia tigrina (Girard): I. Feeding in the Laboratory. Journal of Animal Ecology 40: 623–635.CrossRefGoogle Scholar
  45. Pickavance, J. R., 1971b. The diet of the immigrant Planarian Dugesia tigrina (Girard): II. Food in the wild and comparison with some british species. Journal of Animal Ecology 40: 637–650.CrossRefGoogle Scholar
  46. Pritchard, D. W., 2014. frair: functional response analysis in R. R Package version 0.4.
  47. Pritchard, D. W., R. A. Paterson, H. C. Bovy & D. Barrios-O´Neill, 2017. Frair: an R package for fitting and comparing consumer functional responses. Methods in Ecology and Evolution 8: 1528–1534.CrossRefGoogle Scholar
  48. Ptatscheck, C., B. Kreuzinger-Janik, H. Putzki & W. Traunspurger, 2015. Insights into the importance of nematode prey for chironomid larvae. Hydrobiologia 757: 143–153.CrossRefGoogle Scholar
  49. Rall, B. C., C. Guill & U. Brose, 2008. Food-web connectance and predator interference dampen the paradox of enrichment. Oikos 117: 202–213.CrossRefGoogle Scholar
  50. R Development Core Team, 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  51. Real, L. A., 1977. The kinetics of functional response. The American Naturalist 111: 289–300.CrossRefGoogle Scholar
  52. Reiss, J. & J. M. Schmid-Araya, 2010. Life history allometries and production of small fauna. Ecology 91: 497–507.CrossRefPubMedGoogle Scholar
  53. Reynoldson, T. B., 1960. A quantitative study of the population biology of Polycelis tenuis (Ijima) (Turbellaria, Tricladida). Oikos 11: 125–141.CrossRefGoogle Scholar
  54. Reynoldson, T. B. & P. Bellamy, 1975. Triclads (Turbellaria: Tricladida) as predators of lake-dwelling stonefly and mayfly nymphs. Freshwater Biology 5: 305–312.CrossRefGoogle Scholar
  55. Reynoldson, T. B. & R. W. Davies, 1970. Food niche and coexistence in lake-dwelling triclads. Journal of Animal Ecology 39: 599–617.CrossRefGoogle Scholar
  56. Reynoldson, T. B. & B. Pearce, 1979. Predation on snails by three species of triclad and its bearing on the distribution of Planaria torva. Journal of Zoology 189: 459–484.CrossRefGoogle Scholar
  57. Reynoldson, T. B. & A. D. Sefton, 1976. The food of Planaria torva (MÜLLER) (Turbellaria-Tricladida), a laboratory and field study. Freshwater Biology 6: 383–393.CrossRefGoogle Scholar
  58. Reynoldson, T. B. & J. O. Young, 1963. The food of four species of lake-dwelling triclads. Journal of Animal Ecology 32: 175–191.CrossRefGoogle Scholar
  59. Rogers, D., 1972. Random search and insect population models. Journal of Animal Ecology 41: 369–383.CrossRefGoogle Scholar
  60. Sarnelle, O. & A. E. Wilson, 2008. Type III functional response in Daphnia. Ecology 89: 1723–1732.CrossRefPubMedGoogle Scholar
  61. Sarnelle, O., J. D. White, T. E. Geelhoed & C. L. Kozel, 2015. Type III functional response in the zebra mussel, Dreissena polymorpha. Canadian Journal of Fisheries and Aquatic Sciences 72: 1202–1207.CrossRefGoogle Scholar
  62. Schmid-Araya, J. M. & P. E. Schmid, 2000. Trophic relationships: integrating meiofauna into a realistic benthic food web. Freshwater Biology 44: 149–163.CrossRefGoogle Scholar
  63. Schmid-Araya, J. M., A. G. Hildrew, A. Robertson, P. E. Schmid & J. Winterbottom, 2002a. The importance of meiofauna in food webs: evidence from an acid stream. Ecology 83: 1271–1285.CrossRefGoogle Scholar
  64. Schmid-Araya, J. M., P. E. Schmid, A. Robertson, J. Winterbottom, C. Gjerløv & A. G. Hildrew, 2002b. Connectance in stream food webs. Journal of Animal Ecology 71: 1056–1062.CrossRefGoogle Scholar
  65. Schmid-Araya, J. M., P. E. Schmid, S. P. Tod & G. F. Esteban, 2016. Trophic positioning of meiofauna revealed by stable isotopes and food web analyses. Ecology 97: 3099–3109.CrossRefPubMedGoogle Scholar
  66. Schroeder, F., L. Peters & W. Traunspurger, 2012. Temporal variations in epilithic nematode assemblages in lakes of different productivities. Fundamental Applied Limnology 181: 143–157.CrossRefGoogle Scholar
  67. Solomon, M. E., 1949. The natural control of animal populations. Journal of Animal Ecology 18: 1–35.CrossRefGoogle Scholar
  68. Spieth, H. R., T. Möller, C. Ptatscheck, A. Kazemi-Dinan & W. Traunspurger, 2011. Meiobenthos provides a food resource for young cyprinids. Journal of Fish Biology 78: 138–149.CrossRefPubMedGoogle Scholar
  69. Sulston, J. & J. Hodgkin, 1988. Methods. In Wood, W. B. (ed.), The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory Press, Plainview: 587–606.Google Scholar
  70. Teal, J. M., 1957. Community metabolism in a temperate cold spring. Ecological Monographs 27: 283–302.CrossRefGoogle Scholar
  71. Toscano, B. J. & B. D. Griffen, 2013. Predator size interacts with habitat structure to determine the allometric scaling of the functional response. Oikos 122: 454–462.CrossRefGoogle Scholar
  72. Traunspurger, W., 1996a. Distribution of benthic nematodes in the littoral of an oligotrophic lake (Königssee, Nationalpark Berchtesgaden, FRG). Archiv für Hydrobiologie 135: 393–412.Google Scholar
  73. Traunspurger, W., 1996b. Distribution of benthic nematodes in the littoriprofundal and profundal of an oligotrophic lake (Königssee, Nationalpark Berchtesgaden, FRG). Archiv für Hydrobiologie 135: 555–575.Google Scholar
  74. Traunspurger, W., M. Bergtold & W. Goedkoop, 1997. The effects of nematodes on bacterial activity and abundance in a freshwater sediment. Oecologia 112: 118–122.CrossRefPubMedGoogle Scholar
  75. Traunspurger, W., S. Höss, A. Witthöft-Mühlmann, M. Wessels & H. Güde, 2012. Meiobenthic community patterns of oligotrophic and deep Lake Constance in relation to water depth and nutrients. Fundamental Applied Limnology 180: 233–248.CrossRefGoogle Scholar
  76. Vucic-Pestic, O., B. C. Rall, G. Kalinkat & U. Brose, 2010. Allometric functional response model: body masses constrain interaction strengths. Journal of Animal Ecology 79: 249–256.CrossRefPubMedGoogle Scholar
  77. Ward, J. V., G. Bretschko, M. Brunke, D. Danielopol, J. Gilbert, T. Gonser & A. G. Hildrew, 1998. The boundaries of river systems: the metazoan perspective. Freshwater Biology 40: 531–569.CrossRefGoogle Scholar
  78. Weber, S. & W. Traunspurger, 2015. The effects of predation by juvenile fish on the meiobenthic community structure in a natural pond. Freshwater Biology 60: 2392–2409.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Bielefeld, Animal EcologyBielefeldGermany
  2. 2.Université de Toulouse, UPS, CNRS, ENSAT, Ecolab UMR 5245Castanet-ToulouseFrance

Personalised recommendations