Advertisement

Hydrobiologia

, Volume 819, Issue 1, pp 217–230 | Cite as

Nitrification and denitrification in estuarine sediments with tube-dwelling benthic animals

  • Paula Carpintero Moraes
  • Mindaugas Zilius
  • Sara Benelli
  • Marco BartoliEmail author
Primary Research Paper

Abstract

Burrowing benthic animals belonging to the same functional group may produce species-specific effects on microbially mediated nitrogen (N) processes depending upon different ecological traits. We investigated the effects of two tube-dwelling organisms, amphipods (Corophium insidiosum) and chironomid larvae (Chironomus plumosus), on benthic N cycling in bioturbated estuarine sediments. Aims of this work were to analyze the interactions among burrowers and N-related microbial processes in two distinct sedimentary environments colonized by benthic animals with different ecological traits. We hypothesized higher rates of nitrification and higher coupled nitrification–denitrification in sediments with C. insidiosum due to continuous ventilation rates. We expected higher denitrification of water column nitrate in sediments with C. plumosus due to lower and intermittent ventilation activity and lower oxygen levels in burrows. To this purpose, we combined process–specific (nitrification and denitrification) with net N flux measurements in intact and reconstructed sediments. Sediments with C. insidiosum had higher rates of oxygen demand and of potential nitrification and higher concentration of pore water NH4+ as compared to sediments with C. plumosus. Sediments with both species displayed comparable net N2 fluxes, mostly sustained by respiration of water column NO3 in sediments with chironomid larvae and by NO3 produced within sediments in sediments with corophiid amphipods. Corophium insidiosum stimulated nitrification nearly 15-fold more as compared to C. plumosus. Overall, our results demonstrate that sediments with burrowing fauna may display similar rates of denitrification, but underlying mechanisms may deeply vary and be species-specific.

Keywords

Bioturbation Corophium insidiosum Chironomus plumosus Nitrification Denitrification Benthic flux 

Notes

Acknowledgements

Paula Carpintero Moraes was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brasil). Mindaugas Zilius and Marco Bartoli were partly supported by the BONUS project “Nutrient Cocktails in Coastal zones of the Baltic Sea (COCOA)” (No. BONUS-2/2014). We kindly acknowledge Irma Vybernaite-Lubiene and Tomas Ruginis for assistance in laboratory analysis.

References

  1. Bartoli, M., D. Nizzoli, D. T. Welsh & P. Viaroli, 2000. Short-term influence of recolonisation by the polychaete worm Nereis succinea on oxygen and nitrogen fluxes and denitrification: a microcosm simulation. Hydrobiologia 431: 165–174.CrossRefGoogle Scholar
  2. Bartoli, M., G. Castaldelli, D. Nizzoli & P. Viaroli, 2012. Benthic primary production and bacterial denitrification in a Mediterranean eutrophic coastal lagoon. Journal of Experimental Marine Biology and Ecology 438: 41–51.CrossRefGoogle Scholar
  3. Belser, L. W. & E. L. Mays, 1980. Specific inhibition of nitrite oxidation by chlorate and its use in assessing nitrification in soils and sediments. Applied Environmental Microbiology 39: 505–510.PubMedPubMedCentralGoogle Scholar
  4. Bower, C. E. & T. Holm-Hansen, 1980. A salicylate-hypochlorite method for determining ammonia in seawater. Canadian Journal of Fish and Aquatic Science 37: 794–798.CrossRefGoogle Scholar
  5. Brand, A., J. Lewandowski, E. Hamann & G. Nützmann, 2013. Advection around ventilated U-shaped burrows: a model study. Water Resources Research 49: 2907–2917.CrossRefGoogle Scholar
  6. Brin, L. D., A. E. Giblin & J. J. Rich, 2014. Environmental controls of anammox and denitrification in southern New England estuarine and shelf sediments. Limnology and Oceanography 59: 851–860.CrossRefGoogle Scholar
  7. Burgin, A. J. & S. K. Hamilton, 2007. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Frontiers in Ecology and the Environment 5: 89–96.CrossRefGoogle Scholar
  8. Cornwell, J. C., W. M. Kemp & T. M. Kana, 1999. Denitrification in coastal ecosystems: methods, environmental controls, and ecosystem level controls, a review. Aquatic Ecology 33: 41–55.CrossRefGoogle Scholar
  9. Dalsgaard, T., L.P. Nielsen, V. Brotas & et al., 2000. Protocol handbook for NICE-nitrogen cycling in estuaries: a project under the EU research programme. In: Marine Science and Technology (MAST III), National Environmental Research Institute, Silkeborg.Google Scholar
  10. Dollhopf, S. L., J. H. Hyun, A. C. Smith, H. J. Adams, S. O’Brien & J. E. Kostka, 2005. Quantification of ammonium-oxidizing bacteria and factors controlling nitrification in salt marsh sediments. Applied Environmental Microbiology 71: 240–246.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Eyre, B. D. & A. J. P. Ferguson, 2009. Denitrification efficiency for defining critical loads of carbon in shallow coastal ecosystems. Hydrobiologia 629: 137–146.CrossRefGoogle Scholar
  12. Fulweiler, R. W., E. M. Heiss, M. K. Rogener, M. K. Rogener, S. E. Newell, G. R. LeCleir, S. M. Kortebein & S. W. Wilhelm, 2015. Examining the impact of acetylene on N-fixation and the active sediment microbial community. Frontiers in Microbiology 6: 418.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gamble, J. C., 1970. Anaerobic survival of the crustaceans Corophium volutator, C. arenarium and Tanais chevreuxi. Journal of the Marine Biological Association of the United Kingdom 50: 657–671.CrossRefGoogle Scholar
  14. Gasiūnaitė, Z. R., D. Daunys, S. Olenin & A. Razinkovas, 2008. The Curonian lagoon. In Schiewer, U. (ed.), Ecology of Baltic coastal waters. Springer, Berlin: 197–215.CrossRefGoogle Scholar
  15. Grasshoff, K., M. Ehrhardt & K. Kremling, 1983. Methods of seawater analysis, 2nd ed. Berlin, Wiley.Google Scholar
  16. Gutiérrez, J. L. & C. G. Jones, 2006. Physical ecosystem engineers as agents of biogeochemical heterogeneity. Bioscience 56: 227–236.CrossRefGoogle Scholar
  17. Henriksen, K., J. I. Hansen & T. H. Blackburn, 1981. Rates of nitrification, distribution of nitrifying bacteria, and nitrate fluxes in different types of sediment from Danish waters. Marine Biology 61: 299–304.CrossRefGoogle Scholar
  18. Hölker, F., M. J. Vanni, J. J. Kuiper, et al., 2015. Tube-dwelling invertebrates: tiny ecosystem engineers have large effects in lake ecosystems. Ecological Monographs 85: 333–351.CrossRefGoogle Scholar
  19. Kajan, R. & P. Frenzel, 1999. The effect of chironomid larvae on production, oxidation and fluxes of methane in a flooded rice soil. FEMS Microbiology Ecology 28: 121–129.CrossRefGoogle Scholar
  20. Kana, T. M., C. Darkangelo, D. Hunt, J. B. Oldham, G. E. Bennett & J. C. Cornwell, 1994. A membrane inlet mass spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples. Analytical Chemistry 66: 4166–4170.CrossRefGoogle Scholar
  21. Kristensen, E., 2000. Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426: 1–24.CrossRefGoogle Scholar
  22. Kristensen, E. & K. Hansen, 1999. Transport of carbon dioxide and ammonium in bioturbated (Nereis diversicolor) coastal, marine sediments. Biogeochemistry 45: 147–168.Google Scholar
  23. Kristensen, E., M. H. Jensen & R. C. Aller, 1991. Direct measurement of dissolved inorganic nitrogen exchange and denitrification in individual polychaete (Nereis virens) burrows. Journal of Marine Research 49: 355–377.CrossRefGoogle Scholar
  24. Kristensen, E., G. Penha-Lopes, M. Delefosse, T. Valdemarsen, C. O. Quintana & G. T. Banta, 2012. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Marine Ecology Progress Series 446: 285–302.CrossRefGoogle Scholar
  25. Lewandowski, J., C. Laskov & M. Hupfer, 2007. The relationship between Chironomus plumosus burrows and the spatial distribution of pore-water phosphate, iron and ammonium in lake sediments. Freshwater Biology 52: 331–343.CrossRefGoogle Scholar
  26. Mayer, M. S., L. Schaffner & W. M. Kemp, 1995. Nitrification potentials of benthic macrofaunal tubes and burrow walls: effects of sediment NH4 + and animal irrigation behaviour. Marine Ecology Progress Series 121: 157–169.CrossRefGoogle Scholar
  27. Mermillod-Blondin, F., R. Rosenberg, F. François-Carcaillet, K. Norling & L. Mauclaire, 2004. Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment. Aquatic Microbial Ecology 36: 271–284.CrossRefGoogle Scholar
  28. Møller, L. F. & H. U. Riisgård, 2006. Filter feeding in the burrowing amphipod Corophium volutator. Marine Ecology Progress Series 322: 213–224.CrossRefGoogle Scholar
  29. Murphy, A. E., D. Nizzoli, M. Bartoli, A. R. Smyth, G. Castaldelli & I. C. Anderson, 2018. Variation in benthic metabolism and nitrogen cycling across clam aquaculture sites. Marine Pollution Bulletin 127: 524–535.CrossRefPubMedGoogle Scholar
  30. Nielsen, L. P., 1992. Denitrification in sediment determined from nitrogen isotope paring. FEMS Microbiology Ecology 86: 357–362.CrossRefGoogle Scholar
  31. Nizzoli, D., M. Bartoli, M. Cooper, D. T. Welsh, G. J. C. Underwood & P. Viaroli, 2007. Implications for oxygen, nutrient fluxes and denitrification rates during the early stage of sediment colonisation by the polychaete Nereis spp. in four estuaries. Estuarine, Coastal and Shelf Science 75: 125–134.CrossRefGoogle Scholar
  32. Pelegrí, S. P. & T. H. Blackburn, 1994. Bioturbation effects of the amphipod Corophium volutator on microbial nitrogen transformations in marine sediments. Marine Biology 121: 253–258.CrossRefGoogle Scholar
  33. Pelegrí, S. P. & T. H. Blackburn, 1995a. Effects of Tubifex tubifex (Oligochaeta: Tubificidae) on N-mineralization in freshwater sediments, measured with 15N isotopes. Aquatic Microbial Ecology 9: 289–294.CrossRefGoogle Scholar
  34. Pelegrí, S. P. & T. H. Blackburn, 1995b. Effect of bioturbation by Nereis sp., Mya arenaria and Cerastoderma sp. on nitrification and denitrification in estuarine sediments. Ophelia 42: 289–299.CrossRefGoogle Scholar
  35. Pelegrí, S. P. & T. H. Blackburn, 1996. Nitrogen cycling in lake sediments bioturbated by Chironomus plumosus larvae, under different degrees of oxygenation. Hydrobiologia 325: 231–238.CrossRefGoogle Scholar
  36. Riisgård, H. U., 2007. Biomechanics and energy cost of the amphipod Corophium volutator filter-pump. Biological Bulletin 212: 104–114.CrossRefPubMedGoogle Scholar
  37. Roskosch, A., M. R. Morad, A. Khalili & J. Lewandowski, 2010. Bioirrigation by Chironomus plumosus: advective flow investigated by particle image velocimetry. Journal of North American Benthological Society 29: 789–802.CrossRefGoogle Scholar
  38. Rysgaard, S., N. Risgaard-Petersen, L. P. Nielsen & N. P. Revsbech, 1993. Nitrification and denitrification in lake and estuarine sediments measured by the 15N dilution technique and isotope pairing. Applied Environmental Microbiology 59: 2093–2098.PubMedPubMedCentralGoogle Scholar
  39. Rysgaard, S., N. Risgaard-Petersen, N. P. Sloth, K. Jensen & L. P. Nielsen, 1994. Oxygen regulation of nitrification and denitrification in freshwater sediments. Limnology and Oceanography 39: 1643–1652.CrossRefGoogle Scholar
  40. Rysgaard, S., P. B. Christensen & L. P. Nielsen, 1995. Seasonal variation in nitrification and denitrification in estuarine sediment colonized by benthic microalgae and bioturbating infauna. Marine Ecology Progress Series 126: 111–121.CrossRefGoogle Scholar
  41. Sloth, N. P., L. P. Nielsen & T. H. Blackburn, 1992. Nitrification in sediment cores measured with acetylene inhibition. Limnology and Oceanography 37: 1108–1112.CrossRefGoogle Scholar
  42. Steingruber, S. M., J. Friedrich, R. Gächter & B. Wehrli, 2001. Measurement of denitrification in sediments with the 15N isotope pairing technique. Applied Environmental Microbiology 67: 3771–3778.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Stief, P., 2013. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications. Biogeosciences 10: 7829–7846.CrossRefGoogle Scholar
  44. Stief, P. & D. de Beer, 2002. Bioturbation effects of Chironomus riparius on the benthic N-cycle as measured using microsensors and microbiological assays. Aquatic Microbial Ecology 27: 175–185.CrossRefGoogle Scholar
  45. Stief, P. & D. de Beer, 2006. Probing the microenvironment of freshwater sediment macrofauna: implications of deposit-feeding and bioirrigation for nitrogen cycling. Limnology and Oceanography 51: 2538–2548.CrossRefGoogle Scholar
  46. Stief, P., M. Poulsen, L. P. Nielsen, H. Brix & A. Schramm, 2009. Nitrous oxide emission by aquatic macrofauna. Proceedings of the National Academy of Sciences 106: 4296–4300.CrossRefGoogle Scholar
  47. Stocum, E. T. & C. J. Plante, 2006. The effect of artificial defaunation on bacterial assemblages of intertidal sediments. Journal of Experimental Marine Biology and Ecology 337: 147–158.CrossRefGoogle Scholar
  48. Strauss, E. A., N. L. Mitchel & G. A. Lamberti, 2002. Factors regulating nitrification in aquatic sediments: effects of organic carbon, nitrogen availability, and pH. Canadian Journal of Fish and Aquatic Science 59: 554–563.CrossRefGoogle Scholar
  49. Svensson, J. M., 1997. Influence of Chironomus plumosus L. on ammonium flux and denitrification (measured by the acetylene blockage- and the isotope pairing-technique) eutrophic lake sediment. Hydrobiologia 346: 157–168.CrossRefGoogle Scholar
  50. Svensson, J. M., A. Enrich-Prast & L. Leonardson, 2001. Nitrification and denitrification in a eutrophic lake sediment bioturbated by oligochaetes. Aquatic Microbial Ecology 23: 177–186.CrossRefGoogle Scholar
  51. Tuominen, L., K. Mäkelä, K. K. Lehtonen, H. Haahti, S. Hietanen & J. Kuparinen, 1999. Nutrient fluxes, porewater profiles and denitrification in sediment influenced by algal sedimentation and bioturbation by Monoporeia. Estuarine, Coastal and Shelf Science 49: 83–97.CrossRefGoogle Scholar
  52. Viaroli, P., G. Giordani, M. Bartoli, M. Naldi, R. Azzoni, D. Nizzoli, I. Ferrari, J. M. Zaldìvar, S. Bencivelli, G. Castaldelli & E. A. Fano, 2006. The Sacca di Goro lagoon and an arm of the Po River. In Wangersky, P. J. (ed.), The Handbook of Environmental Chemistry, Estuaries, Vol. 5. Springer, Berlin: 197–232.Google Scholar
  53. Waldbusser, G. G. & R. L. Marinelli, 2006. Macrofaunal modification of porewater advection: role of species function, species interaction, and kinetics. Marine Ecology Progress Series 311: 217–231.CrossRefGoogle Scholar
  54. Weiss, R. F., 1970. The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Research and Oceanographic Abstracts 17: 721–735.CrossRefGoogle Scholar
  55. Zettler, M. L. & D. Daunys, 2007. Long-term macrozoobenthos changes in a shallow boreal lagoon: comparison of a recent biodiversity inventory with historical data. Limnologica 37: 107–185.CrossRefGoogle Scholar
  56. Zhang, L., X. Gu, C. Fan, J. Shang, Q. Shen, Z. Wang & J. Shen, 2010. Impact of different benthic animals on phosphorus dynamics across the sediment-water interface. Journal of Environmental Science 22: 1674–1682.CrossRefGoogle Scholar
  57. Zilius, M., G. Giordani, J. Petkuviene, I. Lubiene, T. Ruginis & M. Bartoli, 2015. Phosphorus mobility under short-term anoxic conditions in two shallow eutrophic coastal systems (Curonian and Sacca di Goro lagoons). Estuarine, Coastal and Shelf Science 164: 134–146.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Life Science and Environmental SustainabilityUniversity of ParmaParmaItaly
  2. 2.Marine Research InstituteKlaipeda UniversityKlaipedaLithuania
  3. 3.Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly

Personalised recommendations