Advertisement

Hydrobiologia

, Volume 822, Issue 1, pp 85–109 | Cite as

Long-term trends in seasonal plankton dynamics in Lake Mead (Nevada-Arizona, USA) and implications for climate change

  • John R. BeaverEmail author
  • Janet E. Kirsch
  • Claudia E. Tausz
  • Erin E. Samples
  • Thomas R. Renicker
  • Kyle C. Scotese
  • Heidi A. McMaster
  • Becky J. Blasius-Wert
  • Paul V. Zimba
  • Dale A. Casamatta
Primary Research Paper

Abstract

Over the past few decades, Lake Mead (Nevada-Arizona, USA) has experienced multiple ecosystem stressors including drought, increased water demand, and establishment of invasive species (quagga mussels, gizzard shad). Despite these potential stressors, zooplankton and phytoplankton community dynamics in the pelagic regions of Lake Mead have generally followed consistent seasonal patterns. Long-term monitoring results (2007–2015) show that zooplankton and phytoplankton communities remain relatively stable in Lake Mead on an inter-annual basis, but are susceptible to shifts caused by extreme climate fluctuations and alterations in mixing regimes. A warm winter characterized by low snowpack in 2014/2015 preceded a large bloom of toxic cyanobacteria (Microcystis aeruginosa Kützing) in Las Vegas Bay the following summer. Large bloom events are rare in Lake Mead; however, under future climate scenarios, these types of events may become more frequent. Because of the consistency of plankton community dynamics over an extended period of time, Lake Mead offers an ideal system for the study of future climate change impacts. This study aims to characterize the response of plankton communities in Lake Mead to both linear and dynamic environmental changes.

Keywords

Daphnia Microcystis Colorado River reservoirs Drought Quagga mussels Monitoring 

References

  1. Axler, R., L. Paulson, P. Vaux, P. Sollberger & D. H. Baepler, 1988. Fish aid – the Lake Mead fertilization project. Lake and Reservoir Management 4: 125–135.CrossRefGoogle Scholar
  2. Baker, J. R. & L. J. Paulson, 1980. Influence of Las Vegas Wash density current on nutrient availability and phytoplankton growth in Lake Mead. Proceedings of the Symposium of Surface Water Impoundments ASCE. June 2–5, 1980, Minneapolis, MN.Google Scholar
  3. Beaver, J. R., T. E. Tietjen, B. J. Blasius-Wert, J. E. Kirsch, T. C. Rosati, G. C. Holdren, E. M. Kennedy, R. M. Hollis, C. E. Teacher, K. M. Buccier & S. K. Evans, 2010. Persistence of Daphnia in the epilimnion of Lake Mead, Arizona-Nevada, during extreme drought and expansion of invasive quagga mussels (2000–2009). Lake and Reservoir Management 26: 273–282.CrossRefGoogle Scholar
  4. Beaver, J. R., D. E. Jensen, D. A. Casamatta, C. E. Tausz, K. C. Scotese, K. M. Buccier, C. E. Teacher, T. C. Rosati, A. D. Minerovic & T. R. Renicker, 2013. Response of phytoplankton and zooplankton communities in six reservoirs of the middle Missouri River (USA) to drought conditions and a major flood event. Hydrobiologia 705: 173–189.CrossRefGoogle Scholar
  5. Beaver, J. R., C. E. Tausz, T. R. Renicker, G. C. Holdren, D. M. Hosler, E. E. Manis, K. C. Scotese, C. E. Teacher, B. T. Vitanye & R. M. Davidson, 2014. The late summer crustacean zooplankton in western USA reservoirs reflects ecoregion, temperature and latitude. Freshwater Biology 59: 1173–1186.CrossRefGoogle Scholar
  6. Brasil, J., J. L. Attayde, F. R. Vasconcelos, D. D. F. Dantas & V. L. M. Huszar, 2015. Drought-induced water-level reduction favors cyanobacteria blooms in tropical shallow lakes. Hydrobiologia 770: 145–164.CrossRefGoogle Scholar
  7. Bridgeman, T. B., G. L. Fahnenstiel, G. A. Lang & T. F. Nalepa, 1995. Zooplankton grazing during the zebra mussel (Dreissena polymorpha) colonization of Saginaw Bay, Lake Huron. Journal of Great Lakes Research 21: 567–573.CrossRefGoogle Scholar
  8. Bond, N. A., M. F. Cronin, H. Freeland & N. Mantua, 2015. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophysical Research Letters 42: 3414–3420.CrossRefGoogle Scholar
  9. Bouvy, M., D. Falcao, M. Marinho, M. Pagano & A. Moura, 2000. Occurrence of Cylindrospermopsis (Cyanobacteria) in 39 Brazilian tropical reservoirs during the 1998 drought. Aquatic Microbiology 23: 13–27.CrossRefGoogle Scholar
  10. Burke, T. A., 1977. The limnetic zooplankton community of Boulder Basin, Lake Mead in relation to the metalimnetic oxygen minimum. MS Thesis, University of Nevada, Las Vegas.Google Scholar
  11. Butcher, J. B., D. Nover, T. E. Johnson & C. M. Clark, 2015. Sensitivity of lake thermal and mixing dynamics to climate change. Climatic Change 129: 295–305.CrossRefGoogle Scholar
  12. Cao, H.-S., F.-X. Kong, L.-C. Luo, X.-L. Shi, Z. Yang, X.-F. Zhang & Y. Tao, 2006. Effects of wind and wind-induced waves on vertical phytoplankton distribution and surface blooms of Microcystis aeruginosa in Lake Taihu. Journal of Freshwater Ecology 21: 231–238.CrossRefGoogle Scholar
  13. Caraco, N. F., J. J. Cole, P. A. Raymond, D. L. Strayer, M. L. Pace, S. E. Findlay & D. T. Fischer, 1997. Zebra mussel invasion in a large, turbid river: phytoplankton response to increased grazing. Ecology 78: 588–602.CrossRefGoogle Scholar
  14. Cavole, L. M., A. M. Demko, R. E. Diner, A. Giddings, I. Koester, C. M. Pagniello, M. L. Paulsen, A. Ramirez-Valdez, S. M. Schwenck, N. K. Yen & M. E. Zill, 2016. Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: winners, losers, and the future. Oceanography 29: 273–285.CrossRefGoogle Scholar
  15. Chorus, I. & J. Bartram, 1999. Toxic Cyanobacteria in Water: A Guide to Public Health Significance. World Health Organization, E&FN Spon, London: 400.CrossRefGoogle Scholar
  16. Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth.Google Scholar
  17. Davis, T. W., D. L. Berry, G. L. Boyer & C. J. Gobler, 2009. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8: 715–725.CrossRefGoogle Scholar
  18. Dettmers, J. M. & R. A. Stein, 1992. Food consumption by larval gizzard shad: zooplankton effects and its implications for reservoir communities. Transactions of the American Fisheries Society 121: 494–507.CrossRefGoogle Scholar
  19. Dettmers, J. M. & R. A. Stein, 1996. Quantifying linkages among gizzard shad, zooplankton and phytoplankton in reservoirs. Transactions of the American Fisheries Society 125: 27–41.CrossRefGoogle Scholar
  20. Dumont, H. J., I. Van De Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.CrossRefPubMedGoogle Scholar
  21. Evans, T. D. & L. J. Paulson, 1983. The influence of Lake Powell on the suspended sediment-phosphorus dynamics of the Colorado River inflow to Lake Mead. Aquatic Resource Management of the Colorado River Ecosystem. In Adams, V. D. & V. A. Lamarra (eds), Aquatic Resource Management of the Colorado River Ecosystem. Ann Arbor Scientific Publishers, Ann Arbor: 57–68.Google Scholar
  22. Everett, L. G., 1972. A mathematical model of primary productivity and limnological patterns in Lake Mead. PhD Dissertation, University of Arizona.Google Scholar
  23. Fahnenstiel, G., T. Nalepa, S. Pothoven, H. Carrick & D. Scavia, 2010. Lake Michigan lower food web: long-term observations and Dreissena impact. Journal of Great Lakes Research 36: 1–4.CrossRefGoogle Scholar
  24. Fanslow, D. L., T. F. Nalepa & G. A. Lang, 1995. Filtration rates of the zebra mussel (Dreissena polymorpha) on natural seston from Saginaw Bay, Lake Huron. Journal of Great Lakes Research 21: 489–500.CrossRefGoogle Scholar
  25. Havens, K. E., T. E. East & J. R. Beaver, 2007. Zooplankton response to extreme drought in a large subtropical lake. Hydrobiologia 589: 187–198.CrossRefGoogle Scholar
  26. Havens, K. E., G. Ji, J. R. Beaver, R. S. Fulton & C. E. Teacher, 2017. Dynamics of cyanobacteria blooms are linked to the hydrology of shallow Florida lakes and provide insight into possible impacts of climate change. Hydrobiologia.  https://doi.org/10.1007/s10750-017-3425-7.CrossRefGoogle Scholar
  27. Hillebrand, H., C. D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.CrossRefGoogle Scholar
  28. Holdren, G. C. & K. Turner, 2010. Characteristics of Lake Mead, Arizona-Nevada. Lake and Reservoir Management 26: 230–239.CrossRefGoogle Scholar
  29. Huber, V., C. Wagner, D. Gerten & R. Adrian, 2012. To bloom or not to bloom: contrasting responses of cyanobacteria to recent heat waves explained by critical thresholds of abiotic drivers. Oecologia 169: 245–256.CrossRefPubMedGoogle Scholar
  30. Jacoby, J. M., D. C. Collier, E. B. Welch, F. J. Hardy & M. Crayton, 2000. Environmental factors associated with a toxic bloom of Microcystis aeruginosa. Canadian Journal of Fisheries and Aquatic Sciences 57: 231–240.CrossRefGoogle Scholar
  31. Janik, J. J., 1984. The role of nannoplankton in the phytoplankton dynamics of four Colorado River reservoirs (Lakes Powell, Mead, Mohave, and Havasu). MS Thesis, University of Nevada, Las Vegas.Google Scholar
  32. Jeppesen, E., J. P. Jensen, C. Jensen, B. Faafeng, D. O. Hessen, M. Søndergaard, T. Lauridsen, P. Brettum & K. Christoffersen, 2003. The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: a study of 466 lakes from the temperate zone to the arctic. Ecosystems 6: 313–325.CrossRefGoogle Scholar
  33. Jeppesen, E., M. Meerhoff, B. A. Jacobsen, R. S. Hansen, S. Sondergaard, J. P. Jensen, T. L. Lauridsen, N. Mazzeo & C. W. C. Branco, 2007. Restoration of shallow lakes by nutrient control and biomanipulation – the successful strategy varies with lake size and climate. Hydrobiologia 581: 269–285.CrossRefGoogle Scholar
  34. Ji, G., K. E. Havens, J. R. Beaver & R. S. Fulton, 2017. Response of zooplankton to climate variability: drought creates a perfect storm for cladocerans in shallow eutrophic lakes. Water 9: 764.CrossRefGoogle Scholar
  35. Ji, G., K. E. Havens, J. R. Beaver & T. L. East, 2018. Recovery of plankton from hurricane impacts in a large shallow lake. Freshwater Biology 63: 366–379.CrossRefGoogle Scholar
  36. Kerfoot, W. C., F. Yousef, S. A. Green, J. W. Budd, D. J. Schwab & H. A. Vanderploeg, 2010. Approaching storm: disappearing winter bloom in Lake Michigan. Journal of Great Lakes Research 36: 30–41.CrossRefGoogle Scholar
  37. Kissman, C. E., L. B. Knoll & O. Sarnelle, 2010. Dreissenid mussels (Dreissena polymorpha and Dreissena bugensis) reduce microzooplankton and macrozooplankton biomass in thermally stratified lakes. Limnology and Oceanography 55: 1851–1859.CrossRefGoogle Scholar
  38. Knoll, L. B., O. Sarnelle, S. K. Hamilton, C. E. Kissman, A. E. Wilson, J. B. Rose & M. R. Morgan, 2008. Invasive zebra mussels (Dreissena polymorpha) increase cyanobacterial toxin concentrations in low-nutrient lakes. Canadian Journal of Fisheries and Aquatic Sciences 65: 448–455.CrossRefGoogle Scholar
  39. Koenig, E. R., R. W. Tew & J. E. Deacon, 1972. Phytoplankton successions and lake dynamics in Las Vegas Bay, Lake Mead, Nevada. Journal of the Arizona Academy of Science 7: 109–112.CrossRefGoogle Scholar
  40. Kraemer, B. M., O. Anneville, S. Chandra, M. Dix, E. Kuusisto, D. M. Livingstone, A. Rimmer, G. Schadlow, E. Silow, L. M. Sitoki, R. Tamatamah, Y. Vadeboncoeur & P. B. McIntyre, 2015. Geophysical Research Letters 42: 4981–4988.CrossRefGoogle Scholar
  41. Kumagai, M., S. Nakano, C. Jiao, K. Hayakawa, S. Tsujimura, T. Nakajima, J.-J. Frenette & A. Quesada, 2000. Effect of cyanobacterial blooms on thermal stratification. Limnology 1: 191–195.CrossRefGoogle Scholar
  42. LaBounty, J. F. & N. M. Burns, 2005. Characterization of Boulder Basin, Lake Mead, Nevada-Arizona, USA – based on analysis of 34 limnological parameters. Lake and Reservoir Management 21: 277–307.CrossRefGoogle Scholar
  43. LaBounty, J. F. & P. Roefer, 2007. Quagga mussels invade Lake Mead. LakeLine 27: 17–22.Google Scholar
  44. Latja, R. & K. Salonen, 1978. Carbon analysis for the determination of individual biomass of planktonic animals. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 20: 2556–2560.Google Scholar
  45. Lavrentyev, J. P., W. S. Gardner, J. F. Cavaletto & J. R. Beaver, 1995. Effects of the zebra mussel (Dreissena polymorpha Pallas) on protozoa and phytoplankton from Saginaw Bay, Lake Huron. Journal of Great Lakes Research 21: 545–557.CrossRefGoogle Scholar
  46. Lawrence, S. G., D. F. Malley, W. J. Findlay, M. A. MacIver & I. L. Delbaere, 1987. Method for estimating dry weight of freshwater planktonic crustaceans from measures of length and shape. Canadian Journal of Fisheries and Aquatic Science 44: 264–274.CrossRefGoogle Scholar
  47. Liebold, M. A., 1991. Trophic interactions and habitat segregation between competing Daphnia species. Oecologia 86: 510–520.CrossRefGoogle Scholar
  48. Limburg, K. E., V. A. Luzadis, M. Ramsey, K. L. Schulz & C. M. Mayer, 2010. The good, the bad, and the algae: perceiving ecosystem services and disservices generated by zebra and quagga mussels. Journal of Great Lakes Research 36: 86–92.CrossRefGoogle Scholar
  49. Loomis, E. M., 2009. Trophic interactions associated with introduction of the invasive quagga mussel in Lake Mead, Nevada. MS Thesis. University of Nevada, Las Vegas.Google Scholar
  50. Loomis, E. M., J. C. Sjoberg, W. H. Wong & S. Gerstenberger, 2011. Abundance and stomach content analysis of threadfin shad in Lake Mead, Nevada: do invasive quagga mussels affect this prey species? Aquatic Invasions 6: 157–168.CrossRefGoogle Scholar
  51. Lund, J. W., G. Kipling & E. D. LeCren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimates by counting. Hydrobiologia 11: 143–170.CrossRefGoogle Scholar
  52. MacIsaac, H. J., 1996. Potential abiotic and biotic impacts of zebra mussels on the inland waters of North America. American Zoologist 36: 287–299.CrossRefGoogle Scholar
  53. Marsh, P. C. & D. R. Langhorst, 1988. Feeding and fate of wild larval razorback sucker. Environmental Biology of Fishes 21: 59–67.CrossRefGoogle Scholar
  54. McCauley, E., 1984. The estimation of the abundance and biomass of zooplankton in samples. In Downing, J. A. & F. H. Rigler (eds), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. Blackwell Scientific Publications, Oxford: 228–265.Google Scholar
  55. McGowan, S., P. R. Leavitt & R. I. Hall, 2005. A whole-lake experiment to determine the effects of winter droughts on shallow lakes. Ecosystems 8: 694–708.CrossRefGoogle Scholar
  56. McMahon, R. F., 2007. Analysis of the shell length distributions of quagga mussel (Dreissena rostriformis bugensis) taken from Lake Mead and Mohave on the Colorado River drainage during Jan–Mar 2007. U.S. Bureau of ReclamationGoogle Scholar
  57. McNabb, C. D., 1960. Enumeration of freshwater phytoplankton concentrated on the membrane filter. Limnology and Oceanography 5: 57–61.CrossRefGoogle Scholar
  58. Miner, J. G. & R. A. Stein, 1993. Interactive influence of turbidity and light on larval bluegill (Lepomis macrochirus) foraging. Canadian Journal of Fisheries and Aquatic Sciences 50: 781–788.CrossRefGoogle Scholar
  59. Moreo, M. T. & A. Swancar, 2013. Evaporation from Lake Mead, Nevada and Arizona, March 2010 through February 2012. USGS Scientific Investigations Report 2013–5229.Google Scholar
  60. Mosley, L. M., 2015. Drought impacts on the water quality of freshwater systems; review and integration. Earth-Science Reviews 140: 203–214.CrossRefGoogle Scholar
  61. Mote, P. W., D. E. Rupp, S. Li, D. J. Sharp, F. Otto, P. F. Uhe, M. Xiao, D. P. Lettenmaier, H. Cullen & M. R. Allen, 2016. Perspectives on the causes of exceptionally low 2015 snowpack in the western United States. Geophysical Research Letters 43: 10980–10988.CrossRefGoogle Scholar
  62. Mueller, G. & M. J. Horn, 2004. Distribution and abundance of the pelagic fish in Lake Powell, Utah and Lake Mead, Arizona-Nevada. Western North American Naturalist 64: 306–311.Google Scholar
  63. Murdoch, P. S., J. S. Baron & T. L. Miller, 2000. Potential effects of climate change on surface water quality in North America. Journal of the American Water Resources Association 36: 347–366.CrossRefGoogle Scholar
  64. Nübel, U., F. Garcia-Pichel & G. Muyzer, 1997. PCR primers to amplify 16S rRNA genes from cyanobacteria. Applied and Environmental Microbiology 63: 3327–3332.PubMedPubMedCentralGoogle Scholar
  65. Olds, B. P., B. C. Peterson, K. D. Koupal, C. W. Schoenebeck, K. M. Farnsworth-Hoback & W. W. Hoback, 2014. Zooplankton density increases in an irrigation reservoir during drought conditions. Transactions of the Nebraska Academy of Sciences 34: 27–32.Google Scholar
  66. O’Reilly, C. M., S. Sapna, D. K. Gray, S. E. Hampton, J. S. Read, R. J. Rowley, P. Schneider, J. D. Lenters, P. B. McIntyre, B. M. Kraemer, G. A. Weyhenmeyer, D. Straile, B. Dong, R. Adrian, M. G. Allan, O. Anneville, L. Arvola, J. Austin, J. L. Bailey, J. S. Baron, J. D. Brookes, E. de Eyto, M. T. Dokulil, D. P. Hamilton, K. Havens, A. L. Hetherington, S. N. Higgins, S. Hook, L. R. Izmest’eva, K. D. Joehnk, K. Kangur, P. Kasprzak, M. Kumagai, E. Kuusisto, G. Leshkevich, D. M. Livingstone, S. MacIntyre, L. May, J. M. Melack, D. C. Mueller-Navarra, M. Naumenko, P. Noges, T. Noges, R. P. North, P.-D. Plisnier, A. Rigosi, A. Rimmer, M. Rogora, L. G. Rudstam, J. A. Rusak, N. Salmaso, N. R. Samal, D. E. Schindler, S. G. Schladow, M. Schmid, S. R. Schmidt, E. Silow, M. E. Soylu, K. Teubner, P. Verburg, A. Voutilainen, A. Watkinson, C. E. Williamson & G. Zhang, 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research Letters 42: 10773–10781.CrossRefGoogle Scholar
  67. Pace, M. L., S. E. Findlay & D. Fischer, 1998. Effects of an invasive bivalve on the zooplankton community of the Hudson River. Freshwater Biology 39: 103–116.CrossRefGoogle Scholar
  68. Paerl, H. W. & J. Huisman, 2008. Blooms like it hot. Science 320: 57–58.CrossRefPubMedGoogle Scholar
  69. Paerl, H. W. & T. G. Otten, 2013. Harmful cyanobacterial blooms: causes, consequences and controls. Microbial Ecology 65: 995–1010.CrossRefPubMedGoogle Scholar
  70. Paulson, L. J. & J. R. Baker, 1983. Interrelationships among nutrients, plankton and striped bass in Lake Mead. University of Nevada, Las Vegas. Lake Mead Limnological Research Center Technical Report 10.Google Scholar
  71. Paulson, L. J., J. R. Baker & J. E. Deacon, 1980. The limnological status of Lake Mead and Lake Mohave under present and future powerplant operations of Hoover Dam. Lake Mead Limnological Research Center Technical Report 1.Google Scholar
  72. Pierce, R. J., T. E. Wissing & B. A. Megrey, 1981. Aspects of the feeding ecology of gizzard shad in Acton Lake, Ohio. Transactions of the American Fisheries Society 110: 391–395.CrossRefGoogle Scholar
  73. Prentki, R. T. & L. J. Paulson, 1983. Historical patterns of phytoplankton productivity in Lake Mead. In Adams, V. D. & V. A. Lamarra (eds), Aquatic Resource Management of the Colorado River Ecosystem. Ann Arbor Scientific Publishers, Ann Arbor: 105–123.Google Scholar
  74. Rajagopalan, B., K. Nowak, J. Prairie, M. Hoerling, B. Harding, J. Barsugli, A. Ray & B. Udall, 2009. Water supply risk on the Colorado River: can management mitigate? Water Resources Research 45: W08201.CrossRefGoogle Scholar
  75. Reichwaldt, E. S. & A. Ghadouani, 2012. Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: between simplistic scenarios and complex dynamics. Water Research 46: 1372–1393.CrossRefPubMedGoogle Scholar
  76. Rohrlack, T., M. Henning & J.-G. Kohl, 1999. Does the toxic effect of Microcystis aeruginosa on Daphnia galeata depend on microcystin ingestion rate? Archiv für Hydrobiolgie 146: 385–395.CrossRefGoogle Scholar
  77. Rohrlack, T., K. Christoffersen, E. Dittmann, I. Nogueira, V. Vasconcelos & T. Börner, 2005. Ingestion of microcystins by Daphnia: intestinal uptake and toxic effects. Limnology and Oceanography 50: 440–448.CrossRefGoogle Scholar
  78. Rocha, O. & A. Duncan, 1985. The relationship between cell carbon and cell volume in freshwater algal species used in zooplanktonic studies. Journal of Plankton Research 7: 279–294.CrossRefGoogle Scholar
  79. Schaus, M. H. & M. J. Vanni, 2000. Effects of omnivorous gizzard shad on phytoplankton and nutrient dynamics: role of sediment feeding and fish size. Ecology 81: 1701–1719.CrossRefGoogle Scholar
  80. Schaus, M. H., W. Godwin, L. Battoe, M. Coveney, E. Lowe, R. Roth, C. Hawkins, M. Vindigni, C. Weinberg & A. Zimmerman, 2010. Impact of the removal of gizzard shad (Dorosoma cepedianum) on nutrient cycles in Lake Apopka, Florida. Freshwater Biology 55: 2401–2413.CrossRefGoogle Scholar
  81. Scheffer, M., S. Carpenter, J. A. Foley, C. Folke & B. Walker, 2001. Catastrophic shifts in ecosystems. Nature 413: 591–596.CrossRefPubMedGoogle Scholar
  82. Seda, J., K. Kolarova, A. Petrusek & J. Matchacek, 2007. Daphnia galeata in the deep hypolimnion: spatial differentiation of a “typical epilimnetic” species. Hydrobiologia 594: 47–57.CrossRefGoogle Scholar
  83. Sollberger, P. J. & L. J. Paulson, 1992. Littoral and limnetic zooplankton communities in Lake Mead, Nevada-Arizona, USA. Hydrobiologia 237: 175–184.CrossRefGoogle Scholar
  84. Sprung, M. & U. Rose, 1988. Influence of food size and food quantity on the feeding of the mussel Dreissena polymorpha. Oecologia 77: 526–532.CrossRefPubMedGoogle Scholar
  85. Staker, R. D., R. W. Hoshaw & L. G. Everett, 1974. Phytoplankton distribution and water quality indices for Lake Mead (Colorado River). Journal of Phycology 10: 323–331.Google Scholar
  86. Stewart, S. D., D. P. Hamilton, W. T. Baisden, M. Dedual, P. Verburg, I. C. Duggan, B. J. Hicks & B. S. Graham, 2017. Variable littoral-pelagic coupling as a food web response to seasonal changes in pelagic primary production. Freshwater Biology 62: 2008–2025.CrossRefGoogle Scholar
  87. Stich, H.-B. & W. Lampert, 1981. Predator evasion as an explanation of diurnal vertical migration by zooplankton. Nature 293: 396–398.CrossRefGoogle Scholar
  88. Stockner, J. G., E. Rydin & P. Hyenstrand, 2000. Cultural oligotrophication: causes and consequences for fisheries resources. Fisheries 25: 7–14.CrossRefGoogle Scholar
  89. ter Braak, C. J. F. & P. F. T. Verdonschot, 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Ecology 57: 255–289.Google Scholar
  90. Turkett, W., 2016. Impacts to phytoplankton after the establishment of quagga mussels in Lake Mead, Nevada. PhD Dissertation, University of Nevada, Las Vegas.Google Scholar
  91. Vanderploeg, H. A., T. F. Nalepa, D. J. Jude, E. L. Mills, K. T. Holeck, J. R. Liebig, I. R. Grigorovich & H. Ojaveer, 2002. Dispersal and emerging ecological impacts of Ponto-Caspian species in the Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 59: 1209–1228.CrossRefGoogle Scholar
  92. Vinyard, G. L. & W. J. O’Brien, 1976. Effects of light and turbidity on the reactive distance of bluegill (Lepomis macrochirus). Journal of the Fisheries Board of Canada 33: 2845–2849.CrossRefGoogle Scholar
  93. Wagner, C. & R. Adrian, 2009. Cyanobacteria dominance: quantifying the effects of climate change. Limnology and Oceanography 54: 2460–2468.CrossRefGoogle Scholar
  94. Webber, P. A. & M. T. Jones, 2013. Continued gizzard shad (Dorosoma cepedianum) range expansion in the Colorado River basin. Western North American Naturalist 73: 110–112.CrossRefGoogle Scholar
  95. Wilde, G. R., 1984. Seasonal and spatial heterogeneity in the limnetic zooplankton community of Lake Mead. MS Thesis, University of Nevada, Las Vegas.Google Scholar
  96. Wilde, G. R. & L. J. Paulson, 1988. Food habits of young-of-the-year large-mouth bass in Lake Mead and Lake Mohave, Arizona-Nevada. The Great Basin Naturalist 48: 458–488.Google Scholar
  97. Wilde, G. R. & L. J. Paulson, 1989a. Food habits of subadult striped bass in Lake Mead, Arizona-Nevada. The Southwestern Naturalist 34: 118–123.CrossRefGoogle Scholar
  98. Wilde, G. R. & L. J. Paulson, 1989b. Temporal and spatial variation in pelagic fish abundance in Lake Mead determined from echo grams. California Fish and Game 75: 218–223.Google Scholar
  99. Wong, W. H. & S. L. Gerstenberger, 2011. Quagga mussels in the western United States: monitoring and Management. Aquatic Invasions 6: 125–129.CrossRefGoogle Scholar
  100. Wong, W. H., T. Tietjen, S. Gerstenberger, G. C. Holdren, S. Mueting, E. Loomis, P. Roefer, B. Moore, K. Turner & I. Hannoun, 2010. Potential ecological consequences of invasion of the quagga mussel (Dreissena bugensis) into Lake Mead, Nevada-Arizona. Lake and Reservoir Management 26: 306–315.CrossRefGoogle Scholar
  101. Wong, W. H., G. C. Holdren, T. Tietjen, S. Gerstenberger, B. Moore, K. Turner & D. C. Wilson, 2014. Effects in invasive quagga mussels (Dreissena rostriformis bugensis) on chlorophyll and water clarity in Lakes Mead and Havasu of the Lower Colorado River Basin, 2007–2009. In Nalepa, T. F. & D. W. Schloesser (eds), Quagga and Zebra Mussels: Biology, Impacts and Control, 2nd ed. CRC Press, Boca Raton: 495–508.Google Scholar
  102. Zambrano, L., M. Scheffer & M. Martinez-Ramos, 2001. Catastrophic response of lakes to benthivorous fish introduction. Oikos 94: 344–350.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • John R. Beaver
    • 1
    Email author
  • Janet E. Kirsch
    • 2
  • Claudia E. Tausz
    • 1
  • Erin E. Samples
    • 1
  • Thomas R. Renicker
    • 1
  • Kyle C. Scotese
    • 1
  • Heidi A. McMaster
    • 2
  • Becky J. Blasius-Wert
    • 2
  • Paul V. Zimba
    • 3
  • Dale A. Casamatta
    • 4
  1. 1.BSA Environmental Services Inc.BeachwoodUSA
  2. 2.Bureau of Reclamation, Lower Colorado OfficeBoulder CityUSA
  3. 3.Department of Life Sciences, Center for Coastal StudiesTexas A&M University, Corpus ChristiCorpus ChristiUSA
  4. 4.College of Arts and Sciences, Biology DepartmentUniversity of North FloridaJacksonvilleUSA

Personalised recommendations