Advertisement

Hydrobiologia

, Volume 819, Issue 1, pp 123–143 | Cite as

Environmental and spatial drivers of beta diversity components of chironomid metacommunities in contrasting freshwater systems

  • András SpecziárEmail author
  • Diána Árva
  • Mónika Tóth
  • Arnold Móra
  • Dénes Schmera
  • Gábor Várbíró
  • Tibor Erős
Primary Research Paper

Abstract

Partition of beta diversity into components is a modern method that allows inferences about the underlying processes driving metacommunities. Based on two alternative approaches, we examined the patterns of beta diversity components of chironomids in relation to environmental and spatial gradients in three contrasting freshwater ecosystems. Beta diversity and its replacement component increased from environmentally less heterogeneous lake, through more complex wetland to stream network. Constrained ordination revealed that environmental heterogeneity and spatial processes explain some variation of the patterns of pairwise beta diversity components. Both beta diversity partitioning approaches emphasised the importance of habitat structure and food resource in structuring chironomid metacommunities. However, concurrent approaches provided contrasting results regarding the relative role of underlying mechanisms related to species replacement and richness. Therefore, further research is needed to clarify which of the beta diversity partitioning approaches should be preferred more widely in ecological studies.

Keywords

Dispersal Environmental filtering Assemblage Niche-based mechanisms Species richness Species turnover 

Notes

Acknowledgements

We thank Endre Bajka, Pál Boda, Gabriella Bodnár, Máté Bolbás, Tamás Bozoki, András Csercsa, Eszter Krasznai, Attila Mozsár and Adrienn Tóth for their assistance in the field. This research was supported by the OTKA K104279 grant. The work of Mónika Tóth was also supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Supplementary material

10750_2018_3632_MOESM1_ESM.docx (67 kb)
Supplementary material 1 (DOCX 67 kb)
10750_2018_3632_MOESM2_ESM.docx (72 kb)
Supplementary material 2 (DOCX 72 kb)
10750_2018_3632_MOESM3_ESM.docx (72 kb)
Supplementary material 3 (DOCX 71 kb)

References

  1. Alahuhta, J., S. Kosten, M. Akasaka, D. Auderset, M. Azzella, R. Bolpagni, C. P. Bove, P. A. Chambers, E. Chappuis, J. Clayton, M. de Winton, F. Ecke, E. Gacia, G. Gecheva, P. Grillas, J. Hauxwell, S. Hellsten, J. Hjort, M. V. Hoyer, C. Ilg, A. Kolada, M. Kuoppala, T. Lauridsen, E. H. Li, B. A. Lukács, M. Mjelde, A. Mikulyuk, R. P. Mormul, J. Nishihiro, B. Oertli, L. Rhazi, M. Rhazi, L. Sass, C. Schranz, M. Søndergaard, T. Yamanouchi, Q. Yu, H. Wang, N. Willby, X. K. Zhang & J. Heino, 2017. Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude. Journal of Biogeography 44: 1758–1769.CrossRefGoogle Scholar
  2. Aminot, A. & F. Rey, 2000. Standard Procedure for the Determination of Chlorophyll-a by Spectroscopic Methods. International Council for the Exploration of Sea, Denmark.Google Scholar
  3. Anderson, R. O., 1959. A modified flotation technique for sorting bottom fauna samples. Limnology and Oceanography 4: 223–225.CrossRefGoogle Scholar
  4. Anderson, M. J., T. O. Crist, J. M. Chase, M. Vellend, B. D. Inouye, A. L. Freestone, N. J. Sanders, H. V. Cornell, L. S. Cornita, K. F. Davies, S. P. Harrison, N. J. B. Kraft, J. C. Stegen & N. G. Swenson, 2011. Navigating the multiple meanings of & #x03B2; diversity: a roadmap for the practicing ecologist. Ecology Letters 14: 19–28.CrossRefPubMedGoogle Scholar
  5. AQEM Consortium, 2002. Manual for the application of the AQEM system. A comprehensive method to assess European streams using macroinvertebrates, developed for the purpose of the Water Framework Directive. Version 1.0.Google Scholar
  6. Armitage, P. D., 1995. Behaviour and ecology of adults. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae: Biology and ecology of non-biting midges. Chapman and Hall, London: 194–224.CrossRefGoogle Scholar
  7. Árva, D., M. Tóth, H. Horváth, S. A. Nagy & A. Specziár, 2015a. The relative importance of spatial and environmental processes in distribution of benthic chironomid larvae within a large and shallow lake. Hydrobiologia 742: 249–266.CrossRefGoogle Scholar
  8. Árva, D., A. Specziár, T. Erős & M. Tóth, 2015b. Effects of habitat types and within lake environmental gradients on the diversity of chironomid assemblages. Limnologica 53: 26–34.CrossRefGoogle Scholar
  9. Árva, D., M. Tóth, A. Mozsár & A. Specziár, 2017. The roles of environment, site position, and seasonality in taxonomic and functional organization of chironomid assemblages in a heterogeneous wetland, Kis-Balaton, Hungary. Hydrobiologia 787: 353–373.CrossRefGoogle Scholar
  10. Baselga, A., 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography 19: 134–143.CrossRefGoogle Scholar
  11. Baselga, A., 2012. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecology and Biogeography 21: 1223–1232.CrossRefGoogle Scholar
  12. Baselga, A., 2013. Multiple site dissimilarity quantifies compositional heterogeneity among several sites, while average pairwise dissimilarity might be misleading. Ecography 36: 124–128.CrossRefGoogle Scholar
  13. Baselga, A. & F. Leprieur, 2015. Comparing methods to separate components of beta diversity. Methods in Ecology and Evolution 6: 1069–1079.CrossRefGoogle Scholar
  14. Baselga, A., C. D. L. Orme, S. Villéger, J. De Bortoli & F. Leprieur, 2017. Betapart: Partitioning beta diversity into turnover and nestedness components. R package version 1.4. Available at http://CRAN.R-project.org/package=betapart. Accessed Feb 2018
  15. Boieiro, M., J. C. Carvalho, P. Cardoso, C. A. S. Aguiar, C. Rego, I. F. Silva, I. R. Amorim, F. Pereira, E. B. Azevedo, P. A. V. Borges & A. R. M. Serrano, 2013. Spatial factors play a major role as determinants of endemic ground beetle beta diversity of Madeira Island Laurisilva. PLoS ONE 8: e64591.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Borcard, D. & P. Legendre, 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrix. Ecological Modelling 153: 51–68.CrossRefGoogle Scholar
  17. Borcard, D., P. Legendre, C. Avois-Jacquet & H. Toumisto, 2004. Dissecting the spatial structure of ecological data at multiple scales. Ecology 85: 1826–1832.CrossRefGoogle Scholar
  18. Brendonck, L., M. Jocqué, K. Tuytens, B. V. Timms & B. Vanschoenwinkel, 2015. Hydrological stability drives both local and regional diversity patterns in rock pool metacommunities. Oikos 124: 741–749.CrossRefGoogle Scholar
  19. Brundin, L., 1958. The bottom faunistical lake type system and its application to the southern hemisphere. Moreover a theory of glacial erosion as a factor of productivity in lakes and oceans. Verhandlungen der Internationalen Vereinigung für Limnologie 13: 288–297.Google Scholar
  20. Carvalho, J. C. & P. Cardoso, 2014. Drivers of beta diversity in Macaronesian spiders in relation to dispersal ability. Journal of Biogeography 41: 1859–1870.CrossRefGoogle Scholar
  21. Carvalho, J. C., P. Cardoso, P. A. V. Borges, D. Schmera & J. Podani, 2013. Measuring fractions of beta diversity and their relationship to nestedness: a theoretical and empirical comparison of novel approaches. Oikos 122: 825–834.CrossRefGoogle Scholar
  22. Cottenie, K., 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters 8: 1175–1182.CrossRefPubMedGoogle Scholar
  23. Cushman, S. A. & K. McGarigal, 2002. Hierarchical, multi-scale decomposition of species-environment relationships. Landscape Ecology 17: 637–646.CrossRefGoogle Scholar
  24. Delettre, Y. R. & N. Morvan, 2000. Dispersal of adult aquatic Chironomidae (Diptera) in agricultural landscapes. Freshwater Biology 44: 399–411.CrossRefGoogle Scholar
  25. Delettre, Y., P. Tréhen & P. Grootaert, 1992. Space heterogeneity, space use and short-range dispersal in Diptera: a case study. Landscape Ecology 6: 175–181.CrossRefGoogle Scholar
  26. Diserud, O. H. & F. Ødegaard, 2007. A multiple-site similarity measure. Biology Letters 3: 20–22.CrossRefPubMedGoogle Scholar
  27. Dray, S., P. Legendre & P. R. Peres-Neto, 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrix (PCNM). Ecological Modelling 196: 483–493.CrossRefGoogle Scholar
  28. Ensing, D. J. & J. Pither, 2015. A novel multiple-site extension to pairwise partitioned taxonomic beta diversity. Ecological Complexity 21: 62–89.CrossRefGoogle Scholar
  29. Erős, T. & E. H. Campbell-Grant, 2015. Unifying research on the fragmentation of terrestrial and aquatic habitats: patches, connectivity and the matrix in riverscapes. Freshwater Biology 60: 1487–1501.CrossRefGoogle Scholar
  30. Erős, T., P. Takács, A. Specziár, D. Schmera & P. Sály, 2017. Effects of landscape context on fish metacommunity structuring in stream networks. Freshwater Biology 62: 215–228.CrossRefGoogle Scholar
  31. European Environment Agency, 2010. CORINE Land Cover 2006. Available at http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-3. Accessed Apr 2017.
  32. Free, G., A. G. Solimini, B. Rossaro, L. Marziali, R. Giacchini, B. Paracchini, M. Ghiani, S. Vaccaro, B. M. Gawlik, R. Fresner, G. Santner, M. Schönhuber & A. C. Cardoso, 2009. Modelling lake macroinvertebrate species in the shallow sublittoral: relative roles of habitat, lake morphology, aquatic chemistry and sediment composition. Hydrobiologia 633: 123–136.CrossRefGoogle Scholar
  33. Gajewski, K., G. Bouchard, S. E. Wilson, J. Kurek & L. C. Cwynar, 2005. Distribution of Chironomidae (Insecta: Diptera) head capsules in recent sediments of Canadian Arctic lakes. Hydrobiologia 549: 131–143.CrossRefGoogle Scholar
  34. Gianuca, A. T., S. A. J. Declerck, P. Lemmens & L. D. Meeseter, 2017. Effects of dispersal and environmental heterogeneity on the replacement and nestedness components of & #x03B2;-diversity. Ecology 98: 525–533.CrossRefPubMedGoogle Scholar
  35. Gibbs, J. P., 2000. Wetland loss and biodiversity conservation. Conservation Biology 14: 314–317.CrossRefGoogle Scholar
  36. Gilbert, B. & J. R. Bennett, 2010. Partitioning variation in ecological communities: do the numbers add up? Journal of Applied Ecology 47: 1071–1082.CrossRefGoogle Scholar
  37. Gotelli, N. J. & R. K. Colwell, 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4: 379–391.CrossRefGoogle Scholar
  38. Gotelli, N. J. & G. L. Entsminger, 2011. EcoSim: Null Models Software for Ecology, Version 7. Acquired Intelligence Inc. and Kesey-Bear, Jericho, VT 05465. Available at http://www.garyentsminger.com/ecosim/index.htm. Accessed 15 Aug 2017.
  39. Grönroos, M., J. Heino, T. Siqueira, V. L. Landeiro, J. Kotanen & L. M. Bini, 2013. Metacommunity structuring in stream networks: roles of dispersal mode, distance type, and regional environmental context. Ecology and Evolution 3: 4473–4487.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 1–9.Google Scholar
  41. Heino, J., A. S. Melo, T. Siqueira, J. Soininen, S. Valanko & L. M. Bini, 2015. Metacommunity organization, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology 60: 845–869.CrossRefGoogle Scholar
  42. Heiri, O., A. F. Lotter & G. Lemcke, 2001. Loss of ignition as a method for estimating organic and carbon content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25: 101–110.CrossRefGoogle Scholar
  43. Hering, D., O. Moog, L. Sandin & P. F. M. Verdonschot, 2004. Overview and application of the AQEM assessment system. Hydrobiologia 516: 1–20.CrossRefGoogle Scholar
  44. Iwamura, T., H. Nagai & S. Ishimura, 1970. Improved methods for determining contents of chlorophyll, protein, ribonucleic and desoxyribonucleic acid in planktonic populations. International Review of Hydrobiology 55: 131–147.CrossRefGoogle Scholar
  45. Kärnä, O. M., M. Grönroos, H. Antikainen, J. Hjort, J. Ilmonen, L. Paasivirta & J. Heino, 2015. Inferring the effects of potential dispersal routes on the metacommunity structure of stream insects: as the crow flies, as the fish swims or the fox runs? Journal of Animal Ecology 84: 1342–1353.CrossRefPubMedGoogle Scholar
  46. Legendre, P., 2014. Interpreting the replacement and richness difference components of beta diversity. Global Ecology and Biogeography 23: 1324–1334.CrossRefGoogle Scholar
  47. Legendre, P. & L. Legendre, 2012. Numerical Ecology, 3rd ed. Elsevier, Amsterdam.Google Scholar
  48. Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzales, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.CrossRefGoogle Scholar
  49. Leprieur, F., P. A. Tadesco, B. Hugueny, O. Beauchard, H. H. Dürr, S. Brosse & T. Oberdorff, 2011. Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate change. Ecology Letters 14: 325–334.CrossRefPubMedGoogle Scholar
  50. Lepš, J. & P. Šmilauer, 2003. Multivariate analysis of ecological data using CANOCO. Cambridge University Press, New York.CrossRefGoogle Scholar
  51. Lewis, R. J., R. H. Marrs, R. J. Pakeman, G. Milligan & J. J. Lennon, 2016. Climate drives temporal replacement and nested-resultant richness patterns of Scottish coastal vegetation. Ecography 39: 754–762.CrossRefGoogle Scholar
  52. Logue, J. B., N. Mouquet, H. Peter, H. Hillebrand, P. Declerck, A. Flohre, S. Gantner, N. Gülzow, P. Hörtnagl, S. Meier & B. Pecceu, 2011. Empirical approaches to metacommunities: a review and comparison with theory. Trends in Ecology and Evolution 26: 482–491.CrossRefPubMedGoogle Scholar
  53. Milošević, D., V. Simić, M. Stojković, D. Čerba, D. Mančev, A. Petrović & M. Paunović, 2013. Spatio-temporal pattern of the Chironomidae community: toward the use of non-biting midges in bioassessment programs. Aquatic Ecology 47: 37–55.CrossRefGoogle Scholar
  54. Nascimbene, J., R. Benesperi, G. Brunialti, I. Catalano, M. D. Vedove, M. Grillo, D. Isocrono, E. Matteucci, G. Potenza, M. Puntillo, S. Ravera, G. Rizzi & P. Giordani, 2013. Patterns and drivers of β-diversity and similarity of Lobaria pulmonaria communities in Italian forests. Journal of Ecology 101: 493–505.CrossRefGoogle Scholar
  55. Nicacio, G. & L. Juen, 2015. Chironomids as indicators in freshwater ecosystems: an assessment of the literature. Insect Conservation and Diversity 8: 393–403.CrossRefGoogle Scholar
  56. Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.CrossRefPubMedGoogle Scholar
  57. Pinder, L. C. V., 1995. Biology of the eggs and first-instar larvae. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae: Biology and Ecology of Non-biting Midges. Chapman and Hall, London: 194–224.Google Scholar
  58. Podani, J. & D. Schmera, 2011. A new conceptual and methodological framework for exploring patterns in presence–absence data. Oikos 120: 1625–1638.CrossRefGoogle Scholar
  59. Podani, J. & D. Schmera, 2016. Once again on the components of pairwise beta diversity. Ecological Informatics 32: 63–68.CrossRefGoogle Scholar
  60. Puntí, T., M. Rieradevall & N. Prat, 2009. Environmental factors, spatial variation and specific requirements of Chironomidae in Mediterranean reference streams. Journal of the North American Benthological Society 28: 247–265.CrossRefGoogle Scholar
  61. R Core Team, 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org
  62. Rae, J. G., 2004. The colonization response of lotic chironomid larvae to substrate size and heterogeneity. Hydrobiologia 524: 115–124.CrossRefGoogle Scholar
  63. Rádková, V., V. Syrovátka, J. Bojková, J. Schenková, V. Křoupalová & M. Horsák, 2014. The importance of species replacement and richness differences in small-scale diversity patterns of aquatic macroinvertebrates in spring fens. Limnologica 47: 52–61.CrossRefGoogle Scholar
  64. Real, M., M. Rieradevall & N. Prat, 2000. Chironomus species (Diptera: Chironomidae) in the profundal benthos of Spanish reservoirs and lakes: factors affecting distribution patterns. Freshwater Biology 43: 1–18.CrossRefGoogle Scholar
  65. Ricklefs, R. E., 2004. A comprehensive framework for global patterns in biodiversity. Ecology Letters 7: 1–15.CrossRefGoogle Scholar
  66. Rosenzweig, M. I., 1995. Species diversity in space and time. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  67. Ruhí, A., T. Datry & J. L. Sabo, 2017. Interpreting beta diversity components over time to conserve metacommunities in highly-dynamic systems. Conservation Biology 31: 1459–1468.CrossRefPubMedGoogle Scholar
  68. Sæther, O. A., 1979. Chironomid communities as water quality indicators. Holarctic Ecology 2: 65–74.Google Scholar
  69. Sály, P., P. Takács, I. Kiss, P. Bíró & T. Erős, 2011. The relative influence of spatial context and catchment- and site-scale environmental factors on stream fish assemblages in a human-modified landscape. Ecology of Freshwater Fish 20: 251–262.CrossRefGoogle Scholar
  70. Schmera, D., D. Árva, P. Boda, E. Bódis, Á. Bolgovics, G. Borics, A. Csercsa, Cs Deák, E. Á. Krasznai, B. A. Lukács, P. Mauchart, A. Móra, P. Sály, A. Specziár, K. Süveges, I. Szivák, P. Takács, M. Tóth, G. Várbíró, A. E. Vojtkó & T. Erős, 2018. Does isolation influence the relative role of environmental and dispersal-related processes in stream networks? An empirical test of the network position hypothesis using multiple taxa. Freshwater Biology 63: 74–85.CrossRefGoogle Scholar
  71. Suurkuukka, H., K. K. Meissner & T. Muotka, 2012. Species turnover in lake littorals: spatial and temporal variation of benthic macroinvertebrate diversity and community composition. Diversity and Distributions 18: 931–941.CrossRefGoogle Scholar
  72. Szalai, S., I. Auer, J. Hiebl, J. Milkovich, T. Radim, P. Stepanek, P. Zahradnicek, Z. Bihari, M. Lakatos, T. Szentimrey, D. Limanowka, P. Kilar, S. Cheval, Gy. Deak, D. Mihic, I. Antolovic, V. Mihajlovic, P. Nejedlik, P. Stastny, K. Mikulova, I. Nabyvanets, O. Skyryk, S. Krakovskaya, J.Vogt, T. Antofie & J. Spinoni, 2013. Climate of the Greater Carpathian Region. Final Technical Report. Available at http://www.carpatclim-eu.org. Accessed 28 Aug 2017.
  73. ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, New York.Google Scholar
  74. Tóth, M., A. Móra, B. Kiss, Gy Dévai & A. Specziár, 2012. Are macrophyte-dwelling Chironomidae (Diptera) largely opportunistic in selecting plant species? European Journal of Entomology 109: 247–260.CrossRefGoogle Scholar
  75. Tuomisto, H., 2010a. A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33: 2–22.CrossRefGoogle Scholar
  76. Tuomisto, H., 2010b. A diversity of beta diversities: straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography 33: 23–45.CrossRefGoogle Scholar
  77. Van der Gucht, K., K. Cottenie, K. Muylaert, N. Vloemans, S. Cousin, S. Declerck, E. Jeppesen, J. M. Conde-Porcuna, K. Schwenk, G. Zwart, H. Degans, W. Vyverman & L. D. Meester, 2007. The power of species sorting: local factors drive bacterial community composition over a wide range of spatial scales. Proceedings of the National Academy of Sciences 104: 20404–20409.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • András Specziár
    • 1
    Email author
  • Diána Árva
    • 2
  • Mónika Tóth
    • 1
  • Arnold Móra
    • 3
  • Dénes Schmera
    • 1
  • Gábor Várbíró
    • 4
  • Tibor Erős
    • 1
    • 5
  1. 1.Balaton Limnological Institute, MTA Centre for Ecological ResearchTihanyHungary
  2. 2.Research Institute for Fisheries and AquacultureNational Agricultural Research and Innovation CentreSzarvasHungary
  3. 3.Department of Hydrobiology, Institute of Biology, Faculty of SciencesUniversity of PécsPécsHungary
  4. 4.Department of Tisza River ResearchDanube Research Institute, MTA Centre for Ecological ResearchDebrecenHungary
  5. 5.Danube Research Institute, MTA Centre for Ecological ResearchBudapestHungary

Personalised recommendations