Advertisement

Hydrobiologia

, Volume 829, Issue 1, pp 61–76 | Cite as

Drivers of cyanobacteria dominance, composition and nitrogen fixing behavior in a shallow lake with alternative regimes in time and space, Laguna del Sauce (Maldonado, Uruguay)

  • Lucía González-MadinaEmail author
  • Juan Pablo Pacheco
  • Lilen Yema
  • Paula de Tezanos
  • Paula Levrini
  • Juan Clemente
  • Carolina Crisci
  • Juan José Lagomarsino
  • Gustavo Méndez
  • Claudia Fosalba
  • Guillermo Goyenola
  • Néstor Mazzeo
SHALLOW LAKES RESEARCH

Abstract

Laguna del Sauce, one of the main drinking water sources in Uruguay, is an eutrophic shallow lake with high temporal variation of inorganic turbidity caused by extreme wind events. During low turbidity periods, high phytoplankton biomass can be reached, frequently associated to cyanobacteria blooms, which can cause interferences in the water supply. In this study, we assessed the environmental drivers of cyanobacteria dominance, composition, and nitrogen-fixation behavior. For this, we analyzed the spatial and temporal phytoplankton composition, physical and chemical variables performing weekly samplings during two summers: 2015–2016 and 2016–2017. When inorganic turbidity was high (above 30 NTU), phytoplankton biomass was controlled, below this threshold, temperature, secchi depth and nutrients played key factors controlling cyanobacteria biomass and composition. Blooms of N2-fixing cyanobacteria (Dolichospermum crassum, Aphanizomenon gracile, and Cuspidothrix issatschenkoi) were promoted by low N:P ratios (average 11.5) and wide TN range (286–1300 µg l−1). Non-heterocystous cyanobacteria blooms occurred above TN 1000–1200 µg l−1. The N2-fixing behavior (heterocytes:vegetative cell ratio) depended on TN, it was highest at low TN (< 700 µg l−1) but null above ca. 1000 µg l−1. While low inorganic turbidity allowed cyanobacteria blooms in Laguna del Sauce, its composition and N2-fixation behavior depended on the TN and TP levels.

Keywords

Harmful cyanobacteria Environmental controls Drinking water supply Nutrients N2-fixing behavior 

References

  1. Agawin, N. S. R., S. Rabouille, M. J. W. Veldhuis, S. Lidewij, S. Hol, H. M. J. van Overzee & J. Huisman, 2007. Competition and facilitation between unicellular nitrogen-fixing cyanobacteria and non-nitrogen-fixing phytoplankton species. Limnology and Oceanography 52: 2233–2248.CrossRefGoogle Scholar
  2. Azevedo, M. T. & C. L. Sant’Anna, 2003. Sphaerocavum, a new genus of planktic Cyanobacteria from continental water bodies in Brazil. Algological Studies 109: 79–92.CrossRefGoogle Scholar
  3. Carmichael, W. W. & G. J. Boyer, 2016. Health impacts from cyanobacteria algae blooms: implications for the North American Great Lakes. Harmful Algae 54: 194–2012.CrossRefGoogle Scholar
  4. Chorus, I. & J. Bartram, 1999. Toxic Cyanobacteria in water: a guide to their public health consequences, monitoring, and management, World Health Organization. E&FN Spon, London.CrossRefGoogle Scholar
  5. Crisci, C., R. Terra, J. P. Pacheco, B. Ghattas, M. Bidegain, G. Goyenola, J. J. Lagomarsino, G. Méndez & N. Mazzeo, 2017a. Multi-model approach to predict phytoplankton biomass and composition dynamics in a eutrophic shallow lake governed by extreme meteorological events. Ecological Modelling 360: 80–93.CrossRefGoogle Scholar
  6. Crisci, C., G. Goyenola, R. Terra, J. J. Lagomarsino, J. P. Pacheco, I. Díaz, L. González-Madina, P. Levrini, G. Méndez, M. Bidegain, B. Ghattas & N. Mazzeo, 2017b. Dinámica ecosistémica y calidad de agua: estrategias de monitoreo para la gestión de servicios asociados a Laguna del Sauce (Maldonado, Uruguay). INNOTEC 13: 46–57.Google Scholar
  7. De Tezanos Pinto, P. & E. Litchman, 2010. Interactive effects of N:p ratios and light on nitrogen-fixer abundance. Oikos 119: 567–575.CrossRefGoogle Scholar
  8. Dolman, A. M., J. Rücker, F. R. Pick, J. Fastner, T. Rohrlack, U. Mischke & C. Widner, 2012. Cyanobacteria and Cyanotoxins: the Influence of Nitrogen versus Phosphorus. PLoS ONE 7: e38757.CrossRefGoogle Scholar
  9. Ferber, L. R., S. N. Levine, A. Lini & G. P. Livingston, 2004. Do cyanobacteria dominate in eutrophic lakes because they fix atmospheric nitrogen? Freshwater Biology 49: 690–708.CrossRefGoogle Scholar
  10. González-Madina, L., J. P. Pacheco, N. Mazzeo, P. Levrini, J. M. Clemente, J. J. Lagomarsino & C. Fosalba, 2017. Factores ambientales controladores del fitoplancton con énfasis en las cianobacterias potencialmente tóxicas en un lago somero utilizado como fuente de agua para potabilización: laguna del Sauce, Maldonado, Uruguay. INNOTEC 13: 26–35.Google Scholar
  11. Guillard, R. L., 1978. Counting slides. In Sournia, A. (ed), Phytoplankton manual. UNESCO, Paris: 182–189.Google Scholar
  12. Hillebrand, H., C. D. Durselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.CrossRefGoogle Scholar
  13. Inda, H. & M. Steffen, 2010. Bases técnicas para el manejo integrado de Laguna del Sauce y cuenca asociada. Universidad de la República y South American Institute for resilience and Sustainability Studies, Uruguay. ISBN 978-9974-0-0694-2.Google Scholar
  14. INE 2011. Censo poblacional del Instituto Nacional de Estadística. http://www.ine.gub.uy/web/guest/censos-2011
  15. Jacobsen, B. A. & P. Simonsen, 1993. Disturbance events affecting phytoplankton biomass, composition and species diversity in a shallow, eutrophic, temperate lake. Hydrobiologia 249: 9–14.CrossRefGoogle Scholar
  16. Komárek, J., 2013. Cyanoprokaryota 3. Teil/3rd Part: Heterocytous genera. In Büdel, B., G. Gärtner, L. Krienitz & M. Schagerl (eds), Süwasserflora von Mitteleuropa/Freshwater flora of Central Europe 19/3. Springer Spektrum, Berlin: 1130.Google Scholar
  17. Komárek, J., J. Komárková-Legnerová & C. L. Sant’Anna, 2002. Two common Microcystis species (Chroococcales, Cyanobacteria) from tropical America, including M panniformis sp nov. Cryptogamie Algologie 23(2): 159–177.Google Scholar
  18. Kruk, C., V. L. M. Huszar, E. Peeters, S. Bonilla, L. Costa, M. Lurling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.CrossRefGoogle Scholar
  19. Kumar, K., R. A. Mella-Herrera & J. W. Golden, 2010. Cyanobacterial Heterocysts. Cold Spring Harbor Perspectivein Biology 2: a00315.Google Scholar
  20. Kützing, F.T., 1846. Tabulae phycologicae; oder, Abbildungen der Tange. Vol. I, fasc. 1 pp. 1-8, pls 1-10. Nordhausen: Gedruckt auf kosten des Verfassers In: commission bei W. Köhne.Google Scholar
  21. Lemmermann, E., 1907. Algen I (Schizophyceen, Flagellaten, Peridineen). In Band, D. (ed), Kryptogamenflora der Mark Brandenburg und angrenzender Gebiete herausgegeben von dem Botanishcen Verein der Provinz Brandenburg. Verlag von Grebrüder Borntraeger, Leipzig: 1–304.Google Scholar
  22. Lewis Jr., W. M., 1976. Surface/Volume ratio: implications for phytoplankton morphology. Science 28: 885–887.CrossRefGoogle Scholar
  23. Lund, J., C. Kipling & E. Le Cren, 1958. The inverted microscope method of estimating algal numbers and statistical basis of estimating by counting. Hydrobiologia 11: 143–170.CrossRefGoogle Scholar
  24. Margalef, R., 1978. Life forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1: 493–509.Google Scholar
  25. Mazzeo, N., F. García-Rodríguez, A. Rodríguez, G. Méndez, C. Iglesias, H. Inda, G. Goyenola, S. García, C. Fosalba, S. Marroni, C. Crisci, L. Del Puerto, J. M. Clemente, J. P. Pacheco, C. Carballo, A. Kroeger, M. Vianna, M. Meerhoff, M. Steffen, J. J. Lagomarsino, M. Masdeu, N. Vidal, F. Texeira de Mello, I. González & D. Larrea, 2010. Estado trófico de Laguna del Sauce y respuestas asociadas. In Inda, H. & M. Steffen (eds), Bases técnicas para el manejo integrado de Laguna del Sauce y cuenca asociada. Montevideo, Uruguay: 31–49. ISBN 978-9974-0-0694-2.Google Scholar
  26. Moisander, P. H., L. A. Cheshire, J. Braddy, E. S. Calandrino, M. Hoffman, M. F. Piehler & H. W. Paerl, 2012. Facultative diazotrophy increases Cylindrospermopsis raciborskii competitiveness under fluctuating nitrogen availability. FEMS Microbial Ecology 79(3): 800–811.CrossRefGoogle Scholar
  27. Mugidde, R., R. E. Hecky, L. L. Hendzel & W. D. Taylor, 2003. Pelagic nitrogen fixation in lake Victoria (East Africa). Journal of Great Lakes Research 29: 76–88.CrossRefGoogle Scholar
  28. Muller, R. & O. Wiedemann, 1955. Die Bestimmung des Nitrations in Wasser. Von Wasser 22: 247–271.Google Scholar
  29. Murphy, J. & J. P. Rilley, 1962. A modified single-solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.CrossRefGoogle Scholar
  30. Nusch, E. A., 1980. Comparison of different methods for chlorophyll and pheopigment determination. Archives of Hydrobiology 14: 14–36.Google Scholar
  31. OECD, 1982. Eutrophication of Waters, Monitoring, Assessment and Control. Organisation for Economic Cooperation and Development in Paris, Paris.Google Scholar
  32. Pacheco, J. P., C. Iglesias, M. Meerhoff, C. Fosalba, G. Goyenola, F. Teixeira-de Mello, S. García, M. Gelós & F. García-Rodríguez, 2010. Phytoplankton community structure in five subtropical shallow lakes with different trophic status (Uruguay): a morphology-based approach. Hydrobiologia 646(1): 187–197.CrossRefGoogle Scholar
  33. Padisák, J., 1992. Seasonal succession of phytoplankton in a large shallow lake (Balaton, Hungary)—a dynamic approach to ecological memory, its possible rol and mechanisms. Journal of ecology 80: 217–230.CrossRefGoogle Scholar
  34. Padisák, J. & V. Istvánovics, 1997. Differential response of blue-green algal groups to phosphorus load reduction in a large shallow lake: Balaton, Hungary. Verhandlungen des Internationalen Verein Limnologie 26: 574–580.Google Scholar
  35. Paerl, H. W., W. S. Gardner, K. E. Havens, A. R. Joyner, M. J. McCarthy, S. E. Newell & J. T. Scott, 2016. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae 54: 213–222.CrossRefGoogle Scholar
  36. R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
  37. Rajaniemi, P., J. Komárek, L. Hoffmann, P. Horuzek, K. Kastocská & K. Sivonen, 2005. Taxonomic consequences from the combined molecular phenotype evaluation of selected Anabaena and Aphanizomenon strains. Algological Studies 111: 371–391.CrossRefGoogle Scholar
  38. Reynolds, C. S., 2006. Ecology of phytoplankton. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  39. Reynolds, C. S., V. Huszar, C. Kruk, F. L. Naselli & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.CrossRefGoogle Scholar
  40. Rodríguez, A., G. Méndez, S. Kausas, J. M. Clemente, A. Kroger & N. Mazzeo, 2010. Importancia de la carga externa e interna de nutrientes en el estado trófico de la Laguna del Sauce. In Inda, H. & M. Steffen (eds), Bases técnicas para el manejo integrado de Laguna del Sauce y cuenca asociada. Montevideo, Uruguay: 53–61.Google Scholar
  41. Schwaderer, A., K. Yoshiyama, P. de Tezanos Pinto, N. G. Swenson, C. A. Klausmeier & E. Litchman, 2011. Eco-evolutionary differences in light utilization traits and distributions of freshwater phytoplankton. Limnology and Oceanography 56: 589–598.CrossRefGoogle Scholar
  42. Seenayya, G., Subba Raja, N. (1972). On the ecology and systematic of the alga known as Anabaenopsis raciborskii (Wolosz.) Elenk. And a critical evaluation of the forms described under the genus Anabaenopsis. In: Desikachary, T.V. (ed) Papers submitted to the First International Symposium on Taxonomy and Biology of blue-green algae. pp. 52–57.Google Scholar
  43. Uhelinger, V., 1964. Étude statistique des méthodes de dénobrement planctonique. Archive de Science 17: 121–223.Google Scholar
  44. Utermöhl, H., 1985. Zur Vervolkommung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereiningung fuer Theoretische and Angewandte Limnologie 9: 1–38.Google Scholar
  45. Valderrama, J. C., 1981. The simultaneous analysis of total N and total P in natural waters. Marine Chemistry 10: 1009–1022.CrossRefGoogle Scholar
  46. Vitousek, P. M., et al., 2002. Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57: 1–45.CrossRefGoogle Scholar
  47. Weithoff, G., 2003. The concepts of plant functional types and functional diversity in lake phytoplankton: a new understanding of phytoplankton ecology? Freshwater Biology 48: 1669–1675.CrossRefGoogle Scholar
  48. Wolk, P. C., A. Ernst & J. Elahi, 1994. Heterocyst metabolism and development. In Bryant, D. A. (ed), The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht: 769–823.CrossRefGoogle Scholar
  49. Yema, L., E. Litchman & P. de Tezanos Pinto, 2016. The role of heterocytes in the physiology and ecology of bloom forming harmful cyanobacteria. Harmful Algae 60: 131–138.CrossRefGoogle Scholar
  50. Zhang, C. C., S. Laurent, S. Sakr, L. Peng & S. Bédu, 2006. Heterocyst differentiation and pattern formation in cyanobacteria: A chorus of signals. Molecular Microbiology 59: 367–375.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Lucía González-Madina
    • 1
    Email author
  • Juan Pablo Pacheco
    • 1
  • Lilen Yema
    • 2
  • Paula de Tezanos
    • 2
    • 6
  • Paula Levrini
    • 1
  • Juan Clemente
    • 1
  • Carolina Crisci
    • 3
  • Juan José Lagomarsino
    • 4
  • Gustavo Méndez
    • 4
  • Claudia Fosalba
    • 1
  • Guillermo Goyenola
    • 1
  • Néstor Mazzeo
    • 1
    • 5
  1. 1.Ecología y Rehabilitación de Sistemas Acuáticos, Departamento de Ecología y Gestión Ambiental, Centro Universitario de la Región Este-Facultad de CienciasUniversidad de la RepúblicaMaldonadoUruguay
  2. 2.Laboratorio de Limnología, Dpto. de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires (UBA), IEGEBA (CONICET-UBA)Buenos AiresArgentina
  3. 3.Polo de Desarrollo Universitario en Modelización y Análisis de Recursos Naturales, Centro Universitario de la Región EsteUniversidad de la RepúblicaRochaUruguay
  4. 4.Obras Sanitarias del Estado, Unidad de Gestión DesconcentradaMaldonadoUruguay
  5. 5.SARAS-Institute, South American Institute for Resilience and Sustainability Studies, Bella VistaMaldonadoUruguay
  6. 6.Instituto de Botánica Darwinion, IBODA, ANCEFN, CONICETBuenos AiresArgentina

Personalised recommendations