Advertisement

Hydrobiologia

, Volume 824, Issue 1, pp 33–50 | Cite as

Climatic effects on vertical mixing and deep-water oxygen content in the subalpine lakes in Italy

  • Michela RogoraEmail author
  • Fabio Buzzi
  • Claudia Dresti
  • Barbara Leoni
  • Fabio Lepori
  • Rosario Mosello
  • Martina Patelli
  • Nico Salmaso
LARGE AND DEEP PERIALPINE LAKES

Abstract

Deep lakes south of the Alps (DSL: Maggiore, Lugano, Como, Iseo and Garda) are characterised by varying trophic states and dissolved oxygen (DO) concentrations. Some of these lakes experience anoxic conditions in deep waters. We hypothesised that the increase in temperature and water-column stability observed in these lakes during recent decades influenced the deep-water DO concentration. In particular, we tested whether the thermal regime of the lakes and the depth of mixing affect oxygen replenishment during winter–spring turnover. To this aim, we analysed long-term trends and seasonal variability of oxygen levels in the DSL during 1992–2016. We included in our analysis the effects of environmental variables, such as winter air temperature and atmospheric modes of variability. Our results showed a recent decrease in the deep-water oxygen content in lakes Maggiore, Como and Garda and an increase of the extent of anoxic conditions in lakes Lugano and Iseo. Our results suggest that, beside cultural eutrophication, rising environmental pressures, such as global warming, can influence the future trends of the oxygen levels and ecological states of deep lakes.

Keywords

Climate change Thermal regime Stratification Dissolved oxygen Eutrophication 

Notes

Acknowledgements

Investigations were carried out in the framework of the LTER (Long Term Ecological Research) Italian network, site ‘‘Southern Alpine lakes’’, IT08 (http://www.lteritalia.it/). We wish to thank all the technical staff, which has been involved in the long-term monitoring of the DSL. Research on lakes Lugano and Maggiore has been funded by the International Commission for the Protection of Swiss-Italian Waters (CIPAIS). In Lake Garda, scientific monitoring has been carried out with the support of ARPA Veneto. In Lake Iseo, scientific monitoring has been carried out with the support of Polizia Provinciale Brescia and research has been founded by FA of University Milan-Bicocca.

Supplementary material

10750_2018_3623_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 19 kb)

References

  1. Adrian, R., C. M. O´Reilly, H. Zagarese, S. B. Baines, D. O. Hessen, W. Keller, D. M. Livingstone, R. Sommaruga, D. Straile, E. Van Donk, G. Weyhenmeyer & M. Winder, 2009. Lakes as sentinels of climate change. Limnology and Oceanography 54: 2283–2297.CrossRefGoogle Scholar
  2. Aeschbach-Hertig, W., C. P. Holzner, M. Hofer, M. Simona, A. Barbieri & R. Kipfer, 2007. A time series of environmental tracer data from deep, meromictic Lake Lugano, Switzerland. Limnology and Oceanography 52: 257–273.CrossRefGoogle Scholar
  3. Ambrosetti, W. & L. Barbanti, 1999. Deep water warming in lakes: an indicator of climatic change. Journal of Limnology 58: 1–9.CrossRefGoogle Scholar
  4. Ambrosetti, W., L. Barbanti, R. Mosello & A. Pugnetti, 1992. Limnological studies on the deep southern alpine lakes Maggiore, Lugano, Como, Iseo and Garda. Memorie Istituto italiano di Idrobiologia 50: 117–146.Google Scholar
  5. Ambrosetti, W., L. Barbanti & E. A. Carrara, 2010. Mechanisms of hypolimnion erosion in a deep lake (Lago Maggiore, N. Italy). Journal of Limnology 69: 3–14.CrossRefGoogle Scholar
  6. Barbieri, A. & R. Mosello, 1992. Chemistry and trophic evolution of Lake Lugano in relation to nutrient budget. Aquatic Sciences 54: 219–237.CrossRefGoogle Scholar
  7. Barbieri, A. & M. Simona, 2001. Trophic evolution of Lake Lugano related to external load reduction: changes in the phosphorous and nitrogen as well as oxygen balance and biological parameters. Lakes and Reservoirs: Research and Management 6: 37–47.CrossRefGoogle Scholar
  8. Barnston, A. G. & R. E. Livezey, 1987. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Monthly Weather Review 115: 1083–1126.CrossRefGoogle Scholar
  9. Boehrer, B., C. von Rohden & M. Schultze, 2017. Physical features of Meromictic lakes: stratification and circulation. In Gulati, R. D., E. S. Zadereev & A. G. Degermendzhi (eds), Ecology of Meromictic Lakes. Springer, Cham.Google Scholar
  10. Calderoni, A., R. Mosello & R. de Bernardi, 1997. Problematic interpretations of some processes during oligotrophication of Lago Maggiore in the decade 1988–1997. Documenta Ist. ital. Idrobiol. 61: 33–53.Google Scholar
  11. CNR-ISE, 2016. Ricerche sull’evoluzione del Lago Maggiore. Aspetti limnologici. Programma triennale 2013–2015. Campagna 2015 e Rapporto triennale 2013–2015. Commissione Internazionale per la protezione delle acque italo-svizzere: 146 (in italian).Google Scholar
  12. Cornett, R. J. & F. H. Rigler, 1979. Hypolimnetic oxygen deficits: their prediction and interpretation. Science 205: 580–581.CrossRefGoogle Scholar
  13. European Commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities 43: 1.Google Scholar
  14. Fenocchi, A., M. Rogora, S. Sibilla & C. Dresti, 2017. Relevance of inflows on the thermodynamic structure and on the modeling of a deep subalpine lake (Lake Maggiore, Northern Italy/Southern Switzerland). Limnologica – Ecology and Management of Inland Waters 63: 42–45.CrossRefGoogle Scholar
  15. Fenocchi, A., M. Rogora, S. Sibilla, M. Ciampittiello & C. Dresti, 2018. Forecasting the evolution in the mixing regime of a deep subalpine lake under climate change scenarios through numerical modelling (Lake Maggiore, Northern Italy/Southern Switzerland). Climate Dynamics.  https://doi.org/10.1007/s00382-018-4094-6.CrossRefGoogle Scholar
  16. Ficker, H., M. Luger & H. Gassner, 2016. From dimictic to monomictic: empirical evidence of thermal regime transitions in three deep alpine lakes in Austria induced by climate change. Freshwater Biology 62: 1335–1345.CrossRefGoogle Scholar
  17. Fink, G., M. Wessels & A. Wüest, 2016. Flood frequency matters: why climate change degrades deep-water quality of peri-alpine lakes. Journal of Hydrology 540: 457–468.CrossRefGoogle Scholar
  18. Foley, B., I. D. Jones, S. C. Maberly & B. Rippey, 2012. Long-term changes in oxygen depletion in a small temperate lake: effects of climate change and eutrophication. Freshwater Biology 57: 278–289.CrossRefGoogle Scholar
  19. Gallina, N., N. Salmaso, G. Morabito & M. Beniston, 2013. Phytoplankton configuration in six deep lakes in the peri-Alpine region: are the key drivers related to eutrophication and climate? Aquatic Ecology 47: 177–193.CrossRefGoogle Scholar
  20. Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9.Google Scholar
  21. Holzner, C. P., W. Aeschbach-Hertig, M. Simona, M. Veronesi, D. M. Imboden & R. Kipfer, 2009. Exceptional mixing events in meromictic Lake Lugano (Switzerland/Italy), studied using environmental tracers. Limnology and Oceanography 54: 1113–1124.CrossRefGoogle Scholar
  22. Hurrell, J. W., 1995. Decadal trends in the north Atlantic oscillation: regional temperatures and precipitation. Science 269: 676–679.CrossRefGoogle Scholar
  23. Idso, S. B., 1973. On the concept of lake stability. Limnology and Oceanography 18: 681–683.CrossRefGoogle Scholar
  24. IST-SUPSI, 2016. Ricerche sull’evoluzione del Lago di Lugano. Aspetti limnologici. Programma quinquennale 2013–2015. Campagna 2015 e sintesi pluriennale. Commissione Internazionale per la Protezione delle Acque Italo-Svizzere: 93. (in italian)Google Scholar
  25. Ito, Y. & M. Kazuro, 2015. Impacts of regional warming on long-term hypolimnetic anoxia and dissolved oxygen concentration in a deep lake. Hydrological Processes 29: 2232–2242.CrossRefGoogle Scholar
  26. Jankowski, T., D. M. Livingstone, H. Buhrer, R. Forster & P. Niederhauser, 2006. Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: implications for a warmer world. Limnology and Oceanography 51: 815–819.CrossRefGoogle Scholar
  27. Jeppesen, E., B. Kronvang, M. Meerhoff, M. Søndergaard, K. M. Hansen, H. E. Andersen & J. E. Olesen, 2009. Climate change effects on run-off, catchment phosphorus loading and lake ecological state, and potential adaptations. Journal of Environmental Quality 38: 1930–1941.CrossRefGoogle Scholar
  28. Komatsu, T., T. Fukushima & H. Harasawa, 2007. A modeling approach to forecast the effect of long-term climate change on lake water quality. Ecological Modelling 209: 351–366.CrossRefGoogle Scholar
  29. Leoni, B., L. Garibaldi & R. D. Gulati, 2014a. How does interannual trophic variability caused by vertical water mixing affect reproduction and population density of Daphnia longispina group in Lake Iseo, a deep stratifying lake in Italy? Inland Waters 4: 193–203.CrossRefGoogle Scholar
  30. Leoni, B., C. Marti, J. Imberger & L. Garibaldi, 2014b. Summer spatial variations in phytoplankton composition and biomass in surface waters of a warm-temperate, deep and oligo-holomictic lake: Lake Iseo, Italy. Inland Waters 4: 303–310.CrossRefGoogle Scholar
  31. Lepori, F. & J. J. Roberts, 2015. Past and future warming of a deep European lake (Lake Lugano): what are the climatic drivers? Journal of Great Lakes Research 41: 973–981.CrossRefGoogle Scholar
  32. Lepori, F. & J. J. Roberts, 2017. Effects of internal phosphorus loadings and food-web structure on the recovery of a deep lake from eutrophication. Journal of Great Lakes Research 43: 255–264.CrossRefGoogle Scholar
  33. Livingstone, D. M., 1997. An example of the simultaneous occurrence of climate-driven “sawtooth” deep-water warming/cooling episodes in several Swiss lakes. Verhandlungen International Verein Limnology 26: 822–828.Google Scholar
  34. Livingstone, D. M., 2003. Impact of secular climate change on the thermal structure of a large temperate central European lake. Climatic Change 57: 205–225.CrossRefGoogle Scholar
  35. Marchetti, R., R. Barone, S. Calvo, A. Lugliè, L. Naselli-Flores & N. Sechi, 1992. Studies on Italian reservoirs. Memorie Istituto italiano di Idrobiologia 50: 337–363.Google Scholar
  36. Matthews, D. A. & S. W. Effler, 2006. Long-term changes in the areal hypolimnetic oxygen deficit (AHOD) of Onondaga lake: evidence of sediment feedback. Limnology and Oceanography 51: 702–714.CrossRefGoogle Scholar
  37. Missaghi, S., M. Hondzo & W. Herb, 2017. Prediction of lake water temperature, dissolved oxygen, and fish habitat under changing climate. Climatic Change 141: 747–757.CrossRefGoogle Scholar
  38. Mosello, R., M. Bianchi, H. Geiss, A. Marchetto, G. Serrini, G. Serrini Lanza, G.A. Tartari & H. Muntau, 1997a. AQUACON-MedBas Subproject No. 5. Freshwater analysis. Intercomparison 1/96. Joint Res. Centre European Commission, Rep. EUR 17347 EN: 1–52.Google Scholar
  39. Mosello, R., A. Calderoni & R. de Bernardi, 1997b. Le indagini sulla evoluzione dei laghi profondi sudalpini svolte dal C.N.R. Istituto italiano di Idrobiologia. Documenta Istituto italiano di Idrobiologia 61: 19–32.Google Scholar
  40. Nava, V., M. Patelli, V. Soler & B. Leoni, 2017. Interspecific relationship and ecological requirements of two potentially harmful cyanobacteria in deep south alpine lake (L. Iseo, I). Water 9: 993.  https://doi.org/10.3390/w9120993.CrossRefGoogle Scholar
  41. North, R. P., R. L. North, D. M. Livingstone, O. Köster & R. Kipfer, 2014. Long-term changes in hypoxia and soluble reactive phosphorus in the hypolimnion of a large temperate lake: consequences of a climate regime shift. Global Change Biology 20: 811–823.CrossRefGoogle Scholar
  42. O’Reilly, C. M., S. Sharma, D. K. Gray, et al., 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research Letters 42: 10773–10781.CrossRefGoogle Scholar
  43. Pareeth, S., M. Bresciani, F. Buzzi, B. Leoni, F. Lepori, A. Ludovisi, G. Morabito, R. Adrian, M. Neteler & N. Salmaso, 2016. Warming trends of perialpine lakes from homogenised time series of historical satellite and in situ data. Science of the Total Environment 578: 417–426.CrossRefGoogle Scholar
  44. Perga, M.-E., V. Frossard, J.-P. Jenny, B. Alric, F. Arnaud, V. Berthon, J. Black, I. Domaizon, C. Giguet-covex, A. Kirkham, M. Magny, M. Manca, A. Marchetto, L. Millet, C. Paillès, C. Pignol, J. Poulenard, J.-L. Reyss, F. Rimet, O. Savichtcheva, P. Sabatier, F. Sylvestre & V. Verneaux, 2015. High-resolution paleolimnology opens new management perspectives for lakes adaption to climate change. Frontiers in Ecology and Evolution 3: 72.CrossRefGoogle Scholar
  45. Pilotti, M., G. Valerio & B. Leoni, 2013. Data set for hydrodynamic lake model calibration: a deep pre-alpine case. Water Resources Research 49: 1–5.CrossRefGoogle Scholar
  46. Posch, T., O. Köster, M. Salcher & J. Pernthaler, 2012. Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nature Climate Change 2: 809–813.CrossRefGoogle Scholar
  47. Premazzi, G., A. Dalmiglio, A. C. Cardoso & G. Chiaudani, 2003. Lake management in Italy: the implications of the water framework directive. Lakes and Reservoirs: Research and Management 8: 41–59.CrossRefGoogle Scholar
  48. Riffler, M., G.-D. Lieberherr & S. Wunderle, 2015. Lake surface water temperatures of European Alpine lakes (1989–2013) based on the advanced very high resolution radiometer (AVHRR) 1 km data set. Earth System Science Data 7: 1–17.CrossRefGoogle Scholar
  49. Rogora, M., R. Mosello, L. Kamburska, N. Salmaso, L. Cerasino, B. Leoni, L. Garibaldi, V. Soler, F. Lepori, L. Colombo & F. Buzzi, 2015. Recent trends in chloride and sodium concentrations in the deep subalpine lakes (Northern Italy). Environ Science and Pollution Research 22: 19013–19026.CrossRefGoogle Scholar
  50. Salmaso, N., 2010. Long-term phytoplankton community changes in a deep subalpine lake: responses to nutrient availability and climatic fluctuations. Freshwater Biology 55: 825–846.CrossRefGoogle Scholar
  51. Salmaso, N., 2012. Influence of atmospheric modes of variability on the limnological characteristics of a deep lake south of the Alps. Climate Research 51: 125–133.CrossRefGoogle Scholar
  52. Salmaso, N. & R. Mosello, 2010. Limnological research in the deep southern subalpine lakes: synthesis, directions and perspectives. Advances in Oceanography and Limnology 1: 29–66.CrossRefGoogle Scholar
  53. Salmaso, N. & L. Cerasino, 2012. Long-term trends and fine year-to-year tuning of phytoplankton in large lakes are ruled by eutrophication and atmospheric modes of variability. Hydrobiologia 698: 17–28.CrossRefGoogle Scholar
  54. Salmaso, N., F. Buzzi, L. Cerasino, L. Garibaldi, B. Leoni, G. Morabito, M. Rogora & M. Simona, 2014. Influence of atmospheric modes of variability on the limnological characteristics of large lakes south of the Alps: a new emerging paradigm. Hydrobiologia 731: 31–48.CrossRefGoogle Scholar
  55. Salmaso, N., A. Boscaini, C. Capelli & L. Cerasino, 2017. Ongoing ecological shifts in a large lake are driven by climate change and eutrophication: evidences from a three decades study in Lake Garda. Hydrobiologia.  https://doi.org/10.1007/s10750-017-3402-1.CrossRefGoogle Scholar
  56. Schwefel, R., A. Gaudard, A. Wüest & D. Bouffard, 2016. Effects of climate change on deepwater oxygen and winter mixing in a deep lake (Lake Geneva): Comparing observational findings and modelling. Water Resources Research 52: 8811–8826.CrossRefGoogle Scholar
  57. Sharma, S., et al., 2015. A global database of lake surface temperatures collected by in situ and satellite methods from 1985 to 2009. Scientific Data 2: 150008.CrossRefGoogle Scholar
  58. Shimoda, Y., et al., 2011. Our current understanding of lake ecosystem response to climate change: what have we really learned from the north temperate deep lakes? Journal of Great Lakes Research 37: 173–193.CrossRefGoogle Scholar
  59. Simona, M., 2003. Winter and spring mixing depths affect the trophic status and composition of phytoplankton in the northern meromictic basin of Lake Lugano. Jounal of Limnology 62: 190–206.CrossRefGoogle Scholar
  60. Stefan, H. G., M. Hondzo, X. Fang, J. G. Eaton & J. H. McCormick, 1996. Simulated long-term temperature and dissolved oxygen characteristics of lakes in the north-central United States and associated fish habitat limits. Limnology and Oceanography 41: 1124–1135.CrossRefGoogle Scholar
  61. Straile, D., K. Johnk & H. Rossknecht, 2003. Complex effects of winter warming on the physicochemical characteristics of a deep lake. Limnology and Oceanography 48: 1432–1438.CrossRefGoogle Scholar
  62. Toreti, A., F. Desiato, G. Fioravanti & W. Perconti, 2010. Seasonal temperatures over Italy and their relationship with low frequency atmospheric circulation patterns. Climatic Change 99: 211–227.CrossRefGoogle Scholar
  63. Valderrama, J. C., 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Marine Chemistry 10: 109–122.CrossRefGoogle Scholar
  64. Valerio, G., M. Pilotti, S. Barontini & B. Leoni, 2015. Sensitivity of the multiannual thermal dynamics of a deep pre-alpine lake to climatic change. Hydrological Processes 29: 767–779.CrossRefGoogle Scholar
  65. Walker, W., 1979. Use of hypolimnetic oxygen depletion rate as a trophic state index for lakes. Water Resources Research 15: 1463–1470.CrossRefGoogle Scholar
  66. Wetzel, R.G. & G. E. Likens, 2000. Dissolved Oxygen. In Limnological Analyses. Springer, New York: 73–84.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CNR Institute of Ecosystem StudyVerbania PallanzaItaly
  2. 2.UO CRLMBASARPA LombardiaOggiono, LeccoItaly
  3. 3.Department of Earth and Environmental SciencesUniversity of Milano-BicoccaMilanItaly
  4. 4.University of Applied Sciences and Arts of Southern Switzerland (SUPSI)CanobbioSwitzerland
  5. 5.Research and Innovation CentreFondazione Edmund Mach (FEM)San Michele all’AdigeItaly

Personalised recommendations