Advertisement

Hydrobiologia

, Volume 816, Issue 1, pp 243–254 | Cite as

Fish shift the feeding behaviour and trophic niche diversification of their prey in subarctic Lake Mývatn, Iceland

  • Mireia BartronsEmail author
  • Ignasi Arranz
  • Miguel Cañedo-Argüelles
  • Serena Sgarzi
  • Torben L. Lauridsen
  • Frank Landkildehus
  • Xavier D. Quintana
  • Sandra Brucet
  • Erik Jeppesen
Primary Research Paper

Abstract

Fish can alter food web structure through trophic cascades. While most studies conducted in oligotrophic subarctic lakes show strong top–down control on consumers in the presence of fish, several studies undertaken in eutrophic subarctic Lake Mývatn, Iceland, suggest that it is consumer–resource interactions that drive the whole-lake community. Here, we used stable isotopes of carbon and nitrogen from the main food web compartments derived from a 3-month in situ-controlled mesocosm experiment involving two treatments (with and without fish) with three replicates each to determine the effects of fish on the trophic structure of the Lake Mývatn food web. We found that the whole food web trophic structure shifted towards the upper part of the water column (more planktonic habitat) in fishless enclosures. Additionally, the trophic niche of organisms occupying the base of the food web became more diversified when fish were absent, and the trophic redundancy of all taxa decreased (more dissimilar trophic niches). Stronger top–down effects may also result from global warming, producing increased abundance of planktivorous fish in subarctic lakes. Our results indicate that this could lead to a shift in trophic niche and reduced trophic diversity of most food web organisms.

Keywords

Subarctic lakes Trophic cascades Predation Food webs Stable isotopes Climate change 

Notes

Acknowledgements

We are grateful to Árni Einarsson from Mývatn Research Station (Iceland) for his advice, assistance and loan of facilities, to Elisabeth Badosa, Sergi Carrasco, Mariona Munné, Gisela Solà and Beatriz Tintoré for field and laboratory assistance, to Nicolas Vidal for help with the laboratory analyses of the stable isotopes and to the anonymous reviewers that helped to improve the manuscript. This project was supported by the Carlsberg Foundation (Project 2013_01_0535) and the MARS project (Managing Aquatic ecosystems and water Resources under multiple Stress) funded under the 7th EU Framework Programme, Theme 6 (Environment including Climate Change), Contract No.: 603378. EJ and TLL were further supported by AU Centre for Water Technology (WATEC). SB was supported by the Marie Curie Intra European Fellowship No. 330249 (CLIMBING) and by the project DFG, Me 1686/7-1. Xavier D. Quintana was supported by a Grant of the Spanish Ministerio de Economía y Competividad (CGL2016-76024-R).

Supplementary material

10750_2018_3588_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1532 kb)

References

  1. Abrams, P. A., 2007. Defining and measuring the impact of dynamic traits on interspecific interactions. Ecology 88: 2555–2562.CrossRefPubMedGoogle Scholar
  2. Adalsteinsson, H., 1979. Size and food of arctic char Salvelinus alpinus and stickleback Gasterosteus aculeatus in Lake Mývatn. Oikos 32: 228–231.CrossRefGoogle Scholar
  3. Bartrons, M., A. Einarsson, R. L. G. G. Nobre, Á. Einarsson, R. L. G. G. Nobre, C. M. Herren, K. C. Webert, S. Brucet, S. R. Ólafsdóttir & A. R. Ives, 2015. Spatial patterns reveal strong abiotic and biotic drivers of zooplankton community composition in Lake Myvatn, Iceland. Ecosphere 6: 1–20.CrossRefGoogle Scholar
  4. Boecklen, W. J., C. T. Yarnes, B. A. Cook & A. C. James, 2011. On the use of stable isotopes in trophic ecology. Annual Review of Ecology, Evolution, and Systematics Annual Reviews 42: 411–440.CrossRefGoogle Scholar
  5. Brodersen, J., H. J. Malmquist, F. Landkildehus, T. L. Lauridsen, S. L. Amsinck, R. Bjerring, M. Søndergaard, L. S. Johansson, K. S. Christoffersen & E. Jeppesen, 2012. Short-and long term niche segregation and individual specialization of brown trout (Salmo trutta) in species poor Faroese lakes. Environmental Biology of Fishes 93: 305–318.CrossRefGoogle Scholar
  6. Brucet, S., D. Boix, L. W. Nathansen, X. D. Quintana, E. Jensen, D. Balayla, M. Meerhoff & E. Jeppesen, 2012. Effects of temperature, salinity and fish in structuring the macroinvertebrate community in shallow lakes: implications for effects of climate change. PLoS ONE 7: e30877.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Burks, R. L., D. M. Lodge, E. Jeppesen & T. L. Lauridsen, 2002. Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwater Biology 47: 343–365.CrossRefGoogle Scholar
  8. Cañedo-Argüelles, M., S. Sgarzi, I. Arranz, X. D. Quintana, Z. Ersoy, F. Landkildehus, T. L. Lauridsen, E. Jeppesen & S. Brucet, 2017. Role of predation in biological communities in naturally eutrophic sub-Arctic Lake Mývatn, Iceland. Hydrobiologia 790: 213–223.CrossRefGoogle Scholar
  9. Carpenter, S. R. & J. F. Kitchell, 1993. The Trophic Cascade in Lakes. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  10. Deniro, M. J. & S. Epstein, 1978. Influence of the diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 45: 495–506.CrossRefGoogle Scholar
  11. Dickman, M., K. Stewart & M. Servant-Vildary, 1993. Spatial heterogeneity of summer phytoplankton and water chemistry in a large volcanic spring-fed lake in northern Iceland. Arctic and Alpine Research INSTAAR, University of Colorado 25: 228–239.CrossRefGoogle Scholar
  12. Einarsson, Á., 2004. Lake Myvatn and the River Laxá: An introduction. Aquatic Ecology 38: 111–114.CrossRefGoogle Scholar
  13. Einarsson, Á. & E. B. Örnólfsdóttir, 2004. Long-term changes in benthic Cladocera populations in Lake Myvatn, Iceland. Aquatic Ecology 38: 253–262.CrossRefGoogle Scholar
  14. Einarsson, Á., A. Gardarsson, G. M. Gíslason & A. R. Ives, 2002. Consumer-resource interactions and cyclic population dynamics of Tanytarsus gracilentus (Diptera: Chironomidae). Journal of Animal Ecology 71: 832–845.CrossRefGoogle Scholar
  15. Einarsson, Á., G. Stefánsdóttir, H. Jóhannesson, J. S. Ólafsson, G. Már Gíslason, I. Wakana, G. Gudbergsson & A. Gardarsson, 2004. The ecology of Lake Myvatn and the River Laxá: variation in space and time. Aquatic Ecology 38: 317–348.CrossRefGoogle Scholar
  16. Einarsson, Á., U. Hauptfleisch, P. R. Leavitt & A. R. Ives, 2016. Identifying consumer-resource population dynamics using paleoecological data. Ecology 97: 361–371.CrossRefPubMedGoogle Scholar
  17. Epanchin, P. N., R. A. Knapp & S. P. Lawler, 2010. Nonnative trout impact an alpine-nesting bird by altering aquatic-insect subsidies. Ecology 91: 2406–2415.CrossRefPubMedGoogle Scholar
  18. Ersoy, Z., E. Jeppesen, S. Sgarzi, I. Arranz, M. Cañedo-Argüelles, X. D. Quintana, F. Landkildehus, T. L. Lauridsen, M. Bartrons & S. Brucet, 2017. Size based interactions and trophic transfer efficiency are modified by fish predation and cyanobacteria blooms in Lake Mývatn, Iceland. Freshwater Biology 62: 1942–1952.Google Scholar
  19. Flecker, A. S. & C. R. Townsend, 1994. Community-Wide Consequences of Trout Introduction in New Zealand Streams. Ecological Applications Wiley Ecological Society of America 4: 798–807.CrossRefGoogle Scholar
  20. Fry, B., 2006. Stable Isotope Ecology. Springer, New York.CrossRefGoogle Scholar
  21. Gardarsson, A., Á. Einarsson, G. M. Gíslason, T. Hrafnsdóttir, H. R. Ingvason, E. Jónsson & J. S. Ólafsson, 2004. Population fluctuations of chironomid and simuliid Diptera at Myvatn in 1977–1996. Aquatic Ecology 38: 209–217.CrossRefGoogle Scholar
  22. Gelman, A. & J. Hill, 2007. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Cambridge.Google Scholar
  23. Gislason, G. M., A. Gudmundsson & A. Einarsson, 1998. Population densities of the three-spined stickleback (Gasterosteus aculeatus L.) in a shallow lake. Verhandlungen Internationale Verein Limnologie 26: 2244–2250.Google Scholar
  24. González-Bergonzoni, I., F. Landkildehus, M. Meerhoff, T. L. Lauridsen, K. Özkan, T. A. Davidson, N. Mazzeo & E. Jeppesen, 2014. Fish determine macroinvertebrate food webs and assemblage structure in Greenland subarctic streams. Freshwater Biology 59: 1830–1842.CrossRefGoogle Scholar
  25. Graham, C. T. & C. Harrod, 2009. Implications of climate change for the fishes of the British Isles. Journal of Fish Biology Blackwell Publishing Ltd 74: 1143–1205.Google Scholar
  26. Gu, B., C. L. Schelske & M. Brenner, 2006. Relationship between sediment and plankton isotope ratios (d13C and d15 N) and primary productivity in Florida lakes. Canadian Journal of Fisheries and Aquatic Sciences 883: 875–883.Google Scholar
  27. Gudbergsson, G., 2004. Arctic charr in Lake Myvatn: the centennial catch record in the light of recent stock estimates. Aquatic Ecology Kluwer Academic Publishers 38: 271–285.CrossRefGoogle Scholar
  28. Gudmundsson, A., 1996. Hornsíli í Mývatni (Three-spined sticklebacks in Lake Myvatn). M. Sc. thesis. University of Iceland.Google Scholar
  29. Hairston, N., F. Smith & L. Slobodkin, 1960. Community structure, population control, and competition. The American Naturalist 94: 421–425.CrossRefGoogle Scholar
  30. Hayden, B., J.-P. Myllykangas, R. J. Rolls & K. K. Kahilainen, 2017. Climate and productivity shape fish and invertebrate community structure in subarctic lakes. Freshwater Biology 62: 990–1003.CrossRefGoogle Scholar
  31. Hecky, R. E. & R. H. Hesslein, 1995. Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. Journal of the North American Benthological Society 14: 631–653.CrossRefGoogle Scholar
  32. Herren, C. M., K. C. Webert, M. D. Drake, A. Einarsson, A. R. Ives & C. Gratton, 2017. Positive feedback between chironomids and algae creates net mutualism between benthic primary consumers and producers. Ecology 98: 447–455.CrossRefPubMedGoogle Scholar
  33. Huang, C. & A. Sih, 1990. Experimental studies on behaviorally mediated, indirect interactions through a shared predator. Ecology 71: 1515–1522.CrossRefGoogle Scholar
  34. Inger, R., A. Jackson, A. Parnell & S. Bearhop, 2014. SIAR V4 stable isotope analysis in R. Matrix 4: 1–14.Google Scholar
  35. Ives, A. R., A. Einarsson, V. A. A. Jansen & A. Gardarsson, 2008. High-amplitude fluctuations and alternative dynamical states of midges in Lake Myvatn. Nature 452: 84–87.CrossRefPubMedGoogle Scholar
  36. Jackson, A. L., R. Inger, S. Bearhop & A. Parnell, 2009. Erroneous behaviour of MixSIR, a recently published Bayesian isotope mixing model: a discussion of Moore & Semmens (2008). Ecology letters 12: E1–E5.CrossRefPubMedGoogle Scholar
  37. Jackson, A. L., R. Inger, A. C. Parnell & S. Bearhop, 2011. Comparing isotopic niche widths among and within communities: SIBER—stable isotope bayesian ellipses in R. Journal of Animal Ecology 80: 595–602.CrossRefPubMedGoogle Scholar
  38. Jackson, M. M., M. G. Turner, S. M. Pearson & A. R. Ives, 2012. Seeing the forest and the trees: multilevel models reveal both species and community patterns. Ecosphere 3: art79.CrossRefGoogle Scholar
  39. Jeppesen, E., J. P. Jensen, C. Jensen, B. Faafeng, D. O. Hessen, M. Søndergaard, T. Lauridsen, P. Brettum & K. Christoffersen, 2003. The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: a study of 466 lakes from the temperate zone to the Arctic. Ecosystems 6: 313–325.CrossRefGoogle Scholar
  40. Jeppesen, E., T. Mehner, I. J. Winfield, K. Kangur, J. Sarvala, D. Gerdeaux, M. Rask, H. J. Malmquist, K. Holmgren, P. Volta, S. Romo, R. Eckmann, A. Sandström, S. Blanco, A. Kangur, H. Ragnarsson Stabo, M. Tarvainen, A. M. Ventelä, M. Søndergaard, T. L. Lauridsen & M. Meerhoff, 2012. Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes. Hydrobiologia 694: 1–39.CrossRefGoogle Scholar
  41. Jeppesen, E., T. L. Lauridsen, K. S. Christoffersen, F. Landkildehus, P. Geertz-Hansen, S. L. Amsinck, M. Søndergaard, T. A. Davidson & F. Rigét, 2017. The structuring role of fish in Greenland lakes: an overview based on contemporary and paleoecological studies of 87 lakes from the low and the high Arctic. Hydrobiologia Springer International Publishing 800: 99–113.Google Scholar
  42. Jónasson, P. M., 1979. Ecology of eutrophic, subarctic Lake Mývatn and the River Laxá. Icelandic Literature Society in Copenhagen.Google Scholar
  43. Kohler, S. L. & M. A. McPeek, 1989. Predation risk and the foraging behavior of competing stream insects. Ecology Wiley Ecological Society of America 70: 1811–1825.Google Scholar
  44. Lancaster, J., A. G. Hildrew & C. R. Townsend, 1988. Competition for space by predators in streams: field experiments on a net spinning caddisfly. Freshwater Biology 20: 185–193.CrossRefGoogle Scholar
  45. Layman, C. A., D. A. Arrington, C. G. Montana & D. M. Post, 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88: 42–48.CrossRefPubMedGoogle Scholar
  46. Layman, C. A., M. S. Araujo, R. Boucek, C. M. Hammerschlag-Peyer, E. Harrison, Z. R. Jud, P. Matich, A. E. Rosenblatt, J. J. Vaudo, L. A. Yeager, D. M. Post & S. Bearhop, 2012. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biological Reviews 83: 545–562.CrossRefGoogle Scholar
  47. Leopold, A., L. K. Sowls & D. L. Spencer, 1947. A survey of over-populated deer ranges in the United States. The Journal of Wildlife Management 11: 162–177.CrossRefGoogle Scholar
  48. Lindegaard, C., P. M. Jónasson & P. M. Jonasson, 1979. Abundance, population dynamics and production of zoobenthos in lake Mývatn, Iceland. Oikos 32: 202–227.CrossRefGoogle Scholar
  49. Matley, J., A. Tobin, C. Simpfendorfer, A. Fisk & M. Heupel, 2017. Trophic niche and spatio-temporal changes in the feeding ecology of two sympatric species of coral trout (Plectropomus leopardus and P laevis). Marine Ecology Progress Series 563: 197–210.CrossRefGoogle Scholar
  50. McCutchan, J. H., W. M. Lewis, C. Kendall & C. C. McGrath, 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102: 378–390.CrossRefGoogle Scholar
  51. Mingawa, M., 1984. Stepwise enrichment of N-15 along food-chains—further evidence and the relation between delta-N-15 and animal age. Geochimica et Cosmochimica Acta 48: 1135–1140.CrossRefGoogle Scholar
  52. Moore, J. W. & B. X. Semmens, 2008. Incorporating uncertainty and prior information into stable isotope mixing models. Ecology letters 11: 470–480.CrossRefPubMedGoogle Scholar
  53. Naeem, S., R. Costanza, P. Ehrlich, F. Golley, D. Hooper, J. H. Lawton, R. O’Neill, H. Mooney, O. Sala, A. Symstad & D. Tilmam, 1999. Invasiones biológicas: Causas, epidemiología, consecuencias globales y control. Tópicos en ecología Wiley Ecological Society of America 5: 1–22.Google Scholar
  54. Ólafsson, J., 1979a. Physical characteristics of Lake Myvatn and River Laxa. Oikos 32: 38–66.CrossRefGoogle Scholar
  55. Ólafsson, J., 1979b. The Chemistry of Lake Mývatn and River Laxá. Oikos 32: 82–112.CrossRefGoogle Scholar
  56. Orrock, J. L., L. M. Dill, A. Sih, J. H. Grabowski, S. D. Peacor, B. L. Peckarsky, E. L. Preisser, J. R. Vonesh & E. E. Werner, 2010. Predator effects in predator-free space: the remote effects of predators on prey. Open Journal of Ecology 3: 22–30.CrossRefGoogle Scholar
  57. Pace, M. L., J. J. Cole, S. R. Carpenter & J. F. Kitchell, 1999. Trophic cascades revealed in diverse ecosystems. Trends in Ecology & Evolution 14: 483–488.CrossRefGoogle Scholar
  58. Paine, R. T., 1966. Food web complexity and species diversity. The American Naturalist 100: 65–75.CrossRefGoogle Scholar
  59. Peckarsky, B. L. & A. R. McIntosh, 1998. Fitness and community consequences of avoiding multiple predators. Oecologia 113: 565–576.CrossRefPubMedGoogle Scholar
  60. Rigler, F. H., 1975. The Char Lake project, an introduction to limnology in the Canadian Arctic In Cameron. In Billingsley, L. W. (ed), Energy Flow—Its Biological Dimension A Summary of IBP in Canada, 1964–1974. Published for the Canadian Committee for the International Biological Programme by the Royal Society of Canada, Ottawa: 171–198.Google Scholar
  61. Rist, S., 1979. Water level fluctuations and icecover of Lake Mývatn. Oikos 32: 67–81.CrossRefGoogle Scholar
  62. Takahashi, K., T. Yoshioka, E. Wada & M. Sakamoto, 1990. Temporal variations in carbon isotope ratio of phytoplankton in a eutrophic lake. Journal of Plankton Research 12: 799–808.CrossRefGoogle Scholar
  63. Team, R. C., 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.r-project.org.
  64. Tiberti, R., A. von Hardenberg & G. Bogliani, 2014. Ecological impact of introduced fish in high altitude lakes: a case of study from the European Alps. Hydrobiologia 724: 1–19.CrossRefGoogle Scholar
  65. Vanni, M. J. & C. D. Layne, 1997. Nutrient recycling and herbivory as mechanisms in the “top-down” effects of fish on phytoplankton in lakes. Ecology Ecological Society of America 78: 21–40.Google Scholar
  66. Webert, K. C., C. M. Herren, Á. Einarsson, M. Bartrons, U. Hauptfleisch & A. R. Ives, 2017. Midge-stabilized sediment drives the composition of benthic cladoceran communities in Lake Mývatn. Iceland. Ecosphere 8: e01659.CrossRefGoogle Scholar
  67. Woodward, G. & A. G. Hildrew, 2008. Invasion of a stream food web by a new top predator. Journal of Animal Ecology 70: 273–288.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mireia Bartrons
    • 1
    Email author
  • Ignasi Arranz
    • 1
  • Miguel Cañedo-Argüelles
    • 1
    • 2
  • Serena Sgarzi
    • 1
  • Torben L. Lauridsen
    • 3
    • 4
    • 5
    • 6
  • Frank Landkildehus
    • 3
  • Xavier D. Quintana
    • 7
  • Sandra Brucet
    • 1
    • 3
    • 8
  • Erik Jeppesen
    • 3
    • 4
    • 5
    • 6
  1. 1.Aquatic Ecology GroupUniversity of Vic - Central University of CataloniaVicSpain
  2. 2.Freshwater Ecology and Management (FEM) Research Group, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de l’Aigua (IdRA)Universitat de Barcelona (UB)BarcelonaSpain
  3. 3.Department of BioscienceAarhus UniversitySilkeborgDenmark
  4. 4.Sino-Danish Centre for Education and Research (SDC)University of Chinese Academy of SciencesBeijingChina
  5. 5.Greenland Climate Research Centre (GCRC)Greenland Institute of Natural ResourcesNuukGreenland
  6. 6.Arctic Research CentreAarhus UniversityAarhusDenmark
  7. 7.GRECO, Institute of Aquatic EcologyUniversity of GironaGironaSpain
  8. 8.ICREA, Catalan Institution for Research and Advanced StudiesBarcelonaSpain

Personalised recommendations