, Volume 815, Issue 1, pp 253–266 | Cite as

Cylindrospermopsis raciborskii and Microcystis aeruginosa competing under different conditions of pH and inorganic carbon

  • Maiara Tábatha da Silva Brito
  • Paulo José Duarte-Neto
  • Renato José Reis Molica
Primary Research Paper


Based on the fact that the intense photosynthetic activity of blooms causes a marked decrease in free CO2 concentrations and increase in pH of the water, the aim of the present study was to investigate the competitive relationship between Cylindrospermopsis raciborskii and Microcystis aeruginosa under different pH and inorganic carbon conditions. Our hypothesis is that C. raciborskii is a better competitor than M. aeruginosa in alkaline pH and when bicarbonate (HCO3) is the main source of carbon. Semi-continuous cultures were conducted in a factorial experiment with three different pH conditions (free [unbuffered], 6.8 and 8.2), with and without aeration, and with and without the addition of a bicarbonate source. Both species demonstrated a good performance under high pH, but the interaction between the factors determined significant differences in the competitive responses of the C. raciborskii and M. aeruginosa strains, with a change in dominance in the different scenarios. Whilst C. raciborskii was favoured by aeration, the addition of bicarbonate improved the growth of M. aeruginosa. The results suggest that affinity and efficiency in bicarbonate use may be a determinant of dominance and competitive success in potentially toxic cyanobacteria, such as the genus Microcystis.


Ecology of cyanobacteria Toxic bloom Climate change CO2 



The authors are grateful to the Brazilian fostering agency Coordination for the Advancement of Higher Education Personnel (CAPES) for granting a scholarship to the first author and the Laboratory Centre (CENLAG) of the Federal Rural University of Pernambuco (Garanhuns Academic Unit) for providing the physical infrastructure for our research.

Supplementary material

10750_2018_3567_MOESM1_ESM.docx (976 kb)
Supplementary material 1 (DOCX 975 kb)


  1. Almeida, R. M., G. N. Nóbrega, P. C. Junger, A. V. Figueiredo, A. S. Andrade, C. G. Moura & S. Kosten, 2016. High primary production contrasts with intense carbon emission in a eutrophic tropical reservoir. Frontiers in Microbiology.  https://doi.org/10.3389/fmicb.2016.00717.Google Scholar
  2. Antunes, J. T., P. N. Leão & V. M. Vasconcelos, 2015. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species. Frontiers in Microbiology 6: 473.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Badger, M. R. & G. D. Price, 2003. CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. Journal of experimental botany 54: 609–622.CrossRefPubMedGoogle Scholar
  4. Boopathi, T. & J. S. Ki, 2014. Impact of environmental factors on the regulation of cyanotoxin production. Toxins 6: 1951–1978.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bouvy, M., R. Molica, S. Oliveira, M. Marinho & B. Beker, 1999. Dynamics of a toxic cyanobacterial bloom (Cylindrospermopsis raciborskii) in a shallow reservoir in the semi-arid region of northeast Brazil. Aquatic Microbial Ecology 20: 285–297.CrossRefGoogle Scholar
  6. Briand, J. F., C. Leboulanger, J. F. Humbert, C. Bernard & P. Dufour, 2004. Cylindrospermopsis raciborskii (cyanobacteria) invasion at mid-latitudes: selection, wide physiological tolerance, or global warming? Journal of Phycology 40: 231–238.CrossRefGoogle Scholar
  7. Burford, M. A., J. Beardall, A. Willis, P. T. Orr, V. F. Magalhaes, L. M. Rangel, S. M. F. O. Azevedo & B. A. Neilan, 2016. Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae 54: 44–53.CrossRefPubMedGoogle Scholar
  8. Burnap, R. L., M. Hagemann & A. Kaplan, 2015. Regulation of CO2 concentrating mechanism in cyanobacteria. Life 5: 348–371.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Caraco, N. F. & R. Miller, 1998. Effects of CO2 on competition between a cyanobacterium and eukaryotic phytoplankton. Canadian Journal of Fisheries and Aquatic Sciences 55: 54–62.CrossRefGoogle Scholar
  10. Carey, C. C., B. W. Ibelings, E. P. Hoffmann, D. P. Hamilton & J. D. Brookes, 2012. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Research 46: 1394–1407.CrossRefPubMedGoogle Scholar
  11. Carmichael, W. W., S. M. O. Azevedo, J. S. An, R. J. R. Molica, E. M. Jochimsen, S. Lau, K. L. Rinehart, G. R. Shaw & G. K. Eaglesham, 2001. Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environmental Health Perspectives 109: 663–668.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chellappa, N. T. & M. A. M. Costa, 2003. Dominant and co-existing species of Cyanobacteria from a eutrophicated reservoir of Rio Grande do Norte State, Brazil. Acta Oecologica 24: S3–S10.CrossRefGoogle Scholar
  13. Chislock, M. F., K. L. Sharp & A. E. Wilson, 2014. Cylindrospermopsis raciborskii dominates under very low and high nitrogen-to-phosphorus ratios. Water Research 49: 207–214.CrossRefPubMedGoogle Scholar
  14. Chorus, E. I. & J. Bartram, 1999. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management. E & FN Spon, London/New York.CrossRefGoogle Scholar
  15. Crossetti, L. O. & C. E. M. Bicudo, 2005. Structural and functional phytoplankton responses to nutrient impoverishment in mesocosms placed in a shallow eutrophic reservoir (Garças Pond), São Paulo, Brazil. Hydrobiologia 541: 71–85.CrossRefGoogle Scholar
  16. Dantas, Ê. W., A. N. Moura & M. D. C. Bittencourt-Oliveira, 2011. Cyanobacterial blooms in stratified and destratified eutrophic reservoirs in semi-arid region of Brazil. Anais da Academia Brasileira de Ciências 83: 1327–1338.CrossRefPubMedGoogle Scholar
  17. Figueredo, C. C., A. Giani & D. F. Bird, 2007. Does allelopathy contribute to Cylindrospermopsis raciborskii (Cyanobacteria) bloom occurrence and geographic expansion? Journal of Phycology 43: 256–265.CrossRefGoogle Scholar
  18. Fogg, G. E. & B. Thake, 1987. Algae Cultures and Phytoplankton Ecology. The University of Wisconsin Press Ltd., London.Google Scholar
  19. Fontes, M. L. S., H. Marotta, S. MacIntyre & M. M. Petrucio, 2015. Inter- and intra-annual variations of pCO2 and pO2 in a freshwater subtropical coastal lake. Inland Waters 5: 107–116.CrossRefGoogle Scholar
  20. Giordano, M., J. Beardall & J. A. Raven, 2005. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annual Review of Plant Biology 56: 99–131.CrossRefPubMedGoogle Scholar
  21. Gorham, P. R., J. R. Mclachlav, V. T. Hammer & W. K. Kim, 1964. Isolation and culture of toxic strains of Anabaena flos-aquae (Lyngb.) de Bréb. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 15: 796–804.Google Scholar
  22. Guillard, R. R. L., 1973. Division rates. In Stein, J. (ed.), Handbook of Phycological Methods: Culture Methods and Growth Measurements. Cambrige University Press, Cambrige: 289–311.Google Scholar
  23. Harke, M. J., M. M. Steffen, C. J. Gobler, T. G. Otten, S. W. Wilhelm, S. A. Wood & H. W. Paerl, 2016. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54: 4–20.CrossRefPubMedGoogle Scholar
  24. Hein, M., 1997. Inorganic carbon limitation of photosynthesis in lake phytoplankton. Freshwater Biology 37: 545–552.CrossRefGoogle Scholar
  25. Hillebrand, H., C. D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.CrossRefGoogle Scholar
  26. Holland, D. P., A. Pantorno, P. T. Orr, S. Stojkovic & J. Beardall, 2012. The impacts of a high CO2 environment on a bicarbonate user: the cyanobacterium Cylindrospermopsis raciborskii. Water Research 46: 1430–1437.CrossRefPubMedGoogle Scholar
  27. Ibelings, B. W., L. C. Backer, W. E. A. Kardinnal & I. Chorus, 2014. Current approaches to cyanotoxin risk assessment and risk management around the globe. Harmful Algae 40: 63–74.CrossRefGoogle Scholar
  28. Ji, X., J. M. H. Verspagen, M. Stomp & J. Huisman, 2017. Competition between cyanobacteria and green algae at low versus elevated CO2: who will win, and why? Journal of Experimental Botany 68: 3815–3828.CrossRefPubMedGoogle Scholar
  29. Klemer, A. R., 1991. Effects of nutritional status on cyanobacterial buoyancy, blooms, and dominance, with special reference to inorganic carbon. Canadian Journal of Botany 69: 1133–1138.CrossRefGoogle Scholar
  30. Kokociński, M., K. Stefaniak, J. Mankiewicz-Boczek, K. Izydorczyk & J. Soininen, 2010. The ecology of the invasive cyanobacterium Cylindrospermopsis raciborskii (Nostocales, Cyanophyta) in two hypereutrophic lakes dominated by Planktothrix agardhii (Oscillatoriales, Cyanophyta). European Journal of Phycology 45: 365–374.CrossRefGoogle Scholar
  31. Low-Décarie, E., G. Bell & G. F. Fussmann, 2015. CO2 alters community composition and response to nutrient enrichment of freshwater phytoplankton. Oecologia 177: 875–883.CrossRefPubMedGoogle Scholar
  32. Maberly, S. C., 1996. Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake. Freshwater Biology 35: 579–598.CrossRefGoogle Scholar
  33. Marinho, M. M., M. B. G. Souza & M. Lürling, 2013. Light and phosphate competition between Cylindrospermopsis raciborskii and Microcystis aeruginosa is strain dependent. Microbial ecology 66: 479–488.CrossRefPubMedGoogle Scholar
  34. McGregor, G. B. & L. D. Fabbro, 2000. Dominance of Cylindrospermopsis raciborskii (Nostocales, Cyanoprokaryota) in Queensland tropical and subtropical reservoirs: implications for monitoring and management. Lakes & Reservoirs: Research & Management 5: 195–205.CrossRefGoogle Scholar
  35. Moss, B., 1973. The influence of environmental factors on the distribution of freshwater algae: an experimental study: II. The role of pH and the carbon dioxide-bicarbonate system. The Journal of Ecology 61: 157–177.CrossRefGoogle Scholar
  36. Paerl, H. W., 2014. Mitigating harmful cyanobacterial blooms in a human- and climatically-impacted world. Life 4: 988–1012.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Pierangelini, M., S. Stojkovic, P. T. Orr & J. Beardall, 2014. Elevated CO2 causes changes in the photosynthetic apparatus of a toxic cyanobacterium, Cylindrospermopsis raciborskii. Journal of Plant Physiology 171: 1091–1098.CrossRefPubMedGoogle Scholar
  38. Pierangelini, M., R. Sinha, A. Willis, M. A. Burford, P. T. Orr, J. Beardall & B. A. Neilan, 2015. Constitutive cylindrospermopsin pool size in Cylindrospermopsis raciborskii under different light and CO2 partial pressure conditions. Applied and Environmental Microbiology 81: 3069–3076.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Price, G. D., 2011. Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism. Photosynthesis Research 109: 47–57.CrossRefPubMedGoogle Scholar
  40. Price, G. D., M. R. Badger, F. J. Woodger & B. M. Long, 2008. Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. Journal of Experimental Botany 59: 1441–1461.CrossRefPubMedGoogle Scholar
  41. Qiu, B. & K. Gao, 2002. Effects of CO2 enrichment on the bloom-forming cyanobacterium Microcystis aeruginosa (cyanophyceae): physiological responses and relationships with the availability of dissolved inorganic carbon. Journal of Phycology 38: 721–729.CrossRefGoogle Scholar
  42. Rzymski, P., B. Poniedziałek, M. Kokociński, T. Jurczak, D. Lipski & K. Wiktorowicz, 2014. Interspecific allelopathy in cyanobacteria: cylindrospermopsin and Cylindrospermopsis raciborskii effect on the growth and metabolism of Microcystis aeruginosa. Harmful Algae 35: 1–8.CrossRefGoogle Scholar
  43. Saker, M. L., I. C. G. Nogueira & V. M. Vasconcelos, 2003. Distribution and toxicity of Cylindrospermopsis raciborskii (cyanobacteria) in Portuguese freshwaters. Limnetica 22: 129–136.Google Scholar
  44. Sandrini, G., H. C. Matthijs, J. M. Verspagen, G. Muyzer & J. Huisman, 2014. Genetic diversity of inorganic carbon uptake systems causes variation in CO2 response of the cyanobacterium Microcystis. The ISME Journal 8: 589–600.CrossRefPubMedGoogle Scholar
  45. Sandrini, G., S. Cunsolo, J. M. Schuurmans, H. C. Matthijs & J. Huisman, 2015. Changes in gene expression, cell physiology and toxicity of the harmful cyanobacterium Microcystis aeruginosa at elevated CO2. Frontiers in Microbiology 6: 401.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sandrini, G, J. M. H. Verspagen, P. M. Visser, L. J. Stal, H. C. P. Matthijs, T. W. Davis, H. W. Paerl, J. Huisman, 2016a. How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae 54: 145–159 (2016a).CrossRefPubMedGoogle Scholar
  47. Sandrini, G., R. P. Tann, J. M. Schuurmans, S. A. M. Van Beusekom, H. C. P. Matthijs & J. Huisman, 2016b. Diel variation in gene expression of the CO2-concentrating mechanism during a harmful cyanobacterial bloom. Frontiers Microbiology 7: 551.CrossRefGoogle Scholar
  48. Sandrini, G., X. Ji, J. M. Verspagen, R. P. Tann, P. C. Slot, V. M. Luimstra, J. M. Schuurmans, H. C. P. Matthijs & J. Huisman, 2016c. Rapid adaptation of harmful cyanobacteria to rising CO2. Proceedings of the National Academy of Sciences Of the United States of America.  https://doi.org/10.1073/pnas.1602435113.Google Scholar
  49. Shapiro, J., 1984. Blue-green dominance in lakes: the role and management significance of pH and CO2. Internationale Revue der Gesamten Hydrobiologie 69: 765–780.CrossRefGoogle Scholar
  50. Shi, X., X. Zhao, M. Zhang, Z. Yang, P. Xu & F. Kong, 2015. The responses of phytoplankton communities to elevated CO2 show seasonal variations in the highly eutrophic Lake Taihu. Canadian Journal of Fisheries and Aquatic Sciences 73: 727–736.CrossRefGoogle Scholar
  51. Smith, F. A. & N. A. Walker, 1980. Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2 and HCO3 and to carbon isotopic discrimination. New Phytologist 86: 245–259.CrossRefGoogle Scholar
  52. STATSOFT, INC. Statistica (data analysis software system), version 7. 2007. www.statsoft.com.
  53. Sun, J. & D. Liu, 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25: 1331–1346.CrossRefGoogle Scholar
  54. Talling, J. F., 1973. The application of some electrochemical methods to the measurement of photosynthesis and respiration in fresh waters. Freshwater Biology 3: 335–362.CrossRefGoogle Scholar
  55. Thomas, M. K. & E. Litchman, 2016. Effects of temperature and nitrogen availability on the growth of invasive and native cyanobacteria. Hydrobiologia 763: 357–369.CrossRefGoogle Scholar
  56. Tilman, D., 1982. Resource Competition and Community Structure. Princeton University Press, Princeton.Google Scholar
  57. Tonetta, D., M. L. S. Fontes & M. M. Petrucio, 2015. Linking summer conditions to CO2 undersaturation and CO2 influx in a subtropical coastal lake. Limnology 16: 193–201.CrossRefGoogle Scholar
  58. Tucci, A. & C. Sant’anna, 2003. Cylindrospermopsis raciborskii (Woloszynska) Seenayya & Subba Raju (Cyanobacteria): variação semanal e relações com fatores ambientais em um reservatório eutrófico, São Paulo, SP, Brasil. Revista Brasileira de Botânica 26: 97–112.Google Scholar
  59. Van de Waal, D. B., J. M. Verspagen, J. F. Finke, V. Vournazou, A. K. Immers, W. E. A. Kardinaal, L. Tonk, S. Becker, E. V. Donk, P. M. Visser & J. Huisman, 2011. Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO2. The ISME Journal 5: 1438–1450.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Verschoor, A. M., M. A. Van Dijk, J. E. F. Huisman & E. Van Donk, 2012. Elevated CO2 concentrations affect the elemental stoichiometry and species composition of an experimental phytoplankton community. Freshwater Biology 58: 597–611.CrossRefGoogle Scholar
  61. Verspagen, J. M., D. B. Van de Waal, J. F. Finke, P. M. Visser, E. Van Donk & J. Huisman, 2014a. Rising CO2 levels will intensify phytoplankton blooms in eutrophic and hypertrophic lakes. PLoS ONE 9: e104325.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Verspagen, J. M., D. B. Van de Waal, J. F. Finke, P. M. Visser & J. Huisman, 2014b. Contrasting effects of rising CO2 on primary production and ecological stoichiometry at different nutrient levels. Ecology Letters 17: 951–960.CrossRefPubMedGoogle Scholar
  63. Vidal, L. & C. Kruk, 2008. Cylindrospermopsis raciborskii (Cyanobacteria) extends its distribution to Latitude 34 53’S: taxonomical and ecological features in Uruguayan eutrophic lakes. Pan-American Journal of Aquatic Sciences 3: 142–151.Google Scholar
  64. Visser, P. M., J. M. Verspagen, G. Sandrini, L. J. Stal, H. C. Matthijs, T. W. Davis, H. W. Paerl & J. Huisman, 2016. How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae 54: 145–159.CrossRefPubMedGoogle Scholar
  65. Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems, 3rd ed. Academic Press, San Diego.Google Scholar
  66. Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses, 3rd ed. Springer, New York.CrossRefGoogle Scholar
  67. Wu, H., D. Zou & K. Gao, 2008. Impacts of increased atmospheric CO2 concentration on photosynthesis and growth of micro- and macro-algae. Science in China Series C: Life Sciences 51: 1144–1150.CrossRefPubMedGoogle Scholar
  68. Yamamoto, Y., F. K. Shiah & S. C. Hsu, 2013. Seasonal variation in the net growth rate of the cyanobacterium Cylindrospermopsis raciborskii in a shallow artificial pond in northern Taiwan. Plankton and Benthos Research 8: 68–73.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Maiara Tábatha da Silva Brito
    • 1
  • Paulo José Duarte-Neto
    • 2
  • Renato José Reis Molica
    • 3
  1. 1.Programa de Pós-Graduação em Ecologia, Departamento de BiologiaUniversidade Federal Rural de PernambucoRecifeBrazil
  2. 2.Departamento de Estatística e InformáticaUniversidade Federal Rural de PernambucoRecifeBrazil
  3. 3.Unidade Acadêmica de GaranhunsUniversidade Federal Rural de PernambucoGaranhunsBrazil

Personalised recommendations