Advertisement

Hydrobiologia

, Volume 829, Issue 1, pp 5–17 | Cite as

Predation by Acanthocyclops americanus (Copepoda: Cyclopoida) in the hypertrophic shallow waterbody, Lake Albufera (Spain): field and laboratory observations

  • S. S. S. Sarma
  • Maria Rosa Miracle
  • S. Nandini
  • Eduardo Vicente
SHALLOW LAKES RESEARCH
  • 76 Downloads

Abstract

We quantified the predation of Acanthocyclops americanus from the shallow Mediterranean lake Albufera, using gut contents from field collections and laboratory feeding tests. For functional response studies, we used Brachionus plicatilis (at 6 concentrations, 400–4000 ind. 40 ml−1) and Diaphanosoma mongolianum (at 2–20 ind. 40 ml−1). Copepod feeding rates were also estimated using different proportions of rotifer prey and lake seston (0–67.5% of seston + 40 individuals of B. plicatilis). Prey selection studies were conducted using five zooplankton species: Brachionus angularis, Brachionus plicatilis, Keratella tropica, Daphnia magna and Diaphanosoma mongolianum. Gut contents of field-collected adult Acanthocyclops contained filamentous algae and cyanobacteria and 16 zooplankton species (Keratella cochlearis, unspined and spined forms, K. tropica, Brachionus plicatilis, Brachionus calyciflorus, Brachionus angularis, Brachionus variabilis, Asplanchna girodi, Polyarthra vulgaris, Synchaeta pectinata, Lepadella rhomboides, unidentified bdelloids, Alona rectangula, Chydorus sphaericus, Bosmina longirostris, D. magna, Ceriodaphnia dubia and copepod nauplii). When fed B. plicatilis or D. mongolianum, female A. americanus had higher prey consumption rates than males. Increased proportion of lake seston caused reduced consumption of brachionid prey. Our data suggest that A. americanus is omnivorous in nature.

Keywords

Predation Copepoda Phytoplankton Zooplankton Gut contents Functional response 

Notes

Acknowledgements

SN and SSSS thank CONACyT (Mexico), the UNAM (DGAPA), and the University of Valencia for support during the stay.

References

  1. Abrams, P. A., 2000. The evolution of predator-prey interactions: theory and evidence. Annual Review of Ecology and Systematics 31: 79–105.CrossRefGoogle Scholar
  2. Boersma, M., A. Wesche & H. J. Hirche, 2014. Predation of calanoid copepods on their own and other copepods’ offspring. Marine Biology 161: 733–743.CrossRefGoogle Scholar
  3. Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. Review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.Google Scholar
  4. Brandl, Z., 2005. Freshwater copepods and rotifers: predators and their prey. Hydrobiologia 181: 475–489.CrossRefGoogle Scholar
  5. Case, T. J., 2000. An Illustrated Guide to Theoretical Ecology. Oxford University Press, London.Google Scholar
  6. DeMott, W. R., 1993. Hunger-dependent diet selection in zooplankton. In Hughes, R. N. (ed.), Diet Selection: An Interdisciplinary Approach to Foraging Behaviour. Blackwell Scientific Publications, Oxford: 102–123.Google Scholar
  7. de Kluijver, A., J. Yu, M. Houtekamer, J. J. Middelburg & Z. Liu, 2012. Cyanobacteria as a carbon source for zooplankton in eutrophic Lake Taihu, China, measured by 13C labeling and fatty acid biomarkers. Limnology and Oceanography 57: 1245–1254.CrossRefGoogle Scholar
  8. Dieng, H., M. Boots, N. Tuno, Y. Tsuda & M. Takagi, 2003. Life history effects of prey choice by copepods: implications for biocontrol of vector mosquitoes. Journal of the American Mosquito Control Association 19: 67–73.PubMedGoogle Scholar
  9. Dumont, H. J. & S. V. Negrea, 2002. Introduction to the class Branchiopoda. In Dumont, H. J. (ed.), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, Vol. 19. Backhuys Publishers, Leiden.Google Scholar
  10. Enríquez-García, C., S. Nandini & S. S. S. Sarma, 2013. Feeding behavior of Acanthocyclops americanus (Marsh) (Copepoda: Cyclopoida). Journal of Natural History 47: 853–862.CrossRefGoogle Scholar
  11. Frisch, D., H. Rodríguez-Pérez & A. J. Green, 2006. Invasion of artificial ponds in Doñana Natural Park, southwest Spain, by an exotic estuarine copepod. Aquatic Conservation: Marine and Freshwater Ecosystems 16(5): 483–492.CrossRefGoogle Scholar
  12. García, C. E., S. Nandini & S. S. S. Sarma, 2011. Demographic characteristics of the copepod Acanthocyclops americanus (Sars, 1863) (Copepoda: Cyclopoida) fed mixed algal (Scenedesmus acutus)-rotifer (Brachionus havanaensis) diet. Hydrobiologia 666: 59–69.CrossRefGoogle Scholar
  13. Garcia-Chicote, J., C. Rojo & M. A. Rodrigo, 2007. Acanthocyclops robustus feeding: a case of cannibalism. Limnetica 26: 265–275.Google Scholar
  14. Gliwicz, Z. M., 2003. Between Hazards of Starvation and Risk of Predation: The Ecology of Offshore Animals, Vol. 12. International Ecology Institute, Oldendorf/Luhe.Google Scholar
  15. Gliwicz, Z. M. & G. Umana, 1994. Cladoceran body size and vulnerability to copepod predation. Limnology and Oceanography 39: 419–424.CrossRefGoogle Scholar
  16. Gophen, M., 1977. Food and feeding habits of Mesocyclops leuckarti (Claus) in Lake Kinneret (Israel). Freshwater Biology 7: 513–518.CrossRefGoogle Scholar
  17. Heuschele, J. & E. Selander, 2014. The chemical ecology of copepods. Journal of Plankton Research 36: 895–913.CrossRefGoogle Scholar
  18. Hirst A. G. & T. Kiørboe, 2014. Macroevolutionary patterns of sexual size dimorphism in copepods. Proceedings of the Royal Society B. Biological Sciences 281: 20140739.Google Scholar
  19. Hołyńska, M., J. W. Reid & H. Ueda, 2003. Genus Mesocyclops Sars, 1914, pp. 12–213. In: H. Ueda & J. W. Reid (eds), Copepoda: Cyclopoida. Genera Mesocyclops and Thermocyclops. Vol. 20. In H.J. Dumont (ed). Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. Backhuys, Leiden.Google Scholar
  20. Hopp, U. & G. Maier, 2005. Implication of the feeding limb morphology for herbivorous feeding in some freshwater cyclopoids. Freshwater Biology 50: 742–747.CrossRefGoogle Scholar
  21. Kiørboe, T., 2011a. How zooplankton feed: mechanisms, traits and trade-offs. Biological Reviews of the Cambridge Philosophical Society 86: 311–339.CrossRefGoogle Scholar
  22. Kiørboe, T., 2011b. What makes pelagic copepods so successful? Journal of Plankton Research 33: 677–685.CrossRefGoogle Scholar
  23. Koste, W., 1978. Rotatoria. Gebruder Borntraeger, Berlin. 2 vols.Google Scholar
  24. Krebs, J. R., 1999. Ecological Methodology, 2nd ed. Addison-Wesley Educational Publishers, Boston.Google Scholar
  25. Jackson, J. M. & P. H. Lenz, 2016. Predator-prey interactions in the plankton: larval fish feeding on evasive copepods. Scientific Reports 6: 33585.CrossRefGoogle Scholar
  26. Lapesa, S., T. W. Snell, D. M. Fields & M. Serra, 2002. Predatory interactions between a cyclopoid copepod and three sibling rotifer species. Freshwater Biology 47(9): 1685–1695.CrossRefGoogle Scholar
  27. LeBlanc, J. S., W. D. Taylor & O. E. Johannsson, 1997. The feeding ecology of the cyclopoid copepod Diacyclops thomasi in Lake Ontario. Journal of Great Lakes Research 23: 369–381.CrossRefGoogle Scholar
  28. Link, J. & R. Keen, 1995. Prey of deep-water Hydra in Lake Superior. Journal of Great Lakes Research 21: 319–323.CrossRefGoogle Scholar
  29. Miracle, M. R., V. Alekseev, V. Monchenko, V. Sentandreu & E. Vicente, 2013. Molecular-genetic-based contribution to the taxonomy of the Acanthocyclops robustus group. Journal of Natural History 47: 863–888.CrossRefGoogle Scholar
  30. Miracle, M. R., E. Vicente, S. S. S. Sarma & S. Nandini, 2014. Planktonic rotifer feeding in hypertrophic conditions. International Review of Hydrobiology 99: 141–150.CrossRefGoogle Scholar
  31. Monakov, A. B., 2003. Feeding of freshwater Invertebrates. Kenobi Productions, Ghent.Google Scholar
  32. Oltra, R. & M. R. Miracle, 1984. Comunidades zooplanctónicas de la Albufera de Valencia. Limnetica 1: 51–61.Google Scholar
  33. Oltra, R. & M. R. Miracle, 1992. Seasonal succession zooplankton populations in the hypertrophic lagoon: Albufera of Valencia (Spain). Archiv für Hydrobiologie 124: 187–204.Google Scholar
  34. Oltra, R., M. T. Alfonso, M. Sahuquillo & M. R. Miracle, 2001. Increase of rotifer diversity after sewage diversion in the hypertrophic lagoon, Albufera of Valencia, Spain. Hydrobiologia 446(447): 213–220.CrossRefGoogle Scholar
  35. Onandia, G., M. R. Miracle & E. Vicente, 2014. Primary production under hypertrophic conditions and its relationship with bacterial production. Aquatic Ecology 48: 447–473.CrossRefGoogle Scholar
  36. Reid, N. W. & C. E. Williamson, 2009. Copepoda. In Thorp, J. H. & A. P. Covich (eds), Ecology and Classification of North American Freshwater Invertebrates, 3rd ed. Academic Press, New York: 829–899.Google Scholar
  37. Roche, K., 1987. Post-encounter vulnerability of some rotifer prey types to predation by the copepod Acanthocyclops robustus. Hydrobiologia 147: 229–233.CrossRefGoogle Scholar
  38. Roche, K., 1990. Some aspects of vulnerability to cyclopoid predation of zooplankton prey individuals. Hydrobiologia 198: 153–162.CrossRefGoogle Scholar
  39. Rollwagen-Bollens, G., S. M. Bollens, A. Gonzalez, J. Zimmerman, T. Lee & J. Emerson, 2013. Feeding dynamics of the copepod Diacyclops thomasi before, during and following filamentous cyanobacteria blooms in a large, shallow temperate lake. Hydrobiologia 705: 101–118.CrossRefGoogle Scholar
  40. Romo, S. & M. R. Miracle, 1993. Long term periodicity of Planktothrix agardhii, Pseudanabaena galeata and Gleiterinema sp. in a shallow hypertrophic lagoon, the Albufera of Valencia, Spain. Archiv für Hydrobiologie 126: 469–486.Google Scholar
  41. Sarma, S. S. S. & S. Nandini, 2007. Small prey size offers immunity to predation: a case study on two species of Asplanchna and three brachionid prey (Rotifera). Hydrobiologia 593: 67–76.CrossRefGoogle Scholar
  42. Sarma, S. S. S. & S. Nandini, 2017. Rotíferos Mexicanos (Rotifera). Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Iztacala, México, Estado de México.Google Scholar
  43. Sarma, S. S. S., J. Jiménez-Contreras, R. Fernández, S. Nandini & G. García-García, 2013. Functional responses and feeding rates of Mesocyclops pehpeiensis Hu (Copepoda) fed different diets (rotifers, cladocerans, alga and cyanobacteria). Journal of Natural History 47: 841–852.CrossRefGoogle Scholar
  44. Seckbach, J. (ed.), 2007. Algae and Cyanobacteria in Extreme Environments. Springer, New York.Google Scholar
  45. Trexler, C. J., C. E. McCulloch & J. Travis, 1988. How can the functional response best be determined? Oecologia 76: 206–214.CrossRefGoogle Scholar
  46. WHO, 1999. World Health Organization: Toxic cyanobacteria in water. In Chorus, I. & J. Bartram (eds), A guide to their public health consequences, monitoring and management. St Edmundsbury Press, Suffolk.Google Scholar
  47. Williamson, C. E., 1983. Invertebrate predation on planktonic rotifer. Hydrobiologia 104: 385–396.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Aquatic ZoologyNational Autonomous University of MexicoTlalnepantla, Edo, De MéxicoMexico
  2. 2.Department Microbiologia i Ecologia & ICBiBE Universitat de ValènciaValenciaSpain

Personalised recommendations