, Volume 813, Issue 1, pp 237–255 | Cite as

Salinity shapes zooplankton communities and functional diversity and has complex effects on size structure in lakes

  • María Florencia Gutierrez
  • Ülkü Nihan Tavşanoğlu
  • Nicolas Vidal
  • Jinlei Yu
  • Franco Teixeira-de Mello
  • Ayşe Idil Çakiroglu
  • Hu He
  • Zhengwen Liu
  • Erik Jeppesen
Primary Research Paper


Changes in zooplankton community structure and function were analyzed in 24 lakes covering a wide salinity gradient (from 0.5 to 115 g l−1) in a semiarid region in northwest China. We hypothesized that species richness (S), species diversity (H), functional diversity (FD), biomass, and size of zooplankton would decrease with increasing salinity. We found that S, H, and FD did decrease with increasing salinity, whereas zooplankton sizes, size range, and biomasses did not. In fact, the sizes of microcrustaceans were mainly regulated by the abundance of small fish. Besides the impoverishment of FD, the zooplankton functional groups also varied along the salinity gradient. A shift occurred from selective raptorial to more generalist microphagous rotifers, from selective to more generalist filter feeder cladocerans, and from dominance of microphagous herbivorous copepods to microphagous carnivores. Our study indicates that the ongoing salinization of lakes with climate warming will result in important changes in the zooplankton, affecting not only the structure but also the functioning of this community. A weakened top-down control by zooplankton on phytoplankton at moderate high salinities may be an indirect consequence, leading to a worsening of eutrophication symptoms. Loss of fish at high salinities may, however, counteract this effect.


Functional classification Salinity gradient Taxon diversity Taxon richness Zooplankton size 



We want to thank the technical staff at the Department of Bioscience in Silkeborg and NIGLAS in Nanjing for help with the study in the field and the laboratory, Drs. Juan Paggi and Susana José de Paggi for help with zooplankton species identification, A. M. Poulsen for editorial assistance, and Mariana Meerhoff for her kind encouragement and valuable comments on an early version of the manuscript. The staff at the Agriculture Department of Fuhai is gratefully acknowledged for fieldwork assistance. This research was funded by the Sino-Danish Centre for Education and Research (SDC), Aarhus University (AU). J. L. Y. was supported by the National Natural Science Foundation of China (31400400). F. T. M. was supported by SNI-ANII (Uruguay). E. J. was supported by the MARS project (Managing Aquatic ecosystems and water Resources under multiple Stress) funded under the 7th EU Framework Programme, Theme 6 (Environment including Climate Change), Contract No.: 603378) and the AU Centre for Water Technology.

Supplementary material

10750_2018_3529_MOESM1_ESM.docx (461 kb)
Supplementary material 1 (DOCX 462 kb)
10750_2018_3529_MOESM2_ESM.docx (656 kb)
Supplementary material 2 (DOCX 657 kb)


  1. Alekseev, V. R., 2002. Copepoda. In Fernando, C. H. (ed.), A Guide to Tropical Freshwater Zooplankton: Identification, Ecology and Impact on Fisheries. Backhuys Publishers, Leiden: 123–188.Google Scholar
  2. Alva-Martínez, A. F., R. Fernández, S. S. S. Sarma & S. Nandini, 2009. Effect of mixed toxic diets (Microcystis and Chlorella) on the rotifers Brachionus calyciflorus and Brachionus havanaensis cultured alone and together. Limnologica – Ecology and Management of Inland Waters 39: 302–305.CrossRefGoogle Scholar
  3. APHA, 1998. Standard Methods for the Examination of Water and Wastewater, 20th edn. APHA, Washington DC.Google Scholar
  4. Arthaud, F., D. Vallod, J. Robin & G. Bornette, 2012. Eutrophication and drought disturbance shape functional diversity and life-history traits of aquatic plants in shallow lakes. Aquatic Sciences 74: 471–481.CrossRefGoogle Scholar
  5. Barnett, A. J., K. Finlay & B. E. Beisner, 2007. Functional diversity of crustacean zooplankton communities: towards a trait-based classification. Freshwater Biology 52: 796–813.CrossRefGoogle Scholar
  6. Boix, D., S. Gascón, J. Sala, A. Badosa, S. Brucet, R. López-Flores, M. Martinoy, J. Gifre & X. D. Quintana, 2008. Patterns of composition and species richness of crustaceans and aquatic insects along environmental gradients in Mediterranean water bodies. Hydrobiologia 597: 53–69.CrossRefGoogle Scholar
  7. Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.CrossRefGoogle Scholar
  8. Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Węgleńska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.Google Scholar
  9. Brooks, J. L., S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.CrossRefPubMedGoogle Scholar
  10. Brucet, S., D. Boix, R. López-Flores, A. Badosa & X. D. Quintana, 2006. Size diversity and species diversity of zooplankton communities in fluctuant Mediterranean salt marshes. Estuarine, Coastal and Shelf Science 67: 424–432.CrossRefGoogle Scholar
  11. Brucet, S., D. Boix, S. Gascón, J. Sala, X. D. Quintana, A. Badosa, M. Søndergaard, T. L. Lauridsen & E. Jeppesen, 2009. Species richness of crustacean zooplankton and trophic structure of brackish lagoons in contrasting climate zones: north temperate Denmark and Mediterranean Catalonia (Spain). Ecography 32: 692–702.CrossRefGoogle Scholar
  12. Brucet, S., D. Boix, X. D. Quintana, E. Jensen, L. W. Nathansen, C. Trochine, M. Meerhoff, S. Gascón & E. Jeppesen, 2010. Factors influencing zooplankton size structure at contrasting temperatures in coastal shallow lakes: implications for effects of climate change. Limnology and Oceanography 55: 1697.CrossRefGoogle Scholar
  13. Brucet, S., D. Boix, L. W. Nathansen, X. D. Quintana, E. Jensen, D. Balayla, M. Meerhoff & E. Jeppesen, 2012. Effects of temperature, salinity and fish in structuring the macroinvertebrate community in shallow lakes: implications for effects of climate change. PloS one 7: e30877.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York, NY.Google Scholar
  15. Chang, K. H., H. Doi, Y. Nishibe & S. I. Nakano, 2010. Feeding habits of omnivorous Asplanchna: comparison of diet composition among Asplanchna herricki, A. priodonta and A. girodi in pond ecosystems. Journal of Limnology 69: 209–216.CrossRefGoogle Scholar
  16. Daufresne, M., K. Lengfellner & U. Sommer, 2009. Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences 106: 12788–12793.CrossRefGoogle Scholar
  17. De Deckker, P., 1983. Notes on the ecology and distribution of non-marine ostracods in Australia. Hydrobiologia 106: 223–234.CrossRefGoogle Scholar
  18. Declerck, S., J. Vandekerkhove, L. Johansson, K. Muylaert, J. M. Conde-Porcuna, K. Van Der Gucht, C. Pérez-Martínez, T. Lauridsen, K. Schwenk, G. Zwart, W. Rommens, J. López-Ramos, E. Jeppesen, W. Vyverman, L. Brendonck & L. De Meester, 2005. Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology 86: 1905–1915.CrossRefGoogle Scholar
  19. Ding, N., W. Yang, Y. Zhou, I. González-Bergonzoni, J. Zhang, K. Chen, N. Vidal, E. Jeppesen & B. Wang, 2017. Different responses of functional traits and diversity of stream macroinvertebrates to environmental and spatial factors in the Xishuangbanna watershed of the upper Mekong River Basin, China. Science of the Total Environment 574: 288–299.CrossRefPubMedGoogle Scholar
  20. Dumont, H. J., I. Van de Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.CrossRefPubMedGoogle Scholar
  21. Flöder, S. & H. Hillebrand, 2012. Species traits and species diversity affect community stability in a multiple stressor framework. Aquatic Biology 17(3): 197–209.CrossRefGoogle Scholar
  22. Gallego, I., T. A. Davidson, E. Jeppesen, C. Pérez-Martínez, P. Sánchez-Castillo, M. Juan, F. Fuentes-Rodríguez, D. León, P. Peñalver, J. Toja & J. J. Casas, 2012. Taxonomic or ecological approaches? Searching for phytoplankton surrogates in the determination of richness and assemblage composition in ponds. Ecological Indicators 18: 575–585.CrossRefGoogle Scholar
  23. Gao, Q., Z. Xu & P. Zhuang, 2008. The relation between distribution of zooplankton and salinity in the Changjiang Estuary. Chinese Journal of Oceanology and Limnology 26: 178–185.CrossRefGoogle Scholar
  24. Grime, J. P., 1973. Competitive exclusion in herbaceous vegetation. Nature 242: 344–347.CrossRefGoogle Scholar
  25. Hammer, U. T., 1986. Saline Lake Ecosystems of the World. Junk, Dordrecht.Google Scholar
  26. Harrison, T. D. & A. K. Whitfield, 2006. Temperature and salinity as primary determinants influencing the biogeography of fishes in South African estuaries. Estuarine, Coastal and Shelf Science 66: 335–345.CrossRefGoogle Scholar
  27. Heino, J., 2008. Patterns of functional biodiversity and function-environment relationships in lake littoral macroinvertebrates. Limnology and Oceanography 53: 1446–1455.CrossRefGoogle Scholar
  28. Heino, J., D. Schmera & T. Erős, 2013. A macroecological perspective of trait patterns in stream communities. Freshwater Biology 58: 1539–1555.CrossRefGoogle Scholar
  29. Helenius, L. K., E. Leskinen, H. Lehtonen & L. Nurminen, 2016. Spatial patterns of littoral zooplankton assemblages along a salinity gradient in a brackish sea: a functional diversity perspective. Estuarine, Coastal and Shelf Science.
  30. Hochberg, R. & O. A. Gurbuz, 2008. Comparative morphology of the somatic musculature in species of Hexarthra and Polyarthra (Rotifera, Monogononta): its function in appendage movement and escape behavior. Zoologischer Anzeiger-A Journal of Comparative Zoology 247: 233–248.CrossRefGoogle Scholar
  31. Jensen, E., S. Brucet, M. Meerhoff, L. Nathansen & E. Jeppesen, 2010. Community structure and diel migration of zooplankton in shallow brackish lakes: role of salinity and predators. Hydrobiologia 646: 215–229.CrossRefGoogle Scholar
  32. Jeppesen, E., M. Søndergaard, E. Kanstrup, B. Petersen, R. B. Eriksen, M. Hammershøj, E. Mortensen, J. P. Jensen & A. Have, 1994. Does the impact of nutrients on the biological structure and function of brackish and fresh-water lakes differ? Hydrobiologia 275: 15–30.CrossRefGoogle Scholar
  33. Jeppesen, E., M. Søndergaard, J. P. Jensen, E. Mortensen & O. Sortkjær, 1996. Fish-induced changes in zooplankton grazing on phytoplankton and bacterioplankton: a long-term study in shallow hypertrophic Lake Søbygaard. Journal of Plankton Research 18: 1605–1625.CrossRefGoogle Scholar
  34. Jeppesen, E., T. L. Lauridsen, S. F. Mitchell, K. Christoffersen & C. W. Burns, 2000. Trophic structure in the pelagial of 25 shallow New Zealand lakes: changes along nutrient and fish gradients. Journal of Plankton Research 22: 951–968.CrossRefGoogle Scholar
  35. Jeppesen, E., M. Søndergaard, A. R. Pedersen, K. Jürgens, A. Strzelczak, T. L. Lauridsen & L. S. Johansson, 2007. Salinity induced regime shift in shallow brackish lagoons. Ecosystems 10: 47–57.CrossRefGoogle Scholar
  36. Jeppesen, E., S. Brucet, L. Naselli-Flores, E. Papastergiadou, K. Stefanidis, T. Nõges, P. Nõges, J. L. Attayde, T. Zohary, J. Coppens, T. Bucak, R. Fernandes Menezes, F. R. Sousa Freitas, M. Kernan, M. Søndergaard & M. Beklioğlu, 2015. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750: 201–227.CrossRefGoogle Scholar
  37. Jin, X. C. & Q. Y. Tu, 1990. Survey Specification for Lake Eutrophication. Environmental Science Press, Beijing.Google Scholar
  38. Kalff, J., 2002. Limnology: Inland Water Ecosystems.Google Scholar
  39. Kořínek, V., 1981. Diaphanosoma birgei n. sp. (Crustacea, Cladocera). A new species from America and its widely distributed subspecies Diaphanosoma birgei ssp. lacustris n. ssp. Canadian Journal of Zoology 59: 1115–1121.CrossRefGoogle Scholar
  40. Korínek, V., 2002. Cladocera. In Fernando, C. H. (ed.), A Guide to Tropical Freshwater Zooplankton. Leiden, Backhuys Publishers, pp. 69–122.Google Scholar
  41. Korovchinsky, N. M., 1992. Sididae & Holopediidae (Crustacea: Daphniiformes). SPB Academic Publishing, The Hague.Google Scholar
  42. Koste, W., 1978. Rotatoria. Die Rädertiere Mitteleuropas. Gebr. Borntraeger, Berlin, Stuttgart: 673 pp. 234 plates.Google Scholar
  43. Kruk, C., V. I. M. Huszar, E. T. H. Peeters, S. Bonilla, L. Costa, M. Lürling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.CrossRefGoogle Scholar
  44. Lepš, J., & P. Šmilauer, 1998. Multivariate Analysis of Ecological Data. Faculty of Biological Sciences, University of South Bohemia Ceské Budejovice, Czech Republic: 110 pp.Google Scholar
  45. Litchman, E., M. D. Ohman & T. Kiørboe, 2013. Trait-based approaches to zooplankton communities. Journal of Plankton Research 35: 473–484.CrossRefGoogle Scholar
  46. Longhi, M. L. & B. E. Beisner, 2010. Patterns in taxonomic and functional diversity of lake phytoplankton. Freshwater Biology 55: 1349–1366.CrossRefGoogle Scholar
  47. Mano, H. & Y. Tanaka, 2016. Mechanisms of compensatory dynamics in zooplankton and maintenance of food chain efficiency under toxicant stress. Ecotoxicology 25: 399–411.CrossRefPubMedGoogle Scholar
  48. Mason, N. W., F. Bello, D. Mouillot, S. Pavoine & S. Dray, 2013. A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. Journal of Vegetation Science 24: 794–806.CrossRefGoogle Scholar
  49. McGill, B. J., B. Enquist, E. Weiher & M. Westoby, 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21: 178–185.CrossRefGoogle Scholar
  50. Moisander, P. H., E. McClinton & H. W. Paerl, 2002. Salinity effects on growth, photosynthetic parameters, and nitrogenase activity in estuarine planktonic cyanobacteria. Microbial Ecology 43: 432–442.CrossRefPubMedGoogle Scholar
  51. Moss, B. R., 2009. Ecology of Fresh Waters: Man and Medium, Past to Future. Wiley.Google Scholar
  52. Moss, B. & R. T. Leah, 1982. Changes in the ecosystem of a guanotrophic and brackish shallow lake in eastern England: potential problems in its restoration. Internationale Revue der Gesamten Hydrobiologie 67: 625–659.Google Scholar
  53. Nielsen, K. J., 2003. Nutrient loading and consumers: agents of change in open-coast macrophyte assemblages. Proceedings of the National Academy of Sciences USA 100: 7660–7665.CrossRefGoogle Scholar
  54. Obertegger, U. & G. Flaim, 2015. Community assembly of rotifers based on morphological traits. Hydrobiologia 753: 31–45.CrossRefGoogle Scholar
  55. Obertegger, U. & M. Manca, 2011. Response of rotifer functional groups to changing trophic state and crustacean community. Journal of Limnology 70: 231–238.CrossRefGoogle Scholar
  56. Obertegger, U., H. A. Smith, G. Flaim & R. L. Wallace, 2011. Using the guild ratio to characterize pelagic rotifer communities. Hydrobiologia 662: 157–162.CrossRefGoogle Scholar
  57. Ojaveer, H., L. A. Kuhns, R. P. Barbiero & M. L. Tuchman, 2001. Distribution and population characteristics of Cercopagis pengoi in Lake Ontario. Journal of Great Lakes Research 27: 10–18.CrossRefGoogle Scholar
  58. Paerl, H. W. & J. Huisman, 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports 1: 27–37.CrossRefPubMedGoogle Scholar
  59. Paturej, E. & A. Gutkowska, 2015. The effect of salinity levels on the structure of zooplankton communities. Archives of Biological Sciences 67: 483–492.CrossRefGoogle Scholar
  60. Pennak, R., 1991. Fresh-Water Invertebrates of the United States. Wiley Interscience, USA: 628.Google Scholar
  61. Quintana, X. D., S. Brucet, D. Boix, R. López-Flores, S. Gascón, A. Badosa, J. Sala, R. Moreno-Amich & J. J. Egozcue, 2008. A non-parametric method for the measurement of size diversity, with emphasis on data standardisation. Limnology and Oceanography: Methods 6: 75–86.CrossRefGoogle Scholar
  62. Quintana, X. D., M. Arim, A. Badosa, J. M. Blanco, D. Boix, S. Brucet, J. Compte, J. J. Egozcue, E. de Eyto, U. Gaedke, S. Gascón, L. Gil de Solá, K. Irvine, E. Jeppesen, T. L. Lauridsen, R. López-Flores, T. Mehner, S. Romo & M. Søndergaard, 2015. Predation and competition effects on the size diversity of aquatic communities. Aquatic Sciences 77: 45–57.CrossRefGoogle Scholar
  63. R Development Core Team, 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  64. Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.CrossRefGoogle Scholar
  65. Rodríguez-Gallego, L., V. Sabaj, S. Masciadri, C. Kruk, R. Arocena & D. Conde, 2015. Salinity as a major driver for submerged aquatic vegetation in coastal lagoons: a multi-year analysis in the subtropical Laguna de Rocha. Estuaries and Coasts 38: 451–465.CrossRefGoogle Scholar
  66. Ruesink, J. L. & D. S. Srivastava, 2001. Numerical and per capita responses to species loss: mechanisms maintaining ecosystem function in a community of stream insect detritivores. Oikos 93: 221–234.CrossRefGoogle Scholar
  67. Sarma, S. S. S., S. Nandini, J. Morales-Ventura, I. Delgado-Martínez & L. González-Valverde, 2006. Effects of NaCl salinity on the population dynamics of freshwater zooplankton (rotifers and cladocerans). Aquatic Ecology 40: 349–360.CrossRefGoogle Scholar
  68. Schallenberg, M., C. J. Hall & C. W. Burns, 2003. Consequences of climate-induced salinity increases on zooplankton abundance and diversity in coastal lakes. Marine Ecology Progress Series 251: 181–189.CrossRefGoogle Scholar
  69. Schindler, D. W., 1990. Experimental perturbations of whole lakes as tests of hypotheses concerning ecosystem structure and function. Oikos 57: 25–41.CrossRefGoogle Scholar
  70. Schmera, D., T. Erős & J. Podani, 2009. A measure for assessing functional diversity in ecological communities. Aquatic Ecology 43: 157–167.CrossRefGoogle Scholar
  71. Shannon, C. E. & W. Weaver, 1964. The Mathematical Theory of Communication. University Illinois Press, Urbana, IL.Google Scholar
  72. Sheridan, J. A. & D. Bickford, 2011. Shrinking body size as an ecological response to climate change. Nature Climate Change 1: 401–406.CrossRefGoogle Scholar
  73. Tavsanoglu, U. N., R. Maleki & N. Akbulut, 2015. Effects of salinity on the zooplankton community structure in two marine lakes and one freshwater lake in the Konya closed basin, Turkey. Ekoloji 24: 25–32.Google Scholar
  74. Ter Braak, C. J., 1994. Canonical community ordination. Part I: basic theory and linear methods. Ecoscience 1: 127–140.CrossRefGoogle Scholar
  75. Ter Braak, C. J., & P. Smilauer, 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination, version 4.5.
  76. Tolomeev, A. P., N. N. Sushchik, R. D. Gulati, O. N. Makhutova, G. S. Kalacheva & T. A. Zotina, 2010. Feeding spectra of Arctodiaptomus salinus (Calanoida, Copepoda) using fatty acid trophic markers in seston food in two salt lakes in South Siberia (Khakasia, Russia). Aquatic Ecology 44: 513–530.CrossRefGoogle Scholar
  77. Tonk, L., K. Bosch, P. M. Visser & J. Huisman, 2007. Salt tolerance of the harmful cyanobacterium Microcystis aeruginosa. Aquatic Microbial Ecology 46: 117–123.CrossRefGoogle Scholar
  78. Tõnno, I., H. Agasild, T. Kõiv, R. Freiberg, P. Nõges & T. Nõges, 2016. Algal diet of small-bodied crustacean zooplankton in a cyanobacteria-dominated eutrophic lake. PloS one 11: e0154526.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Toruan, R. L., 2012. Zooplankton community emerging from fresh and saline wetlands. Ecohydrology & Hydrobiology 12: 53–63.CrossRefGoogle Scholar
  80. USEPA, 2002. National primary drinking water regulations. US Environmental Protection Agency, Washington, DC.Google Scholar
  81. Vandermeer, J., M. van Noordwijk, J. Anderson, C. Ong & I. Perfecto, 1998. Global change and multi-species agroecosystems: concepts and issues. Agriculture, Ecosystems & Environment 67: 1–22.CrossRefGoogle Scholar
  82. Vaughn, C. C., 2010. Biodiversity losses and ecosystem function in freshwaters: emerging conclusions and research directions. BioScience 60: 25–35.CrossRefGoogle Scholar
  83. Viayeh, R. M. & M. Špoljar, 2012. Structure of rotifer assemblages in shallow waterbodies of semi-arid northwest Iran differing in salinity and vegetation cover. Hydrobiologia 686: 73–89.CrossRefGoogle Scholar
  84. Vogt, M., T. Hashioka, M. R. Payne, E. T. Buitenhuis, C. L. Quéré, S. Alvain, M. N. Aita, L. Bopp, S. C. Doney, T. Hirata, I. Lima, S. Sailley & Y. Yamanaka, 2013. The distribution, dominance patterns and ecological niches of plankton functional types in Dynamic Green Ocean Models and satellite estimates. Biogeosciences Discussions 10: 17193–17247.CrossRefGoogle Scholar
  85. Waterkeyn, A., P. Grillas, B. Vanschoenwinkel & L. Brendonck, 2008. Invertebrate community patterns in Mediterranean temporary wetlands along hydroperiod and salinity gradients. Freshwater Biology 53: 1808–1822.CrossRefGoogle Scholar
  86. Whittaker, R. H., 1972. Evolution and measurement of species diversity. Taxon 21: 213–251.CrossRefGoogle Scholar
  87. Williams, W. D., 1998. Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiologia 381: 191–201.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • María Florencia Gutierrez
    • 1
  • Ülkü Nihan Tavşanoğlu
    • 2
  • Nicolas Vidal
    • 3
    • 4
    • 5
  • Jinlei Yu
    • 6
  • Franco Teixeira-de Mello
    • 5
  • Ayşe Idil Çakiroglu
    • 7
  • Hu He
    • 6
  • Zhengwen Liu
    • 6
    • 8
  • Erik Jeppesen
    • 3
    • 4
  1. 1.Instituto Nacional de Limnología, CONICET-UNLSanta FeArgentina
  2. 2.Limnology Laboratory, Department of BiologyMiddle East Technical UniversityAnkaraTurkey
  3. 3.Department of BioscienceAarhus UniversitySilkeborgDenmark
  4. 4.Sino-Danish Centre for Education and Research (SDC)BeijingChina
  5. 5.Departamento de Ecología y Gestión Ambiental, CUREUniversidad de la RepúblicaMontevideoUruguay
  6. 6.State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
  7. 7.Biofluids and Cardiovascular Engineering Laboratory, Mechanical Engineering DepartmentKoc UniversityIstanbulTurkey
  8. 8.Institute of HydrobiologyJinan UniversityGuangzhouChina

Personalised recommendations