Advertisement

Hydrobiologia

, Volume 825, Issue 1, pp 137–158 | Cite as

Evaluation of genes involved in Norway lobster (Nephrops norvegicus) female sexual maturation using transcriptomic analysis

  • Guiomar RotllantEmail author
  • Tuan Viet NguyenEmail author
  • David Hurwood
  • Valerio Sbragaglia
  • Tomer Ventura
  • Joan B. Company
  • Silvia Joly
  • Abigail Elizur
  • Peter B. Mather
CRUSTACEAN GENOMICS

Abstract

The Norway lobster Nephrops norvegicus is the most important commercial crustacean species in Europe. Recent decline in wild captures and a reduction in total abundance and size at first maturation indicate that the species is overexploited. Increasing knowledge of its reproduction, specifically at the molecular level will be mandatory to improving fisheries management. The current study investigated differences between immature and mature N. norvegicus females using Next Generation Sequencing technology applied to multiple tissues. Ovarian maturation-related differential expression patterns were observed for 4362 transcripts in ovary, hepatopancreas, eyestalk, brain, and thoracic ganglia in N. norvegicus. Transcripts detected in the study include vitellogenin, crustacean hyperglycaemic hormone, retinoid X receptor, heat shock protein 90 and proteins encoding lipid and carbohydrate metabolizing enzymes. From the study, data were collected that can prove valuable in developing more comprehensive knowledge of the reproductive system in this lobster species during the ovarian maturation process. Additional studies will be required, however, to identify potential novel genes and to develop a molecular toolkit for crustacean species that can be applied to improving sustainable future production.

Keywords

Oocyte Fecundity Size at maturity Reproduction Fisheries Next generation sequencing 

Notes

Acknowledgements

The current study was supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme (612296-DeNuGReC) and a USC International PhD scholarship to Tuan Viet Nguyen. The authors are grateful for the support of the crew of the fishing vessel Maireta for field sampling. We would also like to acknowledge QUT HPC for computational support during the current study.

Supplementary material

10750_2018_3521_MOESM1_ESM.docx (15 kb)
S1 Detected differentially expressed transcripts in the multi-tissue library between immature and mature females of N. norvegicus. Supplementary material 1 (DOCX 14 kb)
10750_2018_3521_MOESM2_ESM.pdf (1.8 mb)
S2 Volcano plot visualization of detected DEG transcript in ovary, brain, eyestalk, thoracic ganglia and hepatopancreas between immature and mature females of N. norvegicus. Supplementary material 2 (PDF 1799 kb)
10750_2018_3521_MOESM3_ESM.pdf (191 kb)
S3 Venn diagram illustration for detected DEG in multiple tissues between immature and mature females of N. norvegicus. Supplementary material 3 (PDF 190 kb)

References

  1. Abdu, U., C. Davis, I. Khalaila & A. Sagi, 2002. The vitellogenin cDNA of Cherax quadricarinatus encodes a lipoprotein with calcium binding ability, and its expression is induced following the removal of the androgenic gland in a sexually plastic system. General and Comparative Endocrinology 127(3): 263–272.PubMedGoogle Scholar
  2. Ali, M. Y., A. Pavasovic, S. Amin, P. B. Mather & P. J. Prentis, 2015. Comparative analysis of gill transcriptomes of two freshwater crayfish, Cherax cainii and C-destructor. Marine Genomics 22: 11–13.PubMedGoogle Scholar
  3. Asazuma, H., S. Nagata, M. Kono & H. Nagasawa, 2007. Molecular cloning and expression analysis of ecdysone receptor and retinoid X receptor from the kuruma prawn, Marsupenaeus japonicus. Comparative Biochemistry and Physiology: Part B: Biochemistry 148(2): 139–150.Google Scholar
  4. Avarre, J. C., R. Michelis, A. Tietz & E. Lubzens, 2003. Relationship between vitellogenin and vitellin in a marine shrimp (Penaeus semisulcatus) and molecular characterization of vitellogenin complementary DNAs. Biology of Reproduction 69(1): 355–364.PubMedGoogle Scholar
  5. Avarre, J. C., E. Lubzens & P. J. Babin, 2007. Apolipocrustacein, formerly vitellogenin, is the major egg yolk precursor protein in decapod crustaceans and is homologous to insect apolipophorin II/I and vertebrate apolipoprotein B. BMC Evolutionary Biology.  https://doi.org/10.1186/1471-2148-7-3.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bao, C., Y. Yang, H. Huang & H. Ye, 2015. Neuropeptides in the cerebral ganglia of the mud crab, Scylla paramamosain: transcriptomic analysis and expression profiles during vitellogenesis. Scientific Reports 5: 17055.PubMedPubMedCentralGoogle Scholar
  7. Brady, P., A. Elizur, R. Williams, S. F. Cummins & W. Knibb, 2012. Gene Expression Profiling of the Cephalothorax and Eyestalk in Penaeus monodon during Ovarian Maturation. Interrnational Journal of Biological Sciencces 8(3): 328–343.Google Scholar
  8. Brady, P., A. Elizur, S. F. Cummins, N. H. Ngyuen, R. Williams & W. Knibb, 2013. Differential expression microarrays reveal candidate genes potentially associated with reproductive dysfunction of captive-reared prawn Penaeus monodon. Aquaculture 400–401: 14–28.Google Scholar
  9. Bronicki, L. M. & B. J. Jasmin, 2013. Emerging complexity of the HuD/ELAVl4 gene; implications for neuronal development, function, and dysfunction. RNA 19(8): 1019–1037.PubMedPubMedCentralGoogle Scholar
  10. Brown, M. R., D. H. Sieglaff & H. H. Rees, 2009. Gonadal Ecdysteroidogenesis in Arthropoda: Occurrence and Regulation Annual Review of Entomology. Annual Review of Entomology, vol 54. Annual Reviews, Palo Alto, 105–125.Google Scholar
  11. Chan, S. F., J.-G. He, K. H. Chu & C. B. Sun, 2014. The shrimp heat shock cognate 70 functions as a negative regulator in vitellogenin gene expression. Biology of Reproduction 91(1): 1–11.Google Scholar
  12. Christie, A. E. & M. Chi, 2015. Prediction of the neuropeptidomes of members of the Astacidea (Crustacea, Decapoda) using publicly accessible transcriptome shotgun assembly (TSA) sequence data. General and Comparative Endocrinology 224: 38–60.PubMedGoogle Scholar
  13. Chung, A. C. K., D. S. Durica, S. W. Clifton, B. A. Roe & P. M. Hopkins, 1998. Cloning of crustacean ecdysteroid receptor and retinoid-X receptor gene homologs and elevation of retinoid-X receptor mRNA by retinoic acid. Molecular and Cellular Endocrinology 139(1–2): 209–227.PubMedGoogle Scholar
  14. de Kleijn, D. P., M. C. van den Berg, G. J. Martens & F. van Herp, 1995. Cloning and expression of two mRNAs encoding structurally different crustacean hyperglycemic hormone precursors in the lobster Homarus americanus. Biochimica et Biophysica Acta 1260(1): 62–66.PubMedGoogle Scholar
  15. Doxakis, E., 2014. RNA binding proteins: a common denominator of neuronal function and dysfunction. Neuroscience Bulletin 30(4): 610–626.PubMedPubMedCentralGoogle Scholar
  16. Durica, D. S., X. Wu, G. Anilkumar, P. M. Hopkins & A. C. K. Chung, 2002. Characterization of crab EcR and RXR homologs and expression during limb regeneration and oocyte maturation. Molecular and Cellular Endocrinology 189(1–2): 59–76.Google Scholar
  17. Edgar, R. C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5): 1792–1797.PubMedPubMedCentralGoogle Scholar
  18. Edomi, P., E. Azzoni, R. Mettulio, N. Pandolfelli, E. A. Ferrero & P. G. Giulianini, 2002. Gonad-inhibiting hormone of the Norway lobster (Nephrops norvegicus): cDNA cloning, expression, recombinant protein production, and immunolocalization. Gene 284(1–2): 93–102.PubMedGoogle Scholar
  19. Fliss, A. E., S. Benzeno, J. Rao & A. J. Caplan, 2000. Control of estrogen receptor ligand binding by Hsp90. Journal of Steroid Biochemistry and Molecular Biology 72(5): 223–230.PubMedGoogle Scholar
  20. Fujitani, N., H. Hasegawa, H. Kakizaki, M. Ikeda & M. Matsumiya, 2014. Molecular cloning of multiple chitinase genes in swimming crab Portunus trituberculatus. Journal of Chitin and Chitosan Science 2(2): 149–156.Google Scholar
  21. Girish, B. P., C. H. Swetha & P. S. Reddy, 2015. Induction of ecdysteroidogenesis, methyl farnesoate synthesis and expression of ecdysteroid receptor and retinoid X receptor in the hepatopancreas and ovary of the giant mud crab, Scylla serrata by melatonin. General and Comparative Endocrinology 217–218: 37–42.Google Scholar
  22. Glencross, B. D., 2009. Exploring the nutritional demand for essential fatty acids by aquaculture species. Reviews in Aquaculture 1: 71–124.Google Scholar
  23. Grabherr, M. G., B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson, I. Amit, X. Adiconis, L. Fan, R. Raychowdhury, Q. D. Zeng, Z. H. Chen, E. Mauceli, N. Hacohen, A. Gnirke, N. Rhind, F. di Palma, B. W. Birren, C. Nusbaum, K. Lindblad-Toh, N. Friedman & A. Regev, 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29(7): 644.PubMedPubMedCentralGoogle Scholar
  24. Harrison, K. E., 1990. The role of nutrition in maturation, reproduction and embryonic development of decapod crustaceans: a review. Journal of Shellfish Research 9: 1–28.Google Scholar
  25. Heckmann, L.-H., R. Sibly, R. Connon, H. Hooper, T. Hutchinson, S. Maund, C. Hill, A. Bouetard & A. Callaghan, 2008. Systems biology meets stress ecology: linking molecular and organismal stress responses in Daphnia magna. Genome Biology 9(2): R40.PubMedPubMedCentralGoogle Scholar
  26. Hilgers, V., S.B. Lemke & M. Levine, 2012. ELAV mediates 3′UTR extension in the Drosophila nervous system. Genes and Development 26: 2259–2264.Google Scholar
  27. Ho, L. & G. R. Crabtree, 2010. Chromatin remodelling during development. Nature 463(7280): 474–484.PubMedPubMedCentralGoogle Scholar
  28. Huang, Q.-S., J.-H. Yan, J.-Y. Tang, Y.-M. Tao, X.-L. Xie, Y. Wang, X.-Q. Wei, Q.-H. Yan & Q.-X. Chen, 2010. Cloning and tissue expressions of seven chitinase family genes in Litopenaeus vannamei. Fish and Shellfish Immunology 29(1): 75–81.PubMedGoogle Scholar
  29. Huang, Y., X. Huang, L. Hou, L. An, K.-M. Hui, Q. Ren & W. Wang, 2014. Molecular cloning and characterization of three novel Hemocyanins from Chinese mitten crab, Eriocheir sinensis. Aquaculture 434: 385–396.Google Scholar
  30. Jasmani, S., T. Ohira, V. Jayasankar, N. Tsutsui, K. Aida & M. N. Wilder, 2004. Localization of vitellogenin mRNA expression and vitellogenin uptake during ovarian maturation in the giant freshwater prawn Macrobrachium rosenbergii. Journal of Experimental Zoology Part A 301A(4): 334–343.Google Scholar
  31. Jayasankar, V., N. Tsutsui, S. Jasmani, H. Saido-Sakanaka, W. J. Yang, A. Okuno, T. T. T. Hien, K. Aida & M. N. Wilder, 2002. Dynamics of vitellogenin mRNA expression and changes in hemolymph vitellogenin levels during ovarian maturation in the giant freshwater prawn Macrobrachium rosenbergii. Journal of Experimental Zoology 293(7): 675–682.PubMedGoogle Scholar
  32. Jeon, J. M., S. O. Lee, K. S. Kim, H. J. Baek, S. Kim, I. K. Kim, D. L. Mykles & H. W. Kim, 2010. Characterization of two vitellogenin cDNAs from a Pandalus shrimp (Pandalopsis japonica): Expression in hepatopancreas is down-regulated by endosulfan exposure. Comparative Biochemistry and Physiology: Part B 157(1): 102–112.Google Scholar
  33. Jiang, H. C., Z. J. Xing, W. Lu, Z. J. Qian, H. W. Yu & J. L. Li, 2014. Transcriptome Analysis of Red Swamp Crawfish Procambarus clarkii Reveals Genes Involved in Gonadal Development. PLoS ONE 9(8): 9.Google Scholar
  34. Jiang, H., Z. Qian, W. Lu, H. Ding, H. Yu, H. Wang & J. Li, 2015. Identification and Characterization of Reference Genes for Normalizing Expression Data from Red Swamp Crawfish Procambarus clarkii. International Journal of Molecular Sciences 16(9): 21591–21605.PubMedPubMedCentralGoogle Scholar
  35. Johnson, M. P., C. Lordan & A. M. Power, 2013. Chapter Two - Habitat and Ecology of Nephrops norvegicus. In Magnus, L. J. & P. J. Mark (eds), Advances in Marine Biology. Academic Press, Cambridge: 27–63.Google Scholar
  36. Jones, D. T., W. R. Taylor & J. M. Thornton, 1992. The rapid generation of mutation data matrices from protein sequences. Computer applications in the biosciences: CABIOS 8(3): 275–282.PubMedGoogle Scholar
  37. Jones, P., D. Binns, H.-Y. Chang, M. Fraser, W. Li, C. McAnulla, H. McWilliam, J. Maslen, A. Mitchell, G. Nuka, S. Pesseat, A. F. Quinn, A. Sangrador-Vegas, M. Scheremetjew, S.-Y. Yong, R. Lopez & S. Hunter, 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics 30(9): 1236–1240.PubMedPubMedCentralGoogle Scholar
  38. Kim, Y. J. & B. S. Baker, 1993. The Drosophila gene rbp9 encodes a protein that is a member of a conserved group of putative RNA binding proteins that are nervous systemspecific in both flies and humans. Journal of Neuroscience 13: 1045–1056.PubMedGoogle Scholar
  39. Kim, C. H., E. Ueshima, O. Muraoka, H. Tanaka, S. Y. Yeo, T. L. Huh & N. Miki, 1996. Zebrafish elav/HuC homologue as a very early neuronal marker. Neuroscience Letters 216: 109–112.PubMedGoogle Scholar
  40. Kim, H.-W., S. G. Lee & D. L. Mykles, 2005. Ecdysteroid-responsive genes, RXR and E75, in the tropical land crab, Gecarcinus lateralis: Differential tissue expression of multiple RXR isoforms generated at three alternative splicing sites in the hinge and ligand-binding domains. Molecular and Cellular Endocrinology 242(1–2): 80–95.PubMedGoogle Scholar
  41. Klinbunga, S., K. Sittikankaew, N. Jantee, S. Prakopphet, S. Janpoom, R. Hiransuchalert, P. Menasveta & B. Khamnamtong, 2015. Expression levels of vitellogenin receptor (Vtgr) during ovarian development and association between its single nucleotide polymorphisms (SNPs) and reproduction-related parameters of the giant tiger shrimp Penaeus monodon. Aquaculture 435: 18–27.Google Scholar
  42. Koushika, S.P., M.J. Lisbin & K. White, 1996. ELAV, a Drosophila neuron-specific protein, mediates the generation of an alternatively spliced neural protein isoform. Current Biology 6: 1634–1641.PubMedGoogle Scholar
  43. Kumar, S., G. Stecher & K. Tamura, 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33(7): 1870–1874.PubMedGoogle Scholar
  44. Leignel, V., M. Cibois, B. Moreau & B. Chénais, 2007. Identification of new subgroup of HSP70 in Bythograeidae (hydrothermal crabs) and Xanthidae. Gene 396(1): 84–92.PubMedGoogle Scholar
  45. Letunic, I. & P. Bork, 2016. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research 44(W1): W242–W245.PubMedPubMedCentralGoogle Scholar
  46. Letunic, I., T. Doerks & P. Bork, 2015. SMART: recent updates, new developments and status in 2015. Nucleic Acids Research 43(D1): D257–D260.PubMedGoogle Scholar
  47. Li, B. & C. N. Dewey, 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12: 323.PubMedPubMedCentralGoogle Scholar
  48. Li, X., Z. Xu, G. Zhou, H. Lin, J. Zhou, Q. Zeng, Z. Mao & X. Gu, 2015. Molecular characterization and expression analysis of five chitinases associated with molting in the Chinese mitten crab, Eriocheir sinensis. Comparative Biochemistry and Physiology: Part B 187: 110–120.  https://doi.org/10.1016/j.cbpb.2015.05.007.CrossRefGoogle Scholar
  49. Liu, W., Y. Xie, J. Ma, X. Luo, P. Nie, Z. Zuo, U. Lahrmann, Q. Zhao, Y. Zheng, Y. Zhao, Y. Xue & J. Ren, 2015. IBS: an illustrator for the presentation and visualization of biological sequences. Bioinformatics 31(20): 3359–3361.PubMedPubMedCentralGoogle Scholar
  50. Malone, C. D., J. Brennecke, M. Dus, A. Stark, W. R. McCombie, R. Sachidanandam & G. J. Hannon, 2009. Specialized piRNA pathways act in germline and somatic tissues of the Drosophila Ovary. Cell 137(3): 522–535.PubMedPubMedCentralGoogle Scholar
  51. Mani, S. R., H. Megosh & H. Lin, 2014. PIWI proteins are essential for early Drosophila embryogenesis. Developmental Biology 385(2): 340–349.PubMedGoogle Scholar
  52. Mansfield, K.D. & J.D. Keene, 2012. Neuron-specific ELAV/Hu proteins suppress HuR mRNA during neuronal differentiation by alternative polyadenylation. Nucleic Acids Research 40: 2734–2746.PubMedPubMedCentralGoogle Scholar
  53. Maurizii, M. G., L. Alibardi & C. Taddei, 2004. α-Tubulin and acetylated α-tubulin during ovarian follicle differentiation in the lizard Podarcis sicula Raf. Journal of Experimental Zoology Part A: Comparative Experimental Biology 301A(6): 532–541.Google Scholar
  54. Merzendorfer, H. & L. Zimoch, 2003. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. Journal of Experimental Biology 206(24): 4393–4412.PubMedPubMedCentralGoogle Scholar
  55. Mestre, N. C., D. Cottin, R. Bettencourt, A. Colaço, S. P. C. Correia, B. Shillito, S. Thatje & J. Ravaux, 2015. Is the deep-sea crab Chaceon affinis able to induce a thermal stress response? Comparative Biochemistry and Physiology: Part B 181: 54–61.Google Scholar
  56. Mettulio, R., P. G. Giulianini, E. A. Ferrero, S. Lorenzon & P. Edomi, 2004. Functional analysis of crustacean Hyperglycemic Hormone by in vivo assay with wild-type and mutant recombinant proteins. Regulatory Peptides 119(3): 189–197.PubMedGoogle Scholar
  57. Nagaraju, G. P. C., 2011. Reproductive regulators in decapod crustaceans: an overview. Journal of Experimental Biology 214(1): 3–16.PubMedGoogle Scholar
  58. Nagaraju, G. P. C., B. Rajitha & D. W. Borst, 2011. Molecular cloning and sequence of retinoid X receptor in the green crab Carcinus maenas: a possible role in female reproduction. Journal of Endocrinology 210(3): 379–390.Google Scholar
  59. Nguyen, T. V., S. F. Cummins, A. Elizur & T. Ventura, 2016. Transcriptomic characterization and curation of candidate neuropeptides regulating reproduction in the eyestalk ganglia of the Australian crayfish. Scientific Reports, Cherax quadricarinatus.  https://doi.org/10.1038/srep38658.CrossRefGoogle Scholar
  60. Parnes, S., E. Mills, C. Segall, S. Raviv, C. Davis & A. Sagi, 2004. Reproductive readiness of the shrimp Litopenaeus vannamei grown in a brackish water system. Aquaculture 236(1–4): 593–606.Google Scholar
  61. Parra, G., K. Bradnam & I. Korf, 2007. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23(9): 1061–1067.PubMedPubMedCentralGoogle Scholar
  62. Peng, S.S., C.Y. Chen, N. Xu & A.B. Shyu, 1998. RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. The EMBO Journal 17: 3461–3470.PubMedPubMedCentralGoogle Scholar
  63. Peng, J., P. Wei, B. Zhang, Y. Zhao, D. Zeng, X. Chen, M. Li & X. Chen, 2015. Gonadal transcriptomic analysis and differentially expressed genes in the testis and ovary of the Pacific white shrimp (Litopenaeus vannamei). BMC Genomics 16(1): 1006.PubMedPubMedCentralGoogle Scholar
  64. Phiriyangkul, P., P. Puengyam, I. B. Jakobsen & P. Utarabhand, 2007. Dynamics of vitellogenin mRNA expression during vitellogenesis in the banana shrimp Penaeus (Fenneropenaeus) merguiensis using real-time PCR. Molecular Reproduction and Development 74(9): 1198–1207.PubMedGoogle Scholar
  65. Proespraiwong, P., A. Tassanakajon & V. Rimphanitchayakit, 2010. Chitinases from the black tiger shrimp Penaeus monodon: Phylogenetics, expression and activities. Comparative Biochemistry and Physiology: Part B 156(2): 86–96.Google Scholar
  66. Qian, Z., S. He, T. Liu, Y. Liu, F. Hou, Q. Liu, X. Wang, X. Mi, P. Wang & X. Liu, 2014. Identification of ecdysteroid signaling late-response genes from different tissues of the Pacific white shrimp, Litopenaeus vannamei. Comparative Biochemistry and Physiology: Part B 172: 10–30.Google Scholar
  67. Raviv, S., S. Parnes, C. Segall, C. Davis & A. Sagi, 2006. Complete sequence of Litopenaeus vannamei (Crustacea: decapoda) vitellogenin cDNA and its expression in endocrinologically induced sub-adult females. General and Comparative Endocrinology 145(1): 39–50.PubMedGoogle Scholar
  68. Rewitz, K., B. Styrishave & O. Andersen, 2003. CYP330A1 and CYP4C39 enzymes in the shore crab Carcinus maenas: sequence and expression regulation by ecdysteroids and xenobiotics. Biochemical and Biophysical Research Communications 310(2): 252–260.PubMedGoogle Scholar
  69. Rocha, J., F. L. Garcia-Carreño, A. Muhlia-Almazán, A. B. Peregrino-Uriarte, G. Yépiz-Plascencia & J. H. Córdova-Murueta, 2012. Cuticular chitin synthase and chitinase mRNA of whiteleg shrimp Litopenaeus vannamei during the molting cycle. Aquaculture 330–333: 111–115.Google Scholar
  70. Rodeheffer, C. & B. D. Shur, 2004. Characterization of a novel ZP3-independent sperm-binding ligand that facilitates sperm adhesion to the egg coat. Development 131(3): 503–512.PubMedGoogle Scholar
  71. Rosa, R. & M. L. Nunes, 2002. Biochemical changes during the reproductive cycle of the deeps-ea decapod Nephrops norvegicus on the south coast of Portugal. Marine Biology 141: 1001–1009.Google Scholar
  72. Roth, Z., S. Parnes, S. Wiel, A. Sagi, N. Zmora, J. S. Chung & I. Khalaila, 2010. N-glycan moieties of the crustacean egg yolk protein and their glycosylation sites. Glycoconjugate Journal 27(1): 159–169.PubMedPubMedCentralGoogle Scholar
  73. Rotllant, G. & P. Takac, 1999. Ecdysones in the maturational moult of juvenile females of the spider crab, Libinia emarginata Leach, 1815 (Decapoda, Majidae). Crustaceana 72(2): 221–231.Google Scholar
  74. Rotllant, G., E. Ribes, J. B. Company & M. Durfort, 2005. The ovarian maturation cycle of the Norway lobster Nephrops norvegicus (Linnaeus, 1758) (Crustacea, Decapoda) from the western Mediterranean Sea. Invertebrate Reproduction & Development 48(1–3): 161–169.Google Scholar
  75. Rotllant, G., M. Chiva, M. Durfort & E. Ribes, 2012. Internal anatomy and ultrastructure of the male reproductive system of the Norway lobster Nephrops norvegicus (Decapoda: Astacidea). Journal of Morphology 273(6): 572–585.PubMedGoogle Scholar
  76. Rotllant, G., N. M. Wade, S. J. Arnold, G. J. Coman, N. P. Preston & B. D. Glencross, 2015. Identification of genes involved in reproduction and lipid pathway metabolism in wild and domesticated shrimps. Marine Genomics 22: 55–61.PubMedGoogle Scholar
  77. Rotllant, G., T. V. Nguyen, V. Sbragaglia, L. Rahi, K. J. Dudley, D. Hurwood, T. Ventura, J. B. Company, V. Chand, J. Aguzzi & P. B. Mather, 2017. Sex and tissue specific gene expression patterns identified following de novo transcriptomic analysis of the Norway lobster, Nephrops norvegicus. BMC Genomics 18(1): 622.PubMedPubMedCentralGoogle Scholar
  78. Rotllant, G., T. V. Nguyen, J. Aizen, S. Suwansa-ard & T. Ventura, 2018, Towards the identification of Female Gonad Stimulating Factors in crustaceans. Hydrobiologia (in press).Google Scholar
  79. Saetan, U., U. Sangket, P. Deachamag & W. Chotigeat, 2016. Ovarian transcriptome analysis of vitellogenic and non-vitellogenic female banana shrimp (Fenneropenaeus merguiensis). PLoS ONE 11(10): e0164724.PubMedPubMedCentralGoogle Scholar
  80. Sarda, F., 1991. Reproduction and molt synchronism in Nephrops norvegicus (L) (Decapoda, Nephropidae) in the Western Mediterranean—is spawning annual or biennial. Crustaceana 60: 186–199.Google Scholar
  81. Sardà, F., 1995. A review (1967–1990) o some aspects of the life history of Nephrops norvegicus. Marine Science Symposia—ICES 199: 78–88.Google Scholar
  82. Sardà, F., 1998. Symptoms of overexploitation in the stock of the Norway lobster (Nephrops norvegicus) on the “Serola Bank” (Western Mediterranean Sea off Barcelona). Scientia Marina 62(3): 295–299.Google Scholar
  83. Song, L., X. X. Liu, Y. A. Zhang, Q. W. Zhang & Z. W. Zhao, 2008. The cloning and expression of α-tubulin in Monochamus alternatus. Insect Molecular Biology 17(5): 495–504.PubMedGoogle Scholar
  84. Song, C., Z. Cui, M. Hui, Y. Liu & Y. Li, 2015. Molecular characterization and expression profile of three Fem-1 genes in Eriocheir sinensis provide a new insight into crab sex-determining mechanism. Comparative Biochemistry and Physiology: Part B 189: 6–14.Google Scholar
  85. Song, L., C. Bian, Y. Luo, L. Wang, X. You, J. Li, Y. Qiu, X. Ma, Z. Zhu, L. Ma, Z. Wang, Y. Lei, J. Qiang, H. Li, J. Yu, A. Wong, J. Xu, Q. Shi & P. Xu, 2016. Draft genome of the Chinese mitten crab, Eriocheir sinensis. GigaScience 5(1): 1–3.PubMedPubMedCentralGoogle Scholar
  86. Soroka, Y., A. Sagi, I. Khalaila, U. Abdu & Y. Milner, 2000. Changes in protein kinase C during vitellogenesis in the crayfish Cherax qyadricarinatus—Possible activation by methyl farnesoate. General and Comparative Endocrinology 118(2): 200–208.PubMedGoogle Scholar
  87. Subramoniam, T., 2011. Mechanisms and control of vitellogenesis in crustaceans. Fisheries Science 77(1): 1–21.Google Scholar
  88. Sun, Y., L. Zhang, M. Li, R. Wu, L. Lei & S. Xie, 2009. Cloning and expression analysis of an inducible heat shock protein 70 gene from red swamp crayfish, Procambarus clarkii. Acta Hydrobiologica Sinica 33(4): 627–635.Google Scholar
  89. Techa, S. & J. S. Chung, 2013. Ecdysone and retinoid-X receptors of the blue crab, Callinectes sapidus: Cloning and their expression patterns in eyestalks and Y-organs during the molt cycle. Gene 527(1): 139–153.Google Scholar
  90. Thongda, W., J. S. Chung, N. Tsutsui, N. Zmora & A. Katenta, 2015. Seasonal variations in reproductive activity of the blue crab, Callinectes sapidus: Vitellogenin expression and levels of vitellogenin in the hemolymph during ovarian development. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 179: 35–43.Google Scholar
  91. Tiu, S. H. K., J. H. L. Hui, A. S. C. Mak, J.-G. He & S.-M. Chan, 2006. Equal contribution of hepatopancreas and ovary to the production of vitellogenin (PmVg1) transcripts in the tiger shrimp, Penaeus monodon. Aquaculture 254(1–4): 666–674.Google Scholar
  92. Tiu, S. H. K., J. Benzie & S.-M. Chan, 2008. From hepatopancreas to ovary: molecular characterization of a shrimp vitellogenin receptor involved in the processing of vitellogenin. Biology of Reproduction 79(1): 66–74.PubMedGoogle Scholar
  93. Tiu, S. H. K., H. L. Hui, B. Tsukimura, S. S. Tobe, J. G. He & S. M. Chan, 2009. Cloning and expression study of the lobster (Homarus americanus) vitellogenin: Conservation in gene structure among decapods. General and Comparative Endocrinology 160(1): 36–46.PubMedGoogle Scholar
  94. Tiu, S. H.-K., E. F. Hult, K. J. Yagi & S. S. Tobe, 2012. Farnesoic acid and methyl farnesoate production during lobster reproduction: Possible functional correlation with retinoid X receptor expression. General and Comparative Endocrinology 175(2): 259–269.PubMedGoogle Scholar
  95. Tsang, W. S., L. S. Quackenbush, B. K. C. Chow, S. H. K. Tiu, J. G. He & S. M. Chan, 2003. Organization of the shrimp vitellogenin gene: evidence of multiple genes and tissue specific expression by the ovary and hepatopancreas. Gene 303: 99–109.PubMedGoogle Scholar
  96. Tseng, D. Y., Y. N. Chen, K. F. Liu, G. H. Kou, C. F. Lo & C. M. Kuo, 2002. Hepatopancreas and ovary are sites of vitellogenin synthesis as determined from partial cDNA encoding of vitellogenin in the marine shrimp, Penaeus vannamei. Invertebrate Reproduction & Development 42(2–3): 137–143.Google Scholar
  97. Tsutsui, N., I. Kawazoe, T. Ohira, S. Jasmani, W. J. Yang, M. N. Wilder & K. Aida, 2000. Molecular characterization of a cDNA encoding vitellogenin and its expression in the hepatopancreas and ovary during vitellogenesis in the kuruma prawn, Penaeus japonicus. Zoological Science 17(5): 651–660.PubMedGoogle Scholar
  98. Tsutsui, N., H. Saido-Sakanaka, W. J. Yang, V. Jayasankar, S. Jasmani, A. Okuno, T. Ohira, T. Okumura, K. Aida & M. N. Wilder, 2004. Molecular characterization of a cDNA encoding vitellogenin in the coonstiriped shrimp, Pandalus hypsinotus and site of vitellogenin mRNA expression. Journal of Experimental Zoology Part A 301A(10): 802–814.Google Scholar
  99. Tsutsui, N., Y. K. Kim, S. Jasmani, T. Ohira, M. N. Wilder & K. Aida, 2005. The dynamics of vitellogenin gene expression differs between intact and eyestalk ablated kuruma prawn Penaeus (Marsupenaeus) japonicus. Fisheries Science 71(2): 249–256.Google Scholar
  100. Uddowla, H., A. R. Kim, W. G. Park & H. W. Kim, 2015. cDNAs encoding chitin synthase from shrimp (Pandalopsis Japonica): molecular characterization and expression analysis. Journal of Aquaculture Research and Development 6: 298.Google Scholar
  101. Varadaraj, K., S. S. Kumari & D. M. Skinner, 1997. Molecular characterization of four members of the α-tubulin gene family of the Bermuda land crab Gecarcinus lateralis. Journal of Experimental Zoology 278(2): 63–77.PubMedGoogle Scholar
  102. Vargas-Vila, M. A., R. L. Hannibal, R. J. Parchem, P. Z. Liu & N. H. Patel, 2010. A prominent requirement for single-minded and the ventral midline in patterning the dorsoventral axis of the crustacean Parhyale hawaiensis. Development 137(20): 3469–3476.PubMedPubMedCentralGoogle Scholar
  103. Veenstra, J. A., 2015. The power of next-generation sequencing as illustrated by the neuropeptidome of the crayfish Procambarus clarkii. General and Comparative Endocrinology 224: 84–95.PubMedGoogle Scholar
  104. Ventura, T., S. F. Cummins, Q. Fitzgibbon, S. Battaglene & A. Elizur, 2014. Analysis of the central nervous system transcriptome of the eastern rock lobster Sagmariasus verreauxi reveals its putative neuropeptidome. PLoS ONE 9(5): 23.Google Scholar
  105. Wang, W., X. G. Wu, Z. J. Liu, H. J. Zheng & Y. X. Cheng, 2014. Insights into hepatopancreatic functions for nutrition metabolism and ovarian development in the crab Portunus trituberculatus: Gene Discovery in the comparative transcriptome of different hepatopancreas stages. PLoS ONE 9(1): e0084921.Google Scholar
  106. Watanabe, T. & M. Kono, 1997. Isolation of a cDNA Encoding a Chitinase Family Protein from Cuticular Tissues of the Kuruma Prawn Penaeus japonicus. Zoological Science 14(1): 65–68.PubMedGoogle Scholar
  107. Webster, S. G., R. Keller & H. Dircksen, 2012. The CHH-superfamily of multifunctional peptide hormones controlling crustacean metabolism, osmoregulation, moulting, and reproduction. General and Comparative Endocrinology 175(2): 217–233.Google Scholar
  108. Wong, Q. W. L., W. Y. Mak & K. H. Chu, 2008. Differential gene expression in hepatopancreas of the shrimp Metapenaeus ensis during ovarian maturation. Marine Biotechnology 10(1): 91–98.PubMedGoogle Scholar
  109. Wu, L. T. & K. H. Chu, 2008. Characterization of heat shock protein 90 in the shrimp Metapenaeus ensis: evidence for its role in the regulation of vitellogenin synthesis. Molecular Reproduction and Development 75(5): 952–959.PubMedGoogle Scholar
  110. Wu, P., D. Qi, L. Chen, H. Zhang, X. Zhang, J. Guang Qin & S. Hu, 2009. Gene discovery from an ovary cDNA library of oriental river prawn Macrobrachium nipponense by ESTs annotation. Comparative Biochemistry and Physiology: Part D 4(2): 111–120.  https://doi.org/10.1016/j.cbd.2008.12.004.CrossRefGoogle Scholar
  111. Xiang, D.-F., J.-Q. Zhu, C.-C. Hou & W.-X. Yang, 2014. Identification and expression pattern analysis of Piwi genes during the spermiogenesis of Portunus trituberculatus. Gene 534(2): 240–248.  https://doi.org/10.1016/j.gene.2013.10.050.CrossRefPubMedGoogle Scholar
  112. Xie, S., L. Sun, F. Liu & B. Dong, 2009. Molecular characterization and mRNA transcript profile of vitellogenin in Chinese shrimp, Fenneropenaeus chinensis. Molecular Biology Reports 36(2): 389–397.PubMedGoogle Scholar
  113. Xiu, Y., L. Hou, X. Liu, Y. Wang, W. Gu, Q. Meng & W. Wang, 2015. Isolation and characterization of two novel C-type lectins from the oriental river prawn, Macrobrachium nipponense. Fish and Shellfish Immunology 46(2): 603–611.PubMedGoogle Scholar
  114. Yang, F., H. T. Xu, Z. M. Dai & W. J. Yang, 2005. Molecular characterization and expression analysis of vitellogenin in the marine crab Portunus trituberculatus. Comparative Biochemistry and Physiology - Part B: Biochemistry & Molecular Biology 142(4): 456–464.Google Scholar
  115. Yao, K. M., M. L. Samson, R. Reeves & K. White, 1993. Gene elav of Drosophila melanogaster: a prototype for neuronalspecific RNA binding protein gene family that is conserved in flies and humans. Developmental Neurobiology 24: 723–739.PubMedGoogle Scholar
  116. Ye, J., L. Fang, H. K. Zheng, Y. Zhang, J. Chen, Z. J. Zhang, J. Wang, S. T. Li, R. Q. Li, L. Bolund & J. Wang, 2006. WEGO: a web tool for plotting GO annotations. Nucleic Acids Research 34: W293–W297.PubMedPubMedCentralGoogle Scholar
  117. Yoshiyama, T., T. Namiki, K. Mita, H. Kataoka & R. Niwa, 2006. Neverland is an evolutionally conserved Rieske-domain protein that is essential for ecdysone synthesis and insect growth. Development 133(13):2565–2574.PubMedGoogle Scholar
  118. Yu, Y., X. Zhang, J. Yuan, F. Li, X. Chen, Y. Zhao, L. Huang, H. Zheng & J. Xiang, 2015. Genome survey and high-density genetic map construction provide genomic and genetic resources for the Pacific White Shrimp, Litopenaeus vannamei. Scientific Reports 5: 15612.PubMedPubMedCentralGoogle Scholar
  119. Zeng, H., J. Huang, W. Li, H. Huang & H. Ye, 2011. Identification of differentially expressed genes in the thoracic ganglion of the mud crab, Scylla paramamosain during ovarian maturation. Marine Biology Research 7(6): 617–622.Google Scholar
  120. Zhao, W. H., L. Q. Chen, J. G. Qin, P. Wu, F. Y. Zhang, E. C. Li & B. P. Tang, 2011. MnHSP90 cDNA characterization and its expression during the ovary development in oriental river prawn, Macrobrachium nipponense. Molecular Biology Reports 38(2): 1399–1406.PubMedGoogle Scholar
  121. Zhu, H., H.L. Zhou, R.A. Hasman & H. Lou, 2007. Hu proteins regulate polyadenylation by blocking sites containing U-rich sequences. Journal of Biological Chemistry 282: 2203–2210.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut de Ciències del Mar (ICM-CSIC)BarcelonaSpain
  2. 2.Faculty of Science, Health, Education and Engineering, GeneCology Research CentreUniversity of the Sunshine CoastMaroochydore DCAustralia
  3. 3.Earth, Environmental and Biological Sciences, Science and Engineering FacultyQueensland University of TechnologyBrisbaneAustralia
  4. 4.Australian Rivers InstituteGriffith UniversityNathanAustralia
  5. 5.Department of Biology and Ecology of FishesLeibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany

Personalised recommendations