Advertisement

Hydrobiologia

, Volume 825, Issue 1, pp 91–119 | Cite as

Toward the identification of female gonad-stimulating factors in crustaceans

  • Guiomar RotllantEmail author
  • Tuan Viet Nguyen
  • Joseph Aizen
  • Saowaros Suwansa-ard
  • Tomer VenturaEmail author
CRUSTACEAN GENOMICS Review Paper

Abstract

Over many decades there were numerous attempts to isolate gonad-stimulating factors (GSF) in crustaceans. Before omic technologies, the main neuroendocrine factors identified as ovarian development regulators in crustaceans were inhibitory in nature, belonging to the CHH family of neuropeptides produced in the eyestalk. Eyestalk ablation thus leads to ovarian development and this technique is still used in shrimp farms to induce maturation although some biological issues arise. In this manuscript, we review the current knowledge on potential GSF with emphasis on several key candidates and discuss how novel sequencing technologies might aid in better understanding the nature of the ovarian development in crustaceans. However, the gap between the rapid pace at which sequence databases are produced and mined and the experimental work that lags behind do not yet allow us to know the nature of the GSF in crustaceans. Three possible reasons are suggested: (1) crustaceans represent a very large and diverse group, then different species could have GSF of different compounds; (2) it is possible that crustaceans employ multiple hormonal factors to control vitellogenesis; (3) crustaceans might not need a GSF. Reproduction is only negatively regulated by CHH family peptides.

Keywords

Ovarian maturation Gonadotropin-releasing hormone (GnRH) Crustacean hyperglycemic hormone (CHH) Pigment-dispersing hormones (PDH) Corazonin Glycoprotein hormones (GP) 

Notes

Acknowledgements

The current study was supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme (612296-DeNuGReC) and by the Australian Research Council Discovery Project (DP160103320).

Supplementary material

10750_2017_3497_MOESM1_ESM.xlsx (13 kb)
Supplementary material 1 (XLSX 13 kb)
10750_2017_3497_MOESM2_ESM.docx (17 kb)
Supplementary material 2 (DOCX 17 kb)

References

  1. Ahyong, S. T., J. K. Lowry, M. Alonso, R. N. Bamber, G. A. Boxshall, P. Castro, S. Gerken, G. S. Karaman, J. W. Goy & D. S. Jones, 2011. Subphylum Crustacea Brünnich, 1772. Zootaxa 3148: 165–191.Google Scholar
  2. Amano, M., T. Okumura, K. Okubo, N. Amiya, A. Takahashi & Y. Oka, 2009. Biochemical analysis and immunohistochemical examination of a GnRH-like immunoreactive peptide in the central nervous system of a decapod crustacean, the kuruma prawn (Marsupenaeus japonicus). Zoological Science 26(12): 840–845.PubMedGoogle Scholar
  3. Amoroso, G., T. Ventura, J. M. Cobcroft, M. B. Adams, A. Elizur & C. G. Carter, 2016. Multigenic delineation of lower jaw deformity in triploid Atlantic Salmon (Salmo salar L.). PLoS ONE 11(12): e0168454.PubMedPubMedCentralGoogle Scholar
  4. Bao, C., Y. Yang, H. Huang & H. Ye, 2015. Neuropeptides in the cerebral ganglia of the mud crab, Scylla paramamosain: transcriptomic analysis and expression profiles during vitellogenesis. Scientific Reports 5: 17055.PubMedPubMedCentralGoogle Scholar
  5. Bassett, J. H. D., A. van der Spek, J. G. Logan, A. Gogakos, J. Bagchi-Chakraborty, E. Murphy, C. van Zeijl, J. Down, P. I. Croucher, A. Boyde, A. Boelen & G. R. Williams, 2015. Thyrostimulin regulates osteoblastic bone formation during early skeletal development. Endocrinology 156(9): 3098–3113.PubMedPubMedCentralGoogle Scholar
  6. Basu, A. C. & E. A. Kravitz, 2003. Morphology and monoaminergic modulation of crustacean hyperglycemic hormone-like immunoreactive neurons in the lobster nervous system. Journal of Neurocytology 32(3): 253–263.PubMedGoogle Scholar
  7. Benzie, J. A. H., 1998. Penaeid genetics and biotechnology. Aquaculture 164(1–4): 23–47.Google Scholar
  8. Bomirski, A. & E. Klekkawinska, 1976. Stimulation of oogenesis in sand shrimp, Crangon crangon, by a human gonadotropin. General and Comparative Endocrinology 30(3): 239–242.PubMedGoogle Scholar
  9. Brown, M. R., D. H. Sieglaff & H. H. Rees, 2009. Gonadal ecdysteroidogenesis in arthropoda: occurrence and regulation annual review of entomology. Annual Review of Entomology 54: 105–125.PubMedGoogle Scholar
  10. Cahansky, A. V., B. Kaiser Dutra, D. da Silva Castiglioni, G. Turcato Oliveira, G. Bond Buckup & E. M. Rodríguez, 2008. Induction of ovarian growth in Aegla platensis (Crustacea, Aeglidae) by means of neuroregulators incorporated to food. Revista de Biología Tropical 56(3): 1201–1207.PubMedGoogle Scholar
  11. Castiglioni, D. D. S., A. V. Cahansky, E. Rodríguez, B. K. Dutra, G. T. Oliveira & G. Bond-Buckup, 2009. Induction of ovarian growth in Aegla uruguayana (Anomura, Aeglidae) by means of neuroregulators incorporated to food. Iheringia Série Zoologia 99(3): 286–290.Google Scholar
  12. Cazzamali, G., N. P. E. Saxild & C. J. P. Grimmelikhuijzen, 2002. Molecular cloning and functional expression of a Drosophila corazonin receptor. Biochemical and Biophysical Research Communications 298: 31–36.PubMedGoogle Scholar
  13. Chaix, J. & M. De Reggi, 1982. Ecdysteroid levels during ovarian development and embryogenesis in the spider crab Acanthonyx lunulatus. Gen and Comp Endocrinol 47: 7–14.Google Scholar
  14. Chaix, J. C., J. P. Trilless & G. Vernet, 1976. Dégénérescence de l’organe Y chez les mâles pubères d’Acnathonyx lunulatus (Risso) (Crustacea, Decapoda, Oxyrhyncha). Comptes Rendus de l’Académie des Sciences Paris 283: 523–526.Google Scholar
  15. Chan, S.-M., 1995. Possible roles of 20-hydroxyecdysone in the control of ovary maturation in the white shrimp Penaeus vannamei (Crustacea: decapoda). Comparative Biochemistry and Physiology Part C 112(1): 51–59.Google Scholar
  16. Chandler, J. C., J. Aizen, Q. P. Fitzgibbon, A. Elizur & T. Ventura, 2016. Applying the power of transcriptomics: understanding male sexual development in Decapod Crustacea. Integrative and Comparative Biology 56: 1144–1156.Google Scholar
  17. Chang, C.-C., K.-W. Tsai, N.-W. Hsiao, C.-Y. Chang, C.-L. Lin, R. D. Watson & C.-Y. Lee, 2010. Structural and functional comparisons and production of recombinant crustacean hyperglycemic hormone (CHH) and CHH-like peptides from the mud crab Scylla olivacea. General and Comparative Endocrinology 167(1): 68–76.PubMedGoogle Scholar
  18. Chen, H.-Y., R. Douglas Watson, J.-C. Chen, H.-F. Liu & C.-Y. Lee, 2007. Molecular characterization and gene expression pattern of two putative molt-inhibiting hormones from Litopenaeus vannamei. General and Comparative Endocrinology 151(1): 72–81.PubMedGoogle Scholar
  19. Chen, T., L. P. Zhang, N. K. Wong, M. Zhong, C. H. Ren & C. Q. Hu, 2014. Pacific white shrimp (Litopenaeus vannamei) Vitellogenesis-inhibiting hormone (VIH) is predominantly expressed in the brain and negatively regulates hepatopancreatic vitellogenin (VTG) gene expression. Biology of Reproduction 90(3): 47.PubMedGoogle Scholar
  20. Chen, Y. N., H. F. Fan, S. L. Hsieh & C. M. Kuo, 2003. Physiological involvement of DA in ovarian development of the freshwater giant prawn. Macrobrachium rosenbergii. Aquaculture 228(1–4): 383–395.Google Scholar
  21. Choi, C. Y., J. Zheng & R. D. Watson, 2006. Molecular cloning of a cDNA encoding a crustacean hyperglycemic hormone from eyestalk ganglia of the blue crab, Callinectes sapidus. General and Comparative Endocrinology 148(3): 383–387.PubMedGoogle Scholar
  22. Christie, A. E., 2014a. Expansion of the Litopenaeus vannamei and Penaeus monodon peptidomes using transcriptome shotgun assembly sequence data. General and Comparative Endocrinology 206: 235–254.PubMedGoogle Scholar
  23. Christie, A. E., 2014b. In silico characterization of the peptidome of the sea louse Caligus rogercresseyi (Crustacea, Copepoda). General and Comparative Endocrinology 204: 248–260.PubMedGoogle Scholar
  24. Christie, A. E., 2014c. Peptide discovery in the ectoparasitic crustacean Argulus siamensis: identification of the first neuropeptides from a member of the Branchiura. General and Comparative Endocrinology 204: 114–125.PubMedGoogle Scholar
  25. Christie, A. E., 2014d. Prediction of the peptidomes of Tigriopus californicus and Lepeophtheirus salmonis (Copepoda, Crustacea). General and Comparative Endocrinology 201: 87–106.PubMedGoogle Scholar
  26. Christie, A. E., C. R. Cashman, H. R. Brennan, M. Ma, G. L. Sousa, L. Li, E. A. Stemmler & P. S. Dickinson, 2008. Identification of putative crustacean neuropeptides using in silico analyses of publicly accessible expressed sequence tags. General and Comparative Endocrinology 156(2): 246–264.PubMedGoogle Scholar
  27. Christie, A. E., E. A. Stemmler & P. S. Dickinson, 2010. Crustacean neuropeptides. Cellular and Molecular Life Sciences 67(24): 4135–4169.PubMedGoogle Scholar
  28. Christie, A. E., M. Chi, T. J. Lameyer, M. G. Pascual, D. N. Shea, M. E. Stanhope, D. J. Schulz & P. S. Dickinson, 2016. Neuropeptidergic signaling in the American Lobster Homarus americanus: new insights from high-throughput nucleotide sequencing. PLoS ONE 10(12): e0145964.Google Scholar
  29. Christie, A. E., V. Roncalli, M. C. Cieslak, M. G. Pascual, A. Yu, T. J. Lameyer, M. E. Stanhope & P. S. Dickinson, 2017. Prediction of a neuropeptidome for the eyestalk ganglia of the lobster Homarus americanus using a tissue-specific de novo assembled transcriptome. General and Comparative Endocrinology 243: 96–119.PubMedGoogle Scholar
  30. Chung, J. S., N. Zmora, H. Katayama & N. Tsutsui, 2010. Crustacean hyperglycemic hormone (CHH) neuropeptidesfamily: functions, titer, and binding to target tissues. General and Comparative Endocrinology 166(3): 447–454.PubMedGoogle Scholar
  31. Coccia, E., E. D. Lisa, C. D. Cristo, A. D. Cosmo & M. Paolucci, 2010. Effects of estradiol and progesterone on the reproduction of the freshwater crayfish Cherax albidus. Biological Bulletin 218(1): 36–47.PubMedGoogle Scholar
  32. Colbourne, J., M. Pfrender, D. Gilbert, W. Thomas, A. Tucker, T. Oakley, S. Tokishita, A. Aerts, G. Arnold & M. Basu, 2011. The ecoresponsive genome of Daphnia pulex. Science 331: 555–561.PubMedPubMedCentralGoogle Scholar
  33. Combarnous, Y., 1992. Molecular basis of the specificity of binding of glycoprotein hormones to their receptors. Endocrine Reviews 13(4): 670–691.PubMedGoogle Scholar
  34. Cui, Z., M. Hui, Y. Liu, C. Song, X. Li, Y. Li, L. Liu, G. Shi, S. Wang, F. Li, X. Zhang, C. Liu, J. Xiang & K. H. Chu, 2015. High-density linkage mapping aided by transcriptomics documents ZW sex determination system in the Chinese mitten crab Eriocheir sinensis. Heredity 115(3): 206–215.PubMedPubMedCentralGoogle Scholar
  35. Das, S., N. L. Pitts, M. R. Mudron, D. S. Durica & D. L. Mykles, 2016. Transcriptome analysis of the molting gland (Y-organ) from the blackback land crab, Gecarcinus lateralis. Comparative Biochemistry and Physiology Part D 17: 26–40.Google Scholar
  36. De Kleijn, D., K. Janssen, S. Waddy, R. Hegeman, W. Lai, G. Martens & F. Van Herp, 1998. Expression of the crustacean hyperglycaemic hormones and the gonad-inhibiting hormone during the reproductive cycle of the female American lobster Homarus americanus. Journal of Endocrinology 156(2): 291–298.PubMedGoogle Scholar
  37. De Kleijn, D. P. & F. Van Herp, 1998. Involvement of the hyperglycemic neurohormone family in the control of reproduction in decapod crustaceans. Invertebrate Reproduction & Development 33(2–3): 263–272.Google Scholar
  38. Dereeper, A., V. Guignon, G. Blanc, S. Audic, S. Buffet, F. Chevenet, J. F. Dufayard, S. Guindon, V. Lefort, M. Lescot, J. M. Claverie & O. Gascuel, 2008. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research 36: W465–W469.PubMedPubMedCentralGoogle Scholar
  39. Dickinson, P. S., C. Mecsas, J. Hetling & K. Terio, 1993. The neuropeptide red pigment concentrating hormone affects rhythmic pattern generation at multiple sites. Journal of Neurophysiology 69(5): 1475–1483.PubMedGoogle Scholar
  40. Dircksen, H., D. Böcking, U. Heyn, C. Mandel, J. S. Chung, G. Baggerman, P. Verhaert, S. Daufeldt, T. Plösch, P. P. Jaros, E. Waelkens, R. Keller & S. G. Webster, 2001. Crustacean hyperglycaemic hormone (CHH)-like peptides and CHH-precursor-related peptides from pericardial organ neurosecretory cells in the shore crab, Carcinus maenas, are putatively spliced and modified products of multiple genes. Biochemical Journal 356(Pt 1): 159–170.PubMedPubMedCentralGoogle Scholar
  41. Dircksen, H., S. Neupert, R. Predel, P. Verleyen, J. Huybrechts, J. Strauss, F. Hauser, E. Stafflinger, M. Schneider, K. Pauwels, L. Schoofs & C. J. Grimmelikhuijzen, 2011. Genomics, transcriptomics, and peptidomics of Daphnia pulex neuropeptides and protein hormones. Journal of Proteome Research 10(10): 4478–4504.PubMedGoogle Scholar
  42. Dos Santos, S., C. Bardet, S. Bertrand, H. Escriva, D. Habert & B. Querat, 2009. Distinct expression patterns of glycoprotein hormone-α2 and -β5 in a basal chordate suggest independent developmental functions. Endocrinology 150(8): 3815–3822.PubMedGoogle Scholar
  43. Du, Y.-X., K.-Y. Ma & G.-F. Qiu, 2015. Discovery of the genes in putative GnRH signaling pathway with focus on characterization of GnRH-like receptor transcripts in the brain and ovary of the oriental river prawn Macrobrachium nipponense. Aquaculture 442: 1–11.Google Scholar
  44. Eastman-Reks, S. & M. Fingerman, 1984. Effects of neuroendocrine tissue and cyclic AMP on ovarian growth in vivo and in vitro in the fiddler crab, Uca pugilator. Comparative Biochemistry and Physiology Part A, Physiology 79(4): 679–684.Google Scholar
  45. Fairs, N., P. Quinlan & L. Goad, 1990. Changes in ovarian unconjugated and conjugated steroid titers during vitellogenesis in Penaeus monodon. Aquaculture 89(1): 83–99.Google Scholar
  46. Fanjul-Moles, M. L., 2006. Biochemical and functional aspects of crustacean hyperglycemic hormone in decapod crustaceans: review and update. Comparative Biochemistry and Physiology Part C 142(3): 390–400.PubMedGoogle Scholar
  47. Fernlund, P., 1976. Structure of a light-adapting hormone from the shrimp, Pandalus borealis. Biochimica et Biophysica Acta (BBA)-Protein Structure 439(1): 17–25.Google Scholar
  48. Fernlund, P. & L. Josefsson, 1972. Crustacean color-change hormone: amino acid sequence and chemical synthesis. Science 177: 173–175.PubMedGoogle Scholar
  49. Fingerman, M., 1997. Roles of neurotransmitters in regulating reproductive hormone release and gonadal maturation in decapod crustaceans. Invertebrate Reproduction & Development 31(1–3): 47–54.Google Scholar
  50. Fouda, M. M. A., M. M. H. Sarhan & M. Takeda, 2016. Crustacean cardioactive peptide (CCAP) and corazonin (Crz) as putative circadian clock output signals in the central nervous system of the terrestrial isopod, Armadillidium vulgare (Latreille). International Journal of Advanced Research 4(3): 205–217.Google Scholar
  51. Fu, Q., M. F. Goy & L. Li, 2005a. Identification of neuropeptides from the decapod crustacean sinus glands using nanoscale liquid chromatography tandem mass spectrometry. Biochemical and Biophysical Research Communications 337(3): 765–778.PubMedGoogle Scholar
  52. Fu, Q., K. K. Kutz, J. J. Schmidt, Y.-W. A. Hsu, D. I. Messinger, S. D. Cain, H. O. de la Iglesia, A. E. Christie & L. Li, 2005b. Hormone complement of the Cancer productus sinus gland and pericardial organ: an anatomical and mass spectrometric investigation. The Journal of Comparative Neurology 493(4): 607–626.PubMedGoogle Scholar
  53. Gade, G., 2009. Peptides of the adipokinetic hormone/red pigment-concentrating hormone family: a new take on biodiversity. Annals of the New York Academy of Sciences 1163: 125–136.PubMedGoogle Scholar
  54. Gomez, R., 1965. Acceleration of development of gonads by implantation of brain in the crab Paratelphusa hydrodromous. Naturwissenschaften 52(9): 216.Google Scholar
  55. Gomez, R. & K. Nayar, 1965. Certain endocrine influences in the reproduction of the crab Paratelphusa hydrodromous. Zoologisches Jahrbuch, Abteilung Allgemeine Zoologie und Physiologie der Tiere 71: 694–701.Google Scholar
  56. Gu, P. L., S. S. Tobe, B. K. C. Chow, K. H. Chu, J. G. He & S. M. Chan, 2002. Characterization of an additional molt inhibiting hormone-like neuropeptide from the shrimp Metapenaeus ensis. Peptides 23(11): 1875–1883.PubMedGoogle Scholar
  57. Guan, Z.-B., Y. Shui, X.-R. Liao, Z.-H. Xu & X. Zhou, 2014. Primary structure of a novel gonadotropin-releasing hormone (GnRH) in the ovary of red swamp crayfish Procambarus clarkii. Aquaculture 418–419: 67–71.Google Scholar
  58. Gunamalai, V., R. Kirubagaran & T. Subramoniam, 2006. Vertebrate steroids and the control of female reproduction in two decapod crustaceans, Emerita asiatica and Macrobrachium rosenbergii. Current Science 90(1): 119–123.Google Scholar
  59. Hansen, K. K., E. Stafflinger, M. Schneider, F. Hauser, G. Cazzamali, M. Williamson, M. Kollmann, J. Schachtner & C. J. Grimmelikhuijzen, 2010. Discovery of a novel insect neuropeptide signaling system closely related to the insect adipokinetic hormone and corazonin hormonal systems. Journal of Biological Chemistry 285(14): 10736–10747.PubMedGoogle Scholar
  60. Harzsch, S., H. Dircksen & B. Beltz, 2009. Development of pigment-dispersing hormone-immunoreactive neurons in the American lobster: homology to the insect circadian pacemaker system? Cell and Tissue Research 335(2): 417–429.PubMedGoogle Scholar
  61. Hauser, F. & C. J. Grimmelikhuijzen, 2014. Evolution of the AKH/corazonin/ACP/GnRH receptor superfamily and their ligands in the Protostomia. General and Comparative Endocrinology 209: 35–49.PubMedGoogle Scholar
  62. Heyland, A., D. Plachetzki, E. Donelly, D. Gunaratne, Y. Bobkova, J. Jacobson, A. B. Kohn & L. L. Moroz, 2012. Distinct expression patterns of glycoprotein hormone subunits in the lophotrochozoan Aplysia: implications for the evolution of neuroendocrine systems in animals. Endocrinology 153(11): 5440–5451.PubMedPubMedCentralGoogle Scholar
  63. Hinsch, G. W. & D. C. Bennett, 1979. Vitellogenesis stimulated by thoracic ganglion implants into destalked immature spider crabs, Libinia emarginata. Tissue and Cell 11: 345–351.PubMedGoogle Scholar
  64. Hopkins, P. M., 2012. The eyes have it: a brief history of crustacean neuroendocrinology. General and Comparative Endocrinology 175(3): 357–366.PubMedGoogle Scholar
  65. Hsu, S. Y., K. Nakabayashi & A. Bhalla, 2002. Evolution of glycoprotein hormone subunit genes in bilateral metazoa: identification of two novel human glycoprotein hormone subunit family genes, GPA2 and GPB5. Molecular Endocrinology 16(7): 1538–1551.PubMedGoogle Scholar
  66. Hua, Y.-J., J. Ishibashi, H. Saito, A. I. Tawfik, M. Sakakibara, Y. Tanaka, R. Derua, E. Waelkens, G. Baggerman, A. De Loof, L. Schoofs & S. Tanaka, 2000. Identification of [Arg7] corazonin in the silkworm, Bombyx mori and the cricket, Gryllus bimaculatus, as a factor inducing dark color in an albino strain of the locust, Locusta migratoria. Journal of Insect Physiology 46(6): 853–860.PubMedGoogle Scholar
  67. Huang, H., H. Ye, S. Li & G. Wang, 2008. Immunocytological evidence for the presence of vertebrate FSH- and LH-like substances in the brain and thoracic ganglion of the swimming crab, Portunus trituberculatus. Progress in Natural Science 18(11): 1453–1457.Google Scholar
  68. Huang, H. Y., H. H. Ye, S. Z. Han & G. Z. Wang, 2009. Profiles of gonadotropins and steroid hormone-like substances in the hemolymph of mud crab Scylla paramamosain during the reproduction cycle. Marine and Freshwater Behaviour and Physiology 42(4): 297–305.Google Scholar
  69. Huang, X., H. Ye, H. Huang, K. Yu & Y. Huang, 2014. Two beta-pigment-dispersing hormone (β-PDH) isoforms in the mud crab, Scylla paramamosain: implication for regulation of ovarian maturation and a photoperiod-related daily rhythmicity. Animal Reproduction Science 150(3): 139–147.PubMedGoogle Scholar
  70. Jeon, J. M., B. K. Kim, J. H. Lee, H. J. Kim, C. K. Kang, D. L. Mykles & H. W. Kim, 2012. Two type I crustacean hyperglycemic hormone (CHH) genes in Morotoge shrimp (Pandalopsis japonica): cloning and expression of eyestalk and pericardial organ isoforms produced by alternative splicing and a novel type I CHH with predicted structure shared with type II CHH peptides. Comparative Biochemistry and Physiology Part B 162(4): 88–99.Google Scholar
  71. Jo, Q. T., H. Laufer, W. J. Biggers & H. S. Kang, 1999. Methyl farnesoate induced ovarian maturation in the spider crab, Libinia emarginata. Invertebrate Reproduction & Development 36(1–3): 79–85.Google Scholar
  72. Jung, H., B.-H. Yoon, W.-J. Kim, D.-W. Kim, D. A. Hurwood, R. E. Lyons, K. R. Salin, H.-S. Kim, I. Baek, V. Chand & P. B. Mather, 2016. Optimizing hybrid de novo transcriptome assembly and extending genomic resources for giant freshwater prawns (Macrobrachium rosenbergii): the identification of genes and markers associated with reproduction. International Journal of Molecular Sciences 17(5): 690.PubMedPubMedCentralGoogle Scholar
  73. Kao, D., A. G. Lai, E. Stamataki, S. Rosic, N. Konstantinides, E. Jarvis, A. Di Donfrancesco, N. Pouchkina-Stancheva, M. Sémon, M. Grillo, H. Bruce, S. Kumar, I. Siwanowicz, A. Le, A. Lemire, M. B. Eisen, C. Extavour, W. E. Browne, C. Wolff, M. Averof, N. H. Patel, P. Sarkies, A. Pavlopoulos & A. Aboobaker, 2016. The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion. eLife 5: e20062Google Scholar
  74. Kenny, N. J., Y. W. Sin, X. Shen, Q. Zhe, W. Wang, T. F. Chan, S. S. Tobe, S. M. Shimeld, K. H. Chu & J. H. Hui, 2014. Genomic sequence and experimental tractability of a new decapod shrimp model, Neocaridina denticulata. Marine Drugs 12(3): 1419–1437.PubMedPubMedCentralGoogle Scholar
  75. Kim, Y.-J., I. Spalovská-Valachová, K.-H. Cho, I. Zitnanova, Y. Park, M. E. Adams & D. Žitňan, 2004. Corazonin receptor signaling in ecdysis initiation. Proceedings of National Academic Science 101: 6704–6709.Google Scholar
  76. Kishori, B. & P. S. Reddy, 2003. Influence of leucine-enkephalin on moulting and vitellogenesis in the freshwater crab, Oziotelphusa senex senex (Fabricius, 1791)(Decapoda, Brachyura). Crustaceana 76(11): 1281–1290.Google Scholar
  77. Kornthong, N., C. Chotwiwatthanakun, P. Chansela, Y. Tinikul, S. F. Cummins, P. J. Hanna & P. Sobhon, 2013. Characterization of red pigment concentrating hormone (RPCH) in the female mud crab (Scylla olivacea) and the effect of 5-HT on its expression. General and Comparative Endocrinology 185: 28–36.PubMedGoogle Scholar
  78. Koskela, R. W., J. G. Greenwood & P. C. Rothlisberg, 1992. The influence of prostaglandin-e2 and the steroid-hormones, 17-alpha-hydroxyprogesterone and 17-beta-estradiol on molting and ovarian development in the tiger prawn, Penaeus esculentus Haswell, 1879 (Crustacea, Decapoda). Comparative Biochemistry and Physiology a-Physiology 101(2): 295–299.Google Scholar
  79. Kubrak, O. I., O. V. Lushchak, M. Zandawala & D. R. Nässel, 2016. Systemic corazonin signalling modulates stress responses and metabolism in Drosophila. Open Biology 6(11): 160152.PubMedPubMedCentralGoogle Scholar
  80. Kulkarni, G. K. & M. Fingerman, 1987. Distal retinal pigment of the fiddler crab, Uca pugilator: release of the dark-adapting hormone by methionine enkephalin and FMRFamide. Pigment Cell Research 1(1): 51–56.PubMedGoogle Scholar
  81. Kulkarni, G. K. & M. Fingerman, 1992. Effects of 5-hydroxytryptamine agonists on ovarian development in the fiddler crab, Uca pugilator. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 101(2): 419–423.Google Scholar
  82. Kulkarni, G. K., L. Glade & M. Fingerman, 1991. Oogenesis and effects of neuroendocrine tissues on in vitro synthesis of protein by the ovary of the red swamp crayfish Procambarus clarkii (Girard). Journal of Crustacean Biology 11(4): 513–522.Google Scholar
  83. Laufer, H., D. Borts, F. C. Baker, C. Carrasco, M. Sinkus, C. C. Reuter, L. W. Tsai & D. A. Schooley, 1987. Identification of a juvenile hormone-like compound in a Crustacean. Science 235: 202–205.Google Scholar
  84. Laufer, H., S. B. A. Jonna & A. Sagi, 1993. The role of juvenile hormones in crustacean reproduction. American Zoologist 33(3): 365–374.Google Scholar
  85. Laufer, H., W. J. Biggers & J. S. B. Ahl, 1998. Stimulation of ovarian maturation in the crayfish Procambarus clarkii by methyl farnesoate. General and Comparative Endocrinology 111(2): 113–118.PubMedGoogle Scholar
  86. Lee, K. J., R. M. Doran & D. L. Mykles, 2007. Crustacean hyperglycemic hormone from the tropical land crab, Gecarcinus lateralis: cloning, isoforms, and tissue expression. General and Comparative Endocrinology 154(1–3): 174–183.PubMedGoogle Scholar
  87. Lee, G., K.-M. Kim, K. Kikuno, Z. Wang, Y.-J. Choi & J. H. Park, 2008. Developmental regulation and functions of the expression of the neuropeptide corazonin in Drosophila melanogaster. Cell and Tissue Research 331: 659–673.PubMedGoogle Scholar
  88. Li, L., W. P. Kelley, C. P. Billimoria, A. E. Christie, S. R. Pulver, J. V. Sweedler & E. Marder, 2003. Mass spectrometric investigation of the neuropeptide complement and release in the pericardial organs of the crab, Cancer borealis. Journal of Neurochemistry 87(3): 642–656.PubMedGoogle Scholar
  89. Li, S. H., F. H. Li, B. Wang, Y. S. Xie, R. Wen & J. H. Xiang, 2010. Cloning and expression profiles of two isoforms of a CHH-like gene specifically expressed in male Chinese shrimp, Fenneropenaeus chinensis. General and Comparative Endocrinology 167(2): 308–316.PubMedGoogle Scholar
  90. Li, Y., M. Hui, Z. Cui, Y. Liu, C. Song & G. Shi, 2015. Comparative transcriptomic analysis provides insights into the molecular basis of the metamorphosis and nutrition metabolism change from zoeae to megalopae in Eriocheir sinensis. Comparative Biochemistry and Physiology Part D 13: 1–9.Google Scholar
  91. Linck, B., J. M. Klein, S. Mangerich, R. Keller & W. M. Weidemann, 1993. Molecular cloning of crustacean red pigment concentrating hormone precursor. Biochemical and Biophysical Research Communications 195(2): 807–813.PubMedGoogle Scholar
  92. Ma, M., R. Chen, G. L. Sousa, E. K. Bors, M. A. Kwiatkowski, C. C. Goiney, M. F. Goy, A. E. Christie & L. Li, 2008. Mass spectral characterization of peptide transmitters/hormones in the nervous system and neuroendocrine organs of the American lobster Homarus americanus. General and Comparative Endocrinology 156(2): 395–409.PubMedPubMedCentralGoogle Scholar
  93. Ma, M., A. L. Gard, F. Xiang, J. Wang, N. Davoodian, P. H. Lenz, S. R. Malecha, A. E. Christie & L. Li, 2010. Combining in silico transcriptome mining and biological mass spectrometry for neuropeptide discovery in the Pacific white shrimp Litopenaeus vannamei. Peptides 31: 27–43.PubMedGoogle Scholar
  94. Mak, A. S. C., C. L. Choi, S. H. K. Tiu, J. H. L. Hui, J. G. He, S. S. Tobe & S. M. Chan, 2005. Vitellogenesis in the red crab Charybdis feriatus: hepatopancreas-speciflic expression and farnesoic acid stimulation of vitellogenin gene expression. Molecular Reproduction and Development 70(3): 288–300.PubMedGoogle Scholar
  95. Manfrin, C. M., G. De Moro, M. Gerdol, P. G. Giulianini & A. Pallavicini, 2015. The eyestalk transcriptome of red swamp crayfish Procambarus clarkii. Gene 557: 28–34.PubMedGoogle Scholar
  96. Marco, H. G. & G. Gade, 2010. Biological activity of the predicted red pigment-concentrating hormone of Daphnia pulex in a crustacean and an insect. General and Comparative Endocrinology 166: 104–110.PubMedGoogle Scholar
  97. Meeratana, P., B. Withyachumnarnkul, P. Damrongphol, K. Wongprasert, A. Suseangtham & P. Sobhon, 2006. Serotonin induces ovarian maturation in giant freshwater prawn broodstock, Macrobrachium rosenbergii de Man. Aquaculture 260(1–4): 315–325.Google Scholar
  98. Metallinou, C., B. Asimakopoulos, A. Schroer & N. Nikolettos, 2007. Gonadotropin-releasing hormone in the ovary. Reproductive Sciences 14(8): 737–749.PubMedGoogle Scholar
  99. Muhd-Farouk, H., S. Jasmani & M. Ikhwanuddin, 2016. Effect of vertebrate steroid hormones on the ovarian maturation stages of orange mud crab, Scylla olivacea (Herbst, 1796). Aquaculture 451: 78–86.Google Scholar
  100. Mylonas, C. C., A. Fostier & S. Zanuy, 2010. Broodstock management and hormonal manipulations of fish reproduction. General and Comparative Endocrinology 165(3): 516–534.PubMedGoogle Scholar
  101. Nagaraju, G. P. C., 2011. Reproductive regulators in decapod crustaceans: an overview. Journal of Experimental Biology 214(1): 3–16.PubMedGoogle Scholar
  102. Nagaraju, G. P. C., N. J. Suraj & P. S. Reddy, 2003. Methyl farnesoate stimulates gonad development in Macrobrachium malcolmsonii (H. Milne Edwards) (Decapoda, Palaemonidae). Crustaceana 76: 1171–1178.Google Scholar
  103. Nagaraju, G. P. C., P. R. Reddy & P. S. Reddy, 2006. In vitro methyl farnesoate secretion by mandibular organs isolated from different molt and reproductive stages of the crab Oziotelphusa senex senex. Fisheries Science 72(2): 410–414.Google Scholar
  104. Nagasaki, H., Z. Wang, V. R. Jackson, S. Lin, H.-P. Nothacker & O. Civelli, 2006. Differential expression of the thyrostimulin subunits, glycoprotein α2 and β5 in the rat pituitary. Journal of Molecular Endocrinology 37(1): 39–50.PubMedGoogle Scholar
  105. Nakabayashi, K., H. Matsumi, A. Bhalla, J. Bae, S. Mosselman, S. Y. Hsu & A. J. W. Hsueh, 2002. Thyrostimulin, a heterodimer of two new human glycoprotein hormone subunits, activates the thyroid-stimulating hormone receptor. The Journal of Clinical Investigation 109(11): 1445–1452.PubMedPubMedCentralGoogle Scholar
  106. Ngernsoungnern, A., P. Ngernsoungnern, S. Kavanaugh, S. Sower, P. Sobhon & P. Sretarugsa, 2008a. The identification and distribution of gonadotropin-releasing hormone-like peptides in the central nervous system and ovary of the giant freshwater prawn, Macrobrachium rosenbergii. Invertebrate Neuroscience 8(1): 49–57.PubMedGoogle Scholar
  107. Ngernsoungnern, A., P. Ngernsoungnern, W. Weerachatyanukul, J. Chavadej, P. Sobhon & P. Sretarugsa, 2008b. The existence of gonadotropin-releasing hormone (GnRH) immunoreactivity in the ovary and the effects of GnRHs on the ovarian maturation in the black tiger shrimp Penaeus monodon. Aquaculture 279(1–4): 197–203.Google Scholar
  108. Ngernsoungnern, P., A. Ngernsoungnern, S. Kavanaugh, P. Sobhon, S. A. Sower & P. Sretarugsa, 2008c. The presence and distribution of gonadotropin-releasing hormone-liked factor in the central nervous system of the black tiger shrimp, Penaeus monodon. General and Comparative Endocrinology 155(3): 613–622.PubMedGoogle Scholar
  109. Ngernsoungnern, P., A. Ngernsoungnern, P. Sobhon & P. Sretarugsa, 2009. Gonadotropin-releasing hormone (GnRH) and a GnRH analog induce ovarian maturation in the giant freshwater prawn, Macrobrachium rosenbergii. Invertebrate Reproduction & Development 53(3): 125–135.Google Scholar
  110. Nguyen, T. V., S. F. Cummins, A. Elizur & T. Ventura, 2016. Transcriptomic characterization and curation of candidate neuropeptides regulating reproduction in the eyestalk ganglia of the Australian crayfish, Cherax quadricarinatus. Scientific Reports 6: 38658.PubMedPubMedCentralGoogle Scholar
  111. Noyes, B. E., F. N. Katz & M. H. Schaffer, 1995. Identification and expression of the Drosophila adipokinetic hormone gene. Molecular and Cellular Endocrinology 109(2): 133–141.PubMedGoogle Scholar
  112. Nusbaum, M. P. & E. Marder, 1987. A neuronal role for a crustacean red pigment concentrating hormone-like peptide: neuromodulation of the pyloric rhythm in the crab, Cancer borealis. The Journal of Experimental Biology 135: 165–181.Google Scholar
  113. Oishi, A., K. Gengyo-Ando, S. Mitani, A. Mohri-Shiomi, K. D. Kimura, T. Ishihara & I. Katsura, 2009. FLR-2, the glycoprotein hormone alpha subunit, is involved in the neural control of intestinal functions in Caenorhabditis elegans. Genes to Cells 14(10): 1141–1154.PubMedGoogle Scholar
  114. Okada, S. L., J. L. Ellsworth, D. M. Durnam, H. S. Haugen, J. L. Holloway, M. L. Kelley, K. E. Lewis, H. Ren, P. O. Sheppard, H. M. Storey, K. S. Waggie, A. C. Wolf, L. Y. Yao & P. J. Webster, 2006. A glycoprotein hormone expressed in corticotrophs exhibits unique binding properties on thyroid-stimulating hormone receptor. Molecular Endocrinology 20(2): 414–425.PubMedGoogle Scholar
  115. Okumura, T., C. H. Han, Y. Suzuki, K. Aida & I. Hanyu, 1992. Changes in hemolymph vitellogenin and ecdysteroid levels during the reproductive and nonreproductive molt cycles in the fresh-water prawn Macrobrachium nipponense. Zoological Science 9(1): 37–45.Google Scholar
  116. Ōtsu, T., 1963. Bihormonal control of sexual cycle in the freshwater crab. Potamon dehaani. Embryologia 8(1): 1–20.Google Scholar
  117. Paluzzi, J.-P., M. Vanderveken & M. J. O’Donnell, 2014. The heterodimeric glycoprotein hormone, GPA2/GPB5, regulates ion transport across the hindgut of the adult mosquito, Aedes aegypti. PLOS ONE 9(1): e86386.PubMedPubMedCentralGoogle Scholar
  118. Panouse, J., 1944. L’action de la glande du sinus sur l’ovaire chez la Crevette Leander. Comptes Rendus de l’Academie des Sciences de Paris 218: 293–294.Google Scholar
  119. Park, J.-I., J. Semyonov, C. L. Chang & S. Y. T. Hsu, 2005. Conservation of the heterodimeric glycoprotein hormone subunit family proteins and the LGR signaling system from nematodes to humans. Endocrine 26(3): 267–276.PubMedGoogle Scholar
  120. Patel, H., I. Orchard, J. A. Veenstra & A. B. Lange, 2014. The distribution and physiological effects of three evolutionarily and sequence-related neuropeptides in Rhodnius prolixus: adipokinetic hormone, corazonin and adipokinetic hormone/corazonin-related peptide. General and Comparative Endocrinology 195: 1–8.PubMedGoogle Scholar
  121. Pierce, J. & T. Parsons, 1981. Glycoprotein hormones: structure and function. Annual Review of Biochemistry 50(1): 465–495.PubMedGoogle Scholar
  122. Plant, T. M., 2015. The hypothalamo–pituitary–gonadal axis. Journal of Endocrinology 226(2): T41–T54.PubMedGoogle Scholar
  123. Poljaroen, J., Y. Tinikul, I. Phoungpetchara, W. Kankoun, S. Suwansa-ard, T. Siangcham, P. Meeratana, S. F. Cummins, P. Sretarugsa, P. J. Hanna & P. Sobhon, 2011. The effects of biogenic amines, gonadotropin-releasing hormones and corazonin on spermatogenesis in sexually mature small giant freshwater prawns, Macrobrachium rosenbergii (De Man, 1879). Aquaculture 312: 121–129.Google Scholar
  124. Porras, M. G., A. DeLoof, M. Breuer & H. Aréchiga, 2003. Corazonin promotes tegumentary pigment migration in the crayfish Procambarus clarkii. Peptides 24: 1581–1589.PubMedGoogle Scholar
  125. Porras, M. G., B. Fuentes-Pardo, C. Miranda-Brito & J. García-Mena, 2012. Identification of neurons expressing mRNA of pigment-dispersing hormone (PDH) in the brain of the crayfish Procambarus clarkii. International Biotechnology 2(3): 6–10.Google Scholar
  126. Predel, R., S. Neupert, W. K. Russell, O. Scheibner & R. J. Nachman, 2007. Corazonin in insects. Peptides 28(1): 3–10.PubMedGoogle Scholar
  127. Quinitio, E. T., A. Hara, K. Yamauchi & S. Nakao, 1994. Changes in the steroid hormone and vitellogenin levels during the gametogenic cycle of the giant tiger shrimp, Penaeus monodon. Comparative Biochemistry and Physiology Part C 109(1): 21–26.Google Scholar
  128. Ramakrishnappa, N., R. Rajamahendran, Y. M. Lin & P. C. Leung, 2005. GnRH in non-hypothalamic reproductive tissues. Animal Reproduction Science 88(1–2): 95–113.PubMedGoogle Scholar
  129. Rao, K. R., 2001. Crustacean pigmentary-effector hormones: chemistry and functions of RPCH, PDH, and related peptides. American Zoologist 41(3): 364–379.Google Scholar
  130. Reddy, P. S., 2000. Involvement of opioid peptides in the regulation of reproduction in the prawn Penaeus indicus. Naturwissenschaften 87(12): 535–538.PubMedGoogle Scholar
  131. Reddy, P. S., P. R. Reddy & G. P. C. Nagaraju, 2004. The synthesis and effects of prostaglandins on the ovary of the crab Oziotelphusa senex senex. General and Comparative Endocrinology 135(1): 35–41.PubMedGoogle Scholar
  132. Richardson, H. G., M. Deecaraman & M. Fingerman, 1991. The effect of biogenic amines on ovarian development in the fiddler crab, Uca pugilator. Comparative Biochemistry and Physiology Part C 99(1–2): 53–56.Google Scholar
  133. Rocco, D. A. & J.-P. V. Paluzzi, 2016. Functional role of the heterodimeric glycoprotein hormone, GPA2/GPB5, and its receptor, LGR1: an invertebrate perspective. General and Comparative Endocrinology 234: 20–27.PubMedGoogle Scholar
  134. Roch, G. J., E. R. Busby & N. M. Sherwood, 2011. Evolution of GnRH: diving deeper. General and Comparative Endocrinology 171(1): 1–16.PubMedGoogle Scholar
  135. Roch, G. J., J. A. Tello & N. M. Sherwood, 2014. At the transition from invertebrates to vertebrates, a novel GnRH-like peptide emerges in amphioxus. Molecular Biology and Evolution 31(4): 765–778.PubMedGoogle Scholar
  136. Rodet, F., C. Lelong, M. P. Dubos, K. Costil & P. Favrel, 2005. Molecular cloning of a molluscan gonadotropin-releasing hormone receptor orthologue specifically expressed in the gonad. Biochimica et Biophysica Acta 1730(3): 187–195.PubMedGoogle Scholar
  137. Rodríguez, E. M., D. A. Medesani, L. S. L. Greco & M. Fingerman, 2002. Effects of some steroids and other compounds on ovarian growth of the red swamp crayfish, Procambarus clarkii, during early vitellogenesis. Journal of Experimental Zoology 292(1): 82–87.PubMedGoogle Scholar
  138. Rotllant, G. & P. Takac, 1999. Ecdysones in the maturational moult of juvenile females of the spider crab, Libinia emarginata Leach, 1815 (Decapoda, Majidae). Crustaceana 72(2): 221–231.Google Scholar
  139. Rotllant, G., N. Pascual, F. Sardà, P. Takac & H. Laufer, 2001. Identification of methyl farnesoate in the hemolymph of the Mediterranean deep-sea species Norway lobster, Nephrops norvegicus. Journal of Crustacean Biology 21(2): 328–333.Google Scholar
  140. Rotllant, G., T. V. Nguyen, V. Sbragaglia, L. Rahi, K. J. Dudley, D. Hurwood, T. Ventura, J. B. Company, V. Chand, J. Aguzzi & P. B. Mather, 2017. Sex and tissue specific gene expression patterns identified following de novo transcriptomic analysis of the Norway lobster, Nephrops norvegicus. BMC Genomics 18(1): 622.PubMedPubMedCentralGoogle Scholar
  141. Saetan, J., T. Senarai, M. Tamtin, W. Weerachatyanukul, J. Chavadej, P. J. Hanna, I. Parhar, P. Sobhon & P. Sretarugsa, 2013. Histological organization of the central nervous system and distribution of a gonadotropin-releasing hormone-like peptide in the blue crab, Portunus pelagicus. Cell and Tissue Research 353(3): 493–510.PubMedGoogle Scholar
  142. Saetan, U., U. Sangket, P. Deachamag & W. Chotigeat, 2016. Ovarian transcriptome analysis of vitellogenic and non-vitellogenic female banana shrimp (Fenneropenaeus merguiensis). PLoS ONE 11(10): e0164724.PubMedPubMedCentralGoogle Scholar
  143. Sagi, A., R. Manor & T. Ventura, 2013. Gene silencing in crustaceans: from basic research to biotechnologies. Genes 4(4): 620–645.PubMedPubMedCentralGoogle Scholar
  144. Sarojini, R., R. Nagabhushanam & M. Fingerman, 1994. A possible neurotransmitter-neuroendocrine mechanism in naphthalene-induced atresia of the ovary of the red swamp crayfish, Procambarus clarkii. Comparative Biochemistry and Physiology Part C 108(1): 33–38.Google Scholar
  145. Sarojini, R., R. Nagabhushanam & M. Fingerman, 1995a. Evidence for opioid involvement in the regulation of ovarian maturation of the fiddler crab, Uca pugilator. Comparative Biochemistry and Physiology A-Physiology 111(2): 279–282.Google Scholar
  146. Sarojini, R., R. Nagabhushanam & M. Fingerman, 1995b. In-vivo inhibition by dopamine of 5-hydroxytryptamine-stimulated ovarian maturation in the red swamp crayfish, Procambarus clarkii. Experientia 51(2): 156–158.Google Scholar
  147. Sarojini, R., R. Nagabhushanam & M. Fingerman, 1995c. A neurotransmitter role for red-pigment-concentrating hormone in ovarian maturation in the red swamp crayfish Procambarus clarkii. The Journal of Experimental Biology 198: 1253–1257.PubMedGoogle Scholar
  148. Sbragaglia, V., F. Lamanna, A. M. Mat, G. Rotllant, S. Joly, V. Ketmaier, H. O. de la Iglesia & J. Aguzzi, 2015. Identification, characterization, and diel pattern of expression of canonical clock genes in Nephrops norvegicus (Crustacea: decapoda) Eyestalk. PLoS ONE 10(11): e0141893.PubMedPubMedCentralGoogle Scholar
  149. Senarai, T., J. Saetan, M. Tamtin, W. Weerachatyanukul, P. Sobhon & P. Sretarugsa, 2016. Presence of gonadotropin-releasing hormone-like peptide in the central nervous system and reproductive organs of the male blue swimming crab, Portunus pelagicus, and its effect on spermatogenesis. Cell and Tissue Research 365(2): 265–277.PubMedGoogle Scholar
  150. Sherff, C. M. & B. Mulloney, 1991. Red pigment concentrating hormone is a modulator of the crayfish swimmeret system. The Journal of Experimental Biology 155: 21–35.PubMedGoogle Scholar
  151. Siangcham, T., Y. Tinikul, J. Poljaroen, M. Sroyraya, N. Changklungmoa, I. Phoungpetchara, W. Kankuan, C. Sumpownon, C. Wanichanon, P. J. Hanna & P. Sobhon, 2013. The effects of serotonin, dopamine, gonadotropin-releasing hormones, and corazonin, on the androgenic gland of the giant freshwater prawn, Macrobrachium rosenbergii. General and Comparative Endocrinology 193: 10–18.PubMedGoogle Scholar
  152. Silkovsky, J., R. Chayoth & A. Sagi, 1998. Comparative study of effects of prostaglandin E ~ 2 on cAMP levels in gonads of the prawn Macrobrachium rosenbergii and the crayfish Cherax quadricarinatus. Journal of Crustacean Biology 18: 643–649.Google Scholar
  153. Song, L., C. Bian, Y. Luo, L. Wang, X. You, J. Li, Y. Qiu, X. Ma, Z. Zhu, L. Ma, Z. Wang, Y. Lei, J. Qiang, H. Li, J. Yu, A. Wong, J. Xu, Q. Shi & P. Xu, 2016. Draft genome of the Chinese mitten crab, Eriocheir sinensis. GigaScience 5(1): 1–3.PubMedPubMedCentralGoogle Scholar
  154. Soroka, Y., Y. Milner, H. Laufer & A. Sagi, 1993. Protein synthesis in the ovary of Macrobrachium rosenbergii during the reproductive cycle: effects of methyl farnesoate (MF). American Zoologist 33(5): 511–515.Google Scholar
  155. Spaziani, E., G. Hinsch & S. Edwards, 1993. Changes in prostaglandin E2 and F2α during vitellogenesis in the Florida crayfish Procambarus paeninsulanus. Journal of Comparative Physiology B 163(7): 541–545.Google Scholar
  156. Stanley, D. W., 2006. Prostaglandins and other eicosanoids in insects: biological significance. Annual Review of Entomology 51(1): 25–44.PubMedGoogle Scholar
  157. Staub, G. C. & M. Fingerman, 1984. A mechanism of action for the inhibition of black pigment dispersion in the fiddler crab, Uca pugilator, by naphthalene. Comparative Biochemistry and Physiology Part C 79(2): 447–453.Google Scholar
  158. Staubli, F., T. J. Jorgensen, G. Cazzamali, M. Williamson, C. Lenz, L. Sondergaard, P. Roepstorff & C. J. Grimmelikhuijzen, 2002. Molecular identification of the insect adipokinetic hormone receptors. Proceedings of the National Academy of Science USA 99: 3446–3451.Google Scholar
  159. Subramoniam, T., 2000. Crustacean ecdysteriods in reproduction and embryogenesis. Comparative Biochemistry and Physiology Part C 125(2): 135–156.PubMedGoogle Scholar
  160. Subramoniam, T., 2011. Mechanisms and control of vitellogenesis in crustaceans. Fisheries Science 77(1): 1–21.Google Scholar
  161. Summavielle, T., P. R. R. Monteiro, M. A. Reis-Henriques & J. Coimbra, 2003. In vitro metabolism of steroid hormones by ovary and hepatopancreas of the crustacean Penaeid shrimp Marsupenaeus japonicus. Scientia Marina 67(3): 299–306.Google Scholar
  162. Sun, S. C., P. J. Hsu, F. J. Wu, S. H. Li, C. H. Lu & C. W. Luo, 2010. Thyrostimulin, but Not thyroid-stimulating hormone (TSH), acts as a paracrine regulator to activate the TSH receptor in mammalian ovary. Journal of Biological Chemistry 285(6): 3758–3765.PubMedGoogle Scholar
  163. Suwansa-ard, S., T. Thongbuakaew, T. Wang, M. Zhao, A. Elizur, P. J. Hanna, P. Sretarugsa, S. F. Cummins & P. Sobhon, 2015. In silico neuropeptidome of female Macrobrachium rosenbergii based on transcriptome and peptide mining of eyestalk, central nervous system and ovary. PLoS ONE 10(5): e0123848.PubMedPubMedCentralGoogle Scholar
  164. Suwansa-ard, S., M. Zhao, T. Thongbuakaew, P. Chansela, T. Ventura, S. F. Cummins & P. Sobhon, 2016. Gonadotropin-releasing hormone and adipokinetic hormone/corazonin-related peptide in the female prawn. General and Comparative Endocrinology 236: 70–82.PubMedGoogle Scholar
  165. Tahara, D. & I. Yano, 2003. Development of hemolymph prostaglandins assay systems and their concentration variations during ovarian maturation in the kuruma prawn, Penaeus japonicus. Aquaculture 220(1–4): 791–800.Google Scholar
  166. Tahara, D. & I. Yano, 2004. Maturation-related variations in prostaglandin and fatty acid content of ovary in the kuruma prawn (Marsupenaeus japonicus). Comparative Biochemistry and Physiology Part B 137(4): 631–637.Google Scholar
  167. Takayanagi, H., Y. Yamamoto & N. Takeda, 1986. An ovary stimulating factor in the shrimp, Paratya compressa. Journal of Experimental Zoology 240(2): 203–209.Google Scholar
  168. Tando, Y. & K. Kubokawa, 2009. Expression of the gene for ancestral glycoprotein hormone β subunit in the nerve cord of amphioxus. General and Comparative Endocrinology 162(3): 329–339.PubMedGoogle Scholar
  169. Tawfik, A. I., S. Tanaka, A. De Loof, L. Schoofs, G. Baggerman, E. Waelkens, R. Derua, Y. Milner, Y. Yerushalmi & M. P. Pener, 1999. Identification of the gregarization-associated dark-pigmentotropin in locusts through an albino mutant. Proceedings of the National Academy of Science USA 96(12): 7083–7087.Google Scholar
  170. Techa, S. & J. S. Chung, 2015. Ecdysteroids regulate the levels of molt-inhibiting hormone (MIH) expression in the blue crab, Callinectes sapidus. PLOS ONE 10(4): e0117278.PubMedPubMedCentralGoogle Scholar
  171. Tinikul, Y., B. Soonthornsumrith, I. Phoungpetchara, P. Meeratana, J. Poljaroen, P. Duangsuwan, N. Soonklang, A. J. Mercier & P. Sobhon, 2009. Effects of serotonin, dopamine, octopamine, and spiperone on ovarian maturation and embryonic development in the giant freshwater prawn, Macrobrachium rosenbergii (De Man, 1879). Crustaceana 82(8): 1007–1022.Google Scholar
  172. Tinikul, Y., J. Poljaroen, P. Nuurai, P. Anuracpreeda, C. Chotwiwatthanakun, I. Phoungpetchara, N. Kornthong, T. Poomtong, P. J. Hanna & P. Sobhon, 2011. Existence and distribution of gonadotropin-releasing hormone-like peptides in the central nervous system and ovary of the Pacific white shrimp, Litopenaeus vannamei. Cell Tissue Research 343(3): 579–593.PubMedGoogle Scholar
  173. Tinikul, Y., J. Poljaroen, R. Tinikul, P. Anuracpreeda, C. Chotwiwatthanakun, N. Senin, T. Poomtong, P. J. Hanna & P. Sobhon, 2014. Effects of gonadotropin-releasing hormones and dopamine on ovarian maturation in the Pacific white shrimp, Litopenaeus vannamei, and their presence in the ovary during ovarian development. Aquaculture 420–421: 79–88.Google Scholar
  174. Tiu, S. H. & S. M. Chan, 2007. The use of recombinant protein and RNA interference approaches to study the reproductive functions of a gonad stimulating hormone from the shrimp Metapenaeus ensis. FEBS Journal 274(17): 4385–4395.PubMedGoogle Scholar
  175. Tiu, S. H. K., J. H. L. Hui, J. G. He, S. S. Tobe & S. M. Chan, 2006a. Characterization of vitellogenin in the shrimp Metapenaeus ensis: expression studies and hormonal regulation of MeVg1 transcription in vitro. Molecular Reproduction and Development 73(4): 424–436.PubMedGoogle Scholar
  176. Tiu, S. H. K., J. H. L. Hui, A. S. C. Mak, J.-G. He & S.-M. Chan, 2006b. Equal contribution of hepatopancreas and ovary to the production of vitellogenin (PmVg1) transcripts in the tiger shrimp. Penaeus monodon. Aquaculture 254(1–4): 666–674.Google Scholar
  177. Tiu, S. H.-K., E. F. Hult, K. J. Yagi & S. S. Tobe, 2012. Farnesoic acid and methyl farnesoate production during lobster reproduction: possible functional correlation with retinoid X receptor expression. General and Comparative Endocrinology 175(2): 259–269.PubMedGoogle Scholar
  178. Treen, N., N. Itoh, H. Miura, I. Kikuchi, T. Ueda, K. G. Takahashi, T. Ubuka, K. Yamamoto, P. J. Sharp, K. Tsutsui & M. Osada, 2012. Mollusc gonadotropin-releasing hormone directly regulates gonadal functions: a primitive endocrine system controlling reproduction. General and Comparative Endocrinology 176(2): 167–172.PubMedGoogle Scholar
  179. Treerattrakool, S., S. Panyim, S.-M. Chan, B. Withyachumnarnkul & A. Udomkit, 2008. Molecular characterization of gonad-inhibiting hormone of Penaeus monodon and elucidation of its inhibitory role in vitellogenin expression by RNA interference. FEBS Journal 275(5): 970–980.PubMedGoogle Scholar
  180. Vaca, A. A. & J. Alfaro, 2000. Ovarian maturation and spawning in the white shrimp, Penaeus vannamei, by serotonin injection. Aquaculture 182(3): 373–385.Google Scholar
  181. Vandersmissen, H. P., M. B. Van Hiel, T. Van Loy, R. Vleugels & J. Vanden Broeck, 2014. Silencing D. melanogaster lgr1 impairs transition from larval to pupal stage. General and Comparative Endocrinology 209: 135–147.PubMedGoogle Scholar
  182. Vassart, G., L. Pardo & S. Costagliola, 2004. A molecular dissection of the glycoprotein hormone receptors. Trends in Biochemical Sciences 29(3): 119–126.PubMedGoogle Scholar
  183. Veenstra, J. A., 1989. Isolation and structure of corazonin, a cardioactive peptide from the American cockroach. FEBS Letters 250: 231–234.PubMedGoogle Scholar
  184. Veenstra, J. A., 1994. Isolation and structure of the drosophila corazonin gene. Biochemical and Biophysical Research Communications 204(1): 292–296.PubMedGoogle Scholar
  185. Veenstra, J. A., 2009. Does corazonin signal nutritional stress in insects? Insect Biochemistry and Molecular Biology 39(11): 755–762.PubMedGoogle Scholar
  186. Veenstra, J. A., 2010. Neurohormones and neuropeptides encoded by the genome of Lottia gigantea, with reference to other mollusks and insects. General and Comparative Endocrinology 167(1): 86–103.PubMedGoogle Scholar
  187. Veenstra, J. A., 2015. The power of next-generation sequencing as illustrated by the neuropeptidome of the crayfish Procambarus clarkii. General and Comparative Endocrinology 224: 84–95.PubMedGoogle Scholar
  188. Veenstra, J. A., 2016. Similarities between decapod and insect neuropeptidomes. PeerJ 4: e2043.PubMedPubMedCentralGoogle Scholar
  189. Ventura, T., R. Manor, E. D. Aflalo, V. Chalifa-Caspi, S. Weil, O. Sharabi & A. Sagi, 2013. Post-embryonic transcriptomes of the prawn Macrobrachium rosenbergii: multigenic succession through metamorphosis. PLoS ONE 8(1): e55322.PubMedPubMedCentralGoogle Scholar
  190. Ventura, T., S. F. Cummins, Q. Fitzgibbon, S. Battaglene & A. Elizur, 2014. Analysis of the central nervous system transcriptome of the eastern rock lobster Sagmariasus verreauxi reveals its putative neuropeptidome. PLoS ONE 9(5): 23.Google Scholar
  191. Ventura, T., Q. P. Fitzgibbon, S. C. Battaglene & A. Elizur, 2015. Redefining metamorphosis in spiny lobsters: molecular analysis of the phyllosoma to puerulus transition in Sagmariasus verreauxi. Scientific Reports 5: 14.Google Scholar
  192. Vogel, J. M. & D. W. Borst, 1989. Spider crab yolk protein—molecular characterization and the effect of methyl farnesoate (mf) on its hemolymph levels. American Zoologist 29(4): A49.Google Scholar
  193. Warrier, S. R., R. Tirumalai & T. Subramoniam, 2001. Occurrence of vertebrate steroids, estradiol 17β and progesterone in the reproducing females of the mud crab Scylla serrata. Comparative Biochemistry and Physiology Part B 130(2): 283–294.Google Scholar
  194. Webster, S. G., R. Keller & H. Dircksen, 2012. The CHH-superfamily of multifunctional peptide hormones controlling crustacean metabolism, osmoregulation, moulting, and reproduction. General and Comparative Endocrinology 175(2): 217–233.Google Scholar
  195. Wen, W., H. Wei & Q. Liu, 2005. Effect of estradiol in hemolymph and gonad on precociousness of Eriocheir sinensis. Journal of Fisheries of China 29(6): 862–865.Google Scholar
  196. Wongprasert, K., S. Asuvapongpatana, P. Poltana, M. Tiensuwan & B. Withyachumnarnkul, 2006. Serotonin stimulates ovarian maturation and spawning in the black tiger shrimp Penaeus monodon. Aquaculture 261(4): 1447–1454.Google Scholar
  197. Wu, H., W. Tsai, S. Huang, Y. Chen, Y.-H. Chen, Y.-R. Hsieh & C.-Y. Lee, 2012. Identification of the crustacean hyperglycemic hormone (CHH) and CHH-like peptides in the crayfish Procambarus clarkii and localization of functionally important regions of the CHH. Zool Stud 51(3): 288–297.Google Scholar
  198. Xie, X., D. Zhu, J. Yang, X. Qiu, X. Cui & J. Tang, 2014. Molecular cloning of two structure variants of crustacean hyperglycemic hormone (CHH) from the swimming crab (Portunus trituberculatus), and their gene expression during molting and ovarian development. Zoological Science 31(12): 802–809.PubMedGoogle Scholar
  199. Xie, X., D. Zhu, Y. Li, X. Qiu, X. Cui & J. Tang, 2015. Hemolymph levels of methyl farnesoate during ovarian development of the swimming crab Portunus trituberculatus, and its relation to transcript levels of HMG-CoA reductase and farnesoic acid O-methyltransferase. Biological Bulletin 228(2): 118–124.PubMedGoogle Scholar
  200. Yano, I., 1987. Effect of 17-alpha-hydroxy-progesterone on vitellogenin secretion in kuruma prawn, Penaeus japonicus. Aquaculture 61(1): 49–57.Google Scholar
  201. Yano, I. & R. Hoshino, 2006. Effects of 17 β-estradiol on the vitellogenin synthesis and oocyte development in the ovary of kuruma prawn (Marsupenaeus japonicus). Comparative Biochemistry and Physiology Part B 144(1): 18–23.Google Scholar
  202. Yano, I., B. Tsukimura, J. N. Sweeney & J. A. Wyban, 1988. Induced ovarian maturation of Penaeus vannamei by implantation of lobster ganglion. Journal of the World Aquaculture Society 19(4): 204–209.Google Scholar
  203. Ye, H., H. Huang, G. Wang & S. Li, 2009. Occurrence of gonadtropins like substance in the thoracic ganglion mass of the mud crab, Scylla paramamosain (Crustacea: Decapoda: Brachyura). Acta Oceanologica Sinica 28(5): 76–80.Google Scholar
  204. Ye, H. H., J. Ma, Q. W. Lin & G. Z. Wang, 2011. Occurrence of follicle-stimulating hormone-like substance in the Kuruma prawn, Marsupenaeus japonicus, during ovarian maturation. Marine Biology Research 7(3): 304–309.Google Scholar
  205. Yu, Y., X. Zhang, J. Yuan, F. Li, X. Chen, Y. Zhao, L. Huang, H. Zheng & J. Xiang, 2015. Genome survey and high-density genetic map construction provide genomic and genetic resources for the Pacific White Shrimp Litopenaeus vannamei. Scientific Reports 5: 15612.PubMedPubMedCentralGoogle Scholar
  206. Zeng, H., C. Bao, H. Huang, H. Ye & S. Li, 2016. The mechanism of regulation of ovarian maturation by red pigment concentrating hormone in the mud crab Scylla paramamosain. Animal Reproduction Science 164: 152–161.PubMedGoogle Scholar
  207. Zhao, Y., C. A. Bretz, S. A. Hawksworth, J. Hirsh & E. C. Johnson, 2010. Corazonin neurons function in sexually dimorphic circuitry that shape behavioral responses to stress in Drosophila. PLoS ONE 5(2): e9141.PubMedPubMedCentralGoogle Scholar
  208. Zheng, J., H.-Y. Chen, C. Y. Choi, R. D. Roer & R. D. Watson, 2010. Molecular cloning of a putative crustacean hyperglycemic hormone (CHH) isoform from extra-eyestalk tissue of the blue crab (Callinectes sapidus), and determination of temporal and spatial patterns of CHH gene expression. General and Comparative Endocrinology 169(2): 174–181.PubMedGoogle Scholar
  209. Zmora, N. & J. S. Chung, 2014. A novel hormone is required for the development of reproductive phenotypes in adult female crabs. Endocrinology 155(1): 230–239.PubMedGoogle Scholar
  210. Zmora, N., A. Sagi, Y. Zohar & J. S. Chung, 2009a. Molt-inhibiting hormone stimulates vitellogenesis at advanced ovarian developmental stages in the female blue crab, Callinectes sapidus 2: novel specific binding sites in hepatopancreas and cAMP as a second messenger. Saline Systems 5(1): 1.Google Scholar
  211. Zmora, N., J. Trant, Y. Zohar & J. S. Chung, 2009b. Molt-inhibiting hormone stimulates vitellogenesis at advanced ovarian developmental stages in the female blue crab, Callinectes sapidus 1: an ovarian stage dependent involvement. Saline Systems 5: 7.PubMedPubMedCentralGoogle Scholar
  212. Zralá, J., D. Kodrík, H. Zahradníčková, R. Zemek & R. Socha, 2010. A novel function of red pigment-concentrating hormone in crustaceans: Porcellio scaber (Isopoda) as a model species. General and Comparative Endocrinology 166(2): 330–336.PubMedGoogle Scholar
  213. Żukowska-Arendarczyk, M., 1981. Effect of hypophyseal gonadotropins (FSH and LH) on the ovaries of the sand shrimp Crangon crangon (Crustacea: Decapoda). Marine Biology 63(3): 241–247.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut de Ciències del Mar (ICM-CSIC)BarcelonaSpain
  2. 2.Faculty of Science, Health, Education and Engineering, GeneCology Research CentreUniversity of the Sunshine CoastMaroochydore DCAustralia

Personalised recommendations