Advertisement

Hydrobiologia

, Volume 825, Issue 1, pp 47–60 | Cite as

Crustacean metamorphosis: an omics perspective

  • Tomer VenturaEmail author
  • Ferran Palero
  • Guiomar Rotllant
  • Quinn P. Fitzgibbon
CRUSTACEAN GENOMICS Review Paper

Abstract

Metamorphosis involves a complex network of genes that orchestrate a perfectly timed reorganization of one body form to another. The molecular pathways that start to unravel for an increasing number of species show that there exists great diversity among different species, as would be expected by their wide range of life histories and transformation strategies. The metamorphosis process could account for a considerably high percentile of transcribed sequences over a short period of time, with the genome encoding for different life forms. Such important changes in expression patterns for a high number of genes pose a challenge for accurately assign each gene to a function. Several key conserved factors are consistently expressed and can be placed at the center of metamorphosis, including the mechanisms involving the molt hormone, 20 Hydroxy-Ecdysone, and the juvenile hormone. Yet, many additional factors are not characterized, remain unannotated, or do not have a function assigned. This manuscript provides several examples of how an integrated omics approach can develop further insights into crustacean metamorphosis and eventually lead to discovery of key factors for metamorphosis.

Keywords

Metamorphosis Ecdysone Juvenile hormone Cytochrome P450 Omics 

Notes

Acknowledgements

The current study was supported by the Australian Research Council Discovery Project (DP160103320) and the Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme (612296-DeNuGReC). FP acknowledges the project CHALLENGEN (CTM2013-48163) of the Spanish Government and a post-doctoral contract funded by the Beatriu de Pinos Programme of the Generalitat de Catalunya.

Supplementary material

10750_2017_3445_MOESM1_ESM.txt (35 kb)
Supplementary material 1 (TXT 34 kb)

References

  1. Aizen, J., J. C. Chandler, Q. P. Fitzgibbon, A. Sagi, S. C. Battaglene, A. Elizur & T. Ventura, 2016. Production of recombinant insulin-like androgenic gland hormones from three decapod species: in vitro testicular phosphorylation and activation of a newly identified tyrosine kinase receptor from the Eastern spiny lobster, Sagmariasus verreauxi. General and Comparative Endocrinology 229: 8–18.PubMedGoogle Scholar
  2. Anger, K., 2001. The Biology of Decapod Crustacean Larvae, Vol. 14. AA Balkema Publishers, Lisse.Google Scholar
  3. Anger, K., G. Torres & L. Giménez, 2006. Metamorphosis of a sesarmid river crab, Armases roberti: stimulation by adult odours versus inhibition by salinity stress. Marine and Freshwater Behaviour and Physiology 39(4): 269–278.Google Scholar
  4. Ashburner, M., 1973. Sequential gene activation by ecdysone in polytene chromosomes of Drosophila melanogaster. Developmental Biology 35(1): 47–61.PubMedGoogle Scholar
  5. Bauer, M., S. J. Greenwood, K. F. Clark, P. Jackman & W. Fairchild, 2013. Analysis of gene expression in Homarus americanus larvae exposed to sublethal concentrations of endosulfan during metamorphosis. Comp Biochem Physiol Part D Genomics Proteomics 8(4): 300–308.PubMedGoogle Scholar
  6. Bitra, K. & S. R. Palli, 2009. Interaction of proteins involved in ecdysone and juvenile hormone signal transduction. Archives of Insect Biochemistry and Physiology 70(2): 90–105.PubMedGoogle Scholar
  7. Booth, J. D. & B. F. Phillips, 1994. Early life history of spiny lobster. Crustaceana 66(3): 271–294.Google Scholar
  8. Bose, U., T. Kruangkum, T. Wang, M. Zhao, T. Ventura, S. A. Mitu, M. P. Hodson, P. N. Shaw, P. Sobhon & S. F. Cummins, 2017. Biomolecular changes that occur in the antennal gland of the giant freshwater prawn (Machrobrachium rosenbergii). PLoS ONE 12(6): e0177064.PubMedPubMedCentralGoogle Scholar
  9. Brown, D. D. & L. Cai, 2007. Amphibian metamorphosis. Developmental Biology 306(1): 20–33.PubMedPubMedCentralGoogle Scholar
  10. Buckley, S. J., Q. P. Fitzgibbon, G. G. Smith & T. Ventura, 2016. In silico prediction of the G-protein coupled receptors expressed during the metamorphic molt of Sagmariasus verreauxi (Crustacea: Decapoda) by mining transcriptomic data: RNA-seq to repertoire. General and Comparative Endocrinology 228: 111–127.PubMedGoogle Scholar
  11. Chandler, J. C., J. Aizen, A. Elizur, L. Hollander-Cohen, S. Battaglene & T. Ventura, 2015. Discovery of a novel insulin-like peptide and insulin binding proteins in the Eastern rock lobster Sagmariasus verreauxi. General and Comparative Endocrinology 215: 76–87.PubMedGoogle Scholar
  12. Chang, E. S. & D. L. Mykles, 2011. Regulation of crustacean molting: a review and our perspectives. General and Comparative Endocrinology 172(3): 323–330.PubMedGoogle Scholar
  13. Charles, J.-P., T. Iwema, V. C. Epa, K. Takaki, J. Rynes & M. Jindra, 2011. Ligand-binding properties of a juvenile hormone receptor, Methoprene-tolerant. Proceedings of the National Academy of Sciences United States of America 108(52): 21128–21133.Google Scholar
  14. Chung, A. C., D. S. Durica, S. W. Clifton, B. A. Roe & P. M. Hopkins, 1998. Cloning of crustacean ecdysteroid receptor and retinoid-X receptor gene homologs and elevation of retinoid-X receptor mRNA by retinoic acid. Molecular and Cellular Endocrinology 139(1–2): 209–227.Google Scholar
  15. Comas, D., M. D. Piulachs & X. Belles, 2001. Induction of vitellogenin gene transcription in vitro by juvenile hormone in Blattella germanica. Molecular and Cellular Endocrinology 183(1–2): 93–100.PubMedGoogle Scholar
  16. Daimon, T. & T. Shinoda, 2013. Function, diversity, and application of insect juvenile hormone epoxidases (CYP15). Biotechnology and Applied Biochemistry 60(1): 82–91.PubMedGoogle Scholar
  17. Daimon, T., T. Kozaki, R. Niwa, I. Kobayashi, K. Furuta, T. Namiki, K. Uchino, Y. Banno, S. Katsuma, T. Tamura, K. Mita, H. Sezutsu, M. Nakayama, K. Itoyama, T. Shimada & T. Shinoda, 2012. Precocious metamorphosis in the juvenile hormone—deficient mutant of the silkworm, Bombyx mori. PLoS Genetics 8(3): e1002486.PubMedPubMedCentralGoogle Scholar
  18. Daneholt, B., 1975. Transcription in polytene chromosomes. Cell 4(1): 1–9.PubMedGoogle Scholar
  19. Das, S., N. L. Pitts, M. R. Mudron, D. S. Durica & D. L. Mykles, 2016. Transcriptome analysis of the molting gland (Y-organ) from the blackback land crab, Gecarcinus lateralis. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 17: 26–40.Google Scholar
  20. Denton, D., M. T. Aung-Htut & S. Kumar, 2013. Developmentally programmed cell death in Drosophila. Biochimica et Biophysica Acta (BBA)—MolecularCell Research 1833(12): 3499–3506.Google Scholar
  21. Durica, D. S., X. Wu, G. Anilkumar, P. M. Hopkins & A. C. Chung, 2002. Characterization of crab EcR and RXR homologs and expression during limb regeneration and oocyte maturation. Molecular and Cellular Endocrinology 189(1–2): 59–76.PubMedGoogle Scholar
  22. Dworniczak, B., R. Seidel & O. Pongs, 1983. Puffing activities and binding of ecdysteroid to polytene chromosomes of Drosophila melanogaster. The EMBO Journal 2(8): 1323–1330.PubMedPubMedCentralGoogle Scholar
  23. Echalier, G., 1959. L’organe Y et le déterminisme de la croissance et de la mue chez Carcinus maenas (L.). Crustacé Décapode. Ann Sci Nat Zool 12: 1–59.Google Scholar
  24. Feyereisen, R., 2011. Arthropod CY Pomes illustrate the tempo and mode in P450 evolution. Biochimica et Biophysica Acta (BBA)—Proteins and Proteomic 1814(1): 19–28.Google Scholar
  25. Fitzgibbon, Q. P., A. G. Jeffs & S. C. Battaglene, 2014. The Achilles heel for spiny lobsters: the energetics of the non-feeding post-larval stage. Fish and Fisheries 15(2): 312–326.Google Scholar
  26. Fuchs, B., W. Wang, S. Graspeuntner, Y. Li, S. Insua, E.-M. Herbst, P. Dirksen, A.-M. Böhm, G. Hemmrich, F. Sommer, T. Domazet-Loao, Ulrich C. Klostermeier, F. Anton-Erxleben, P. Rosenstiel, Thomas C. G. Bosch & K. Khalturin, 2014. Regulation of polyp-to-jellyfish transition in Aurelia aurita. Current Biology: CB 24: 1–11.Google Scholar
  27. Gabe, M., 1953. Sur l’existence, chez quelques Crustacés Malacostacés, d’un organe comparable à la glande de la mue des Insectes. CR Hebd Seances Acad Sci 237: 1111–1113.Google Scholar
  28. Garcia-Bellido, A., 1975. Genetic Control of Wing Disc Development in Drosophila Cell Patterning. Wiley, New York: 161–182.Google Scholar
  29. Gebauer, P., I. Walter & K. Anger, 1998. Effects of substratum and conspecific adults on the metamorphosis of Chasmagnathus granulata (Dana) (Decapoda: Grapsidae) megalopae. Journal of Experimental Marine Biology and Ecology 223(2): 185–198.Google Scholar
  30. Gilbert, L. & R. Rybczynski, 2008. Prothoracicotropic Hormone. In Capinera, J. (ed.), Encyclopedia of Entomology. Springer, Netherlands: 3055–3061.Google Scholar
  31. Girish, B. P., C. Swetha & P. S. Reddy, 2015. Induction of ecdysteroidogenesis, methyl farnesoate synthesis and expression of ecdysteroid receptor and retinoid X receptor in the hepatopancreas and ovary of the giant mud crab, Scylla serrata by melatonin. General and Comparative Endocrinology 217–218: 37–42.PubMedGoogle Scholar
  32. Gong, J., H. Ye, Y. Xie, Y. Yang, H. Huang, S. Li & C. Zeng, 2015. Ecdysone receptor in the mud crab Scylla paramamosain: a possible role in promoting ovarian development. Journal of Endocrinology 224(3): 273–287.PubMedGoogle Scholar
  33. Guay, P. S. & G. M. Guild, 1991. The ecdysone-induced puffing cascade in Drosophila salivary glands: a broad-complex early gene regulates intermolt and late gene transcription. Genetics 129(1): 169–175.PubMedPubMedCentralGoogle Scholar
  34. Guittard, E., C. Blais, A. Maria, J.-P. Parvy, S. Pasricha, C. Lumb, R. Lafont, P. J. Daborn & C. Dauphin-Villemant, 2011. CYP18A1, a key enzyme of Drosophila steroid hormone inactivation, is essential for metamorphosis. Developmental Biology 349(1): 35–45.PubMedGoogle Scholar
  35. Hansen, I., G. Attardo, S. Rodriguez & L. Drake, 2014. Four-way regulation of mosquito yolk protein precursor genes by juvenile hormone-, ecdysone-, nutrient-, and insulin-like peptide signaling pathways. Frontiers in Physiology 5: 103.PubMedPubMedCentralGoogle Scholar
  36. Helvig, C., J. F. Koener, G. C. Unnithan & R. Feyereisen, 2004. CYP15A1, the cytochrome P450 that catalyzes epoxidation of methyl farnesoate to juvenile hormone III in cockroach corpora allata. Proceedings of the National Academy of Sciences United States of America 101(12): 4024–4029.Google Scholar
  37. Hopkins, P. M. & M. Fingerman, 1989. Development, maturation and aging in the crustacean neuroendocrine system. In Schreibman, M. P. & C. G. Scanes (eds), Development, Maturation, and Senescence of Neuroendocrine Systems A Comparative Approach. Academic Press Inc, San Diego: 23–42.Google Scholar
  38. Jeffs, A. G., P. D. Nichols & M. P. Bruce, 2001. Lipid reserves used by pueruli of the spiny lobster Jasus edwardsii in crossing the continental shelf of New Zealand. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 129(2): 305–311.Google Scholar
  39. Jeffs, A. G., J. C. Montgomery & C. T. Tindle, 2005. How do spiny lobster post-larvae find the coast? New Zealand Journal of Marine and Freshwater Research 39(3): 605–617.Google Scholar
  40. King-Jones, K. & C. S. Thummel, 2005. Nuclear receptors—a perspective from Drosophila. Nature Reviews Genetics 6(4): 311–323.PubMedGoogle Scholar
  41. Laudet, V., 2011. The origins and evolution of vertebrate metamorphosis. Current Biology 21(18): R726–R737.PubMedGoogle Scholar
  42. Laufer, H. & W. J. Biggers, 2001. Unifying concepts learned from methyl farnesoate for invertebrate reproduction and post-embryonic development. American Zoologist 41(3): 442–457.Google Scholar
  43. Laufer, H., D. Borst, F. C. Baker, C. C. Reuter, L. W. Tsai, D. A. Schooley, C. Carrasco & M. Sinkus, 1987. Identification of a juvenile hormone-like compound in a crustacean. Science 235(4785): 202–205.PubMedGoogle Scholar
  44. Le, S. Q. & O. Gascuel, 2008. An improved general amino acid replacement matrix. Molecular Biology and Evolution 25(7): 1307–1320.PubMedGoogle Scholar
  45. Li, Y., M. Hui, Z. Cui, Y. Liu, C. Song & G. Shi, 2015. Comparative transcriptomic analysis provides insights into the molecular basis of the metamorphosis and nutrition metabolism change from zoeae to megalopae in Eriocheir sinensis. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 13: 1–9.Google Scholar
  46. Liu, L., H. Laufer, Y. Wang & T. Hayes, 1997. A neurohormone regulating both methyl farnesoate synthesis and glucose metabolism in a crustacean. Biochemical and Biophysical Research Communications 237(3): 694–701.PubMedGoogle Scholar
  47. Martin, A., Julia M. Serano, E. Jarvis, Heather S. Bruce, J. Wang, S. Ray, Carryn A. Barker, Liam C. O’Connell & Nipam H. Patel, 2016. CRISPR/Cas9 mutagenesis reveals versatile roles of Hox genes in crustacean limb specification and evolution. Current Biology 26(1): 14–26.PubMedGoogle Scholar
  48. Martín, M., M. F. Organista & J. F. de Celis, 2016. Structure of developmental gene regulatory networks from the perspective of cell fate-determining genes. Transcription 7(1): 32–37.PubMedPubMedCentralGoogle Scholar
  49. Miyakawa, H., K. Toyota, I. Hirakawa, Y. Ogino, S. Miyagawa, S. Oda, N. Tatarazako, T. Miura, J. K. Colbourne & T. Iguchi, 2013. A mutation in the receptor Methoprene-tolerant alters juvenile hormone response in insects and crustaceans. Nature Communications 4: 1856.PubMedGoogle Scholar
  50. Mykles, D. L., 2011. Ecdysteroid metabolism in crustaceans. The Journal of Steroid Biochemistry and Molecular Biology 127(3–5): 196–203.PubMedGoogle Scholar
  51. Nagai, C., H. Mabashi-Asazuma, H. Nagasawa & S. Nagata, 2014. Identification and characterization of receptors for ion transport peptide (ITP) and ITP-like (ITPL) in the silkworm Bombyx mori. Journal of Biological Chemistry 289(46): 32166–32177.PubMedGoogle Scholar
  52. Nagaraju, G. P. C., N. J. Suraj & P. S. Reddy, 2003. Methyl farnesoate stimulates gonad development in Macrobrachium malcolmsonii (H. Milne Edwards) (Decapoda, Palaemonidae). Crustaceana 76(10): 1171–1178.Google Scholar
  53. Nagaraju, G. P., B. Rajitha & D. W. Borst, 2011. Molecular cloning and sequence of retinoid X receptor in the green crab Carcinus maenas: a possible role in female reproduction. Journal of Endocrinology 210(3): 379–390.PubMedGoogle Scholar
  54. Palero, F., P. F. Clark & G. Guerao, 2014. Infraorden Achelata. In Martin, J., J. Olesen & J. Hoeg (eds), Atlas of Crustacean Larvae. Johns Hopkins University Press, Maryland: 272–278.Google Scholar
  55. Parthasarathy, R., Z. Sheng, Z. Sun & S. R. Palli, 2010. Ecdysteroid regulation of ovarian growth and oocyte maturation in the red flour beetle, Tribolium castaneum. Insect Biochemistry and Molecular Biology 40(6): 429–439.PubMedPubMedCentralGoogle Scholar
  56. Pechenik, J. A., 1990. Delayed metamorphosis by larvae of benthic marine invertebrates: does it occur? Is there a price to pay? Ophelia 32(1–2): 63–94.Google Scholar
  57. Pechenik, J. A., 2006. Larval experience and latent effects—metamorphosis is not a new beginning. Integrative and Comparative Biology 46(3): 323–333.PubMedGoogle Scholar
  58. Petryk, A., J. T. Warren, G. Marques, M. P. Jarcho, L. I. Gilbert, J. P. Parvy, C. Dauphin-Villemant & M. B. O’Connor, 2003. Shade is the Drosophila P450 enzyme that mediates the hydroxylation of ecdysone to the steroid insect molting hormone 20-hydroxyecdysone. Proceedings of the National Academy of Sciences United States of America.  https://doi.org/10.1073/pnas.2336088100.CrossRefGoogle Scholar
  59. Pine, M. K., A. G. Jeffs & C. A. Radford, 2016. Effects of underwater turbine noise on crab larval metamorphosis. In Popper, A. N. & A. Hawkins (eds), The Effects of Noise on Aquatic Life II. Springer, New York: 847–852.Google Scholar
  60. Powell, D., W. Knibb, C. Remilton & A. Elizur, 2015. De-novo transcriptome analysis of the banana shrimp (Fenneropenaeus merguiensis) and identification of genes associated with reproduction and development. Marine Genomics 22: 71–78.Google Scholar
  61. Qian, Z., S. He, T. Liu, Y. Liu, F. Hou, Q. Liu, X. Wang, X. Mi, P. Wang & X. Liu, 2014. Identification of ecdysteroid signaling late-response genes from different tissues of the Pacific white shrimp, Litopenaeus vannamei. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 172: 10–30.Google Scholar
  62. Qu, Z., N. J. Kenny, H. M. Lam, T. F. Chan, K. H. Chu, W. G. Bendena, S. S. Tobe & J. H. L. Hui, 2015. How did arthropod sesquiterpenoids and ecdysteroids arise? comparison of hormonal pathway genes in noninsect arthropod genomes. Genome Biology and Evolution 7(7): 1951–1959.PubMedPubMedCentralGoogle Scholar
  63. Raviv, S., S. Parnes & A. Sagi, 2008. Coordination of Reproduction and Molt in Decapods. In Mente, E. (ed.), Reproductive Biology of Crustaceans Case Studies of Decapod Crustaceans. Science Publishers, Boca Raton: 365–390.Google Scholar
  64. Rewitz, K. F., R. Rybczynski, J. T. Warren & L. I. Gilbert, 2006a. The Halloween genes code for cytochrome P450 enzymes mediating synthesis of the insect moulting hormone. Biochemical Society Transactions.  https://doi.org/10.1042/BST0341256.CrossRefPubMedGoogle Scholar
  65. Rewitz, K. F., R. Rybczynski, J. T. Warren & L. I. Gilbert, 2006b. Identification, characterization and developmental expression of Halloween genes encoding P450 enzymes mediating ecdysone biosynthesis in the tobacco hornworm, Manduca sexta. Insect Biochem Mol Biol.  https://doi.org/10.1016/j.ibmb.2005.12.002.CrossRefPubMedGoogle Scholar
  66. Rewitz, K. F., M. B. O’Connor & L. I. Gilbert, 2007. Molecular evolution of the insect Halloween family of cytochrome P450s: phylogeny, gene organization and functional conservation. Insect Biochemistry and Molecular Biology 37(8): 741–753.PubMedGoogle Scholar
  67. Rotllant, G., N. Pascual, F. Sarda, P. Takac & H. Laufer, 2001. Identification of Methyl Farnesoate in the hemolymph of the Mediterranean deep-sea species Norway lobster, Nephrops norvegicus. Journal of Crustacean Biology 21(2): 328–333.Google Scholar
  68. Sagi, A., R. Manor & T. Ventura, 2013. Gene silencing in crustaceans: from basic research to biotechnologies. Genes.  https://doi.org/10.3390/genes4040620.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Scholtz, G., 2004. Evolutionary Developmental Biology of Crustacea, Illustrated ed. Taylor & Francis, Routledge.Google Scholar
  70. Sharabi, O., R. Manor, S. Weil, E. D. Aflalo, Y. Lezer, T. Levy, J. Aizen, T. Ventura, P. B. Mather, I. Khalaila & A. Sagi, 2015. Identification and characterization of an insulin-like receptor involved in crustacean reproduction. Endocrinology 157(2): 928–941.PubMedGoogle Scholar
  71. Sin, Y. W., N. J. Kenny, Z. Qu, K. W. Chan, K. W. S. Chan, S. P. S. Cheong, R. W. T. Leung, T. F. Chan, W. G. Bendena, K. H. Chu, S. S. Tobe & J. H. L. Hui, 2015. Identification of putative ecdysteroid and juvenile hormone pathway genes in the shrimp Neocaridina denticulata. General and Comparative Endocrinology 214: 167–176.PubMedGoogle Scholar
  72. Stanley, J. A., J. Hesse, I. A. Hinojosa & A. G. Jeffs, 2015. Inducers of settlement and moulting in post-larval spiny lobster. Oecologia 178(3): 685–697.PubMedGoogle Scholar
  73. Talbot, W. S., E. A. Swyryd & D. S. Hogness, 1993. Drosophila tissues with different metamorphic responses to ecdysone express different ecdysone receptor isoforms. Cell 73(7): 1323–1337.PubMedGoogle Scholar
  74. Tamura, K., G. Stecher, D. Peterson, A. Filipski & S. Kumar, 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30(12): 2725–2729.PubMedPubMedCentralGoogle Scholar
  75. Techa, S. & J. S. Chung, 2013. Ecdysone and retinoid-X receptors of the blue crab, Callinectes sapidus: cloning and their expression patterns in eyestalks and Y-organs during the molt cycle. Gene 527(1): 139–153.PubMedGoogle Scholar
  76. Thiyagarajan, V., 2010. A review on the role of chemical cues in habitat selection by barnacles: new insights from larval proteomics. Journal of Experimental Marine Biology and Ecology 392(1): 22–36.Google Scholar
  77. Tobe, S. S. & W. G. Bendena, 1999. The regulation of juvenile hormone production in arthropods: functional and evolutionary perspectives. Annals of the New York Academy of Sciences 897(1): 300–310.PubMedGoogle Scholar
  78. Ventura, T., O. Rosen & A. Sagi, 2011. From the discovery of the crustacean androgenic gland to the insulin-like hormone in six decades. General and Comparative Endocrinology 173(3): 381–388.PubMedGoogle Scholar
  79. Ventura, T., R. Manor, E. D. Aflalo, V. Chalifa-Caspi, S. Weil, O. Sharabi & A. Sagi, 2013. Post-embryonic transcriptomes of the prawn Macrobrachium rosenbergii: multigenic succession through metamorphosis. PLoS ONE 8(1): e55322.PubMedPubMedCentralGoogle Scholar
  80. Ventura, T., S. F. Cummins, Q. Fitzgibbon, S. Battaglene & A. Elizur, 2014. Analysis of the central nervous system transcriptome of the eastern rock lobster Sagmariasus verreauxi reveals its putative neuropeptidome. PLoS ONE 9(5): e97323.PubMedPubMedCentralGoogle Scholar
  81. Ventura, T., Q. P. Fitzgibbon, S. C. Battaglene & A. Elizur, 2015. Redefining metamorphosis in spiny lobsters: molecular analysis of the phyllosoma to puerulus transition in Sagmariasus verreauxi. Scientific Reports 5:13537. http://www.nature.com/articles/srep13537#supplementary-information.
  82. Ventura, T., U. Bose, Q. P. Fitzgibbon, G. G. Smith, P. N. Shaw, S. F. Cummins & A. Elizur, 2017. CYP450 s analysis across spiny lobster metamorphosis identifies a long sought missing link in crustacean development. The Journal of Steroid Biochemistry and Molecular Biology 171: 262–269.PubMedGoogle Scholar
  83. Webster, S. G., R. Keller & H. Dircksen, 2012. The CHH-superfamily of multifunctional peptide hormones controlling crustacean metabolism, osmoregulation, moulting, and reproduction. General and Comparative Endocrinology 175(2): 217–233.PubMedGoogle Scholar
  84. Wei, J., X. Zhang, Y. Yu, H. Huang, F. Li & J. Xiang, 2014. Comparative transcriptomic characterization of the early development in pacific white shrimp Litopenaeus vannamei. PLoS ONE 9(9): e106201.PubMedPubMedCentralGoogle Scholar
  85. Wen, D., C. Rivera-Perez, M. Abdou, Q. Jia, Q. He, X. Liu, O. Zyaan, J. Xu, W. G. Bendena, S. S. Tobe, F. G. Noriega, S. R. Palli, J. Wang & S. Li, 2015. Methyl Farnesoate plays a dual role in regulating Drosophila metamorphosis. PLoS Genetics 11(3): e1005038.PubMedPubMedCentralGoogle Scholar
  86. Zhao, W.-L., C.-Y. Liu, W. Liu, D. Wang, J.-X. Wang & X.-F. Zhao, 2014. Methoprene-tolerant 1 regulates gene transcription to maintain insect larval status. Journal of Molecular Endocrinology 53(1): 93–104.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.GeneCology Research Centre, Faculty of Science, Health, Education and EngineeringUniversity of the Sunshine CoastQueenslandAustralia
  2. 2.Centre d’Estudis Avançats de Blanes (CEAB-CSIC)BlanesSpain
  3. 3.Institut de Ciències del Mar (ICM-CSIC)BarcelonaSpain
  4. 4.Institute of Marine and Antarctic StudiesCentre for Fisheries and Aquaculture University of TasmaniaHobartAustralia

Personalised recommendations