, Volume 808, Issue 1, pp 353–370 | Cite as

Evolutionary responses of aquatic macroinvertebrates to two contrasting flow regimes

  • Mireia de la Fuente
  • Núria BonadaEmail author
  • Leah Bêche
  • Clifford N. Dahm
  • Patina K. Mendez
  • Klement Tockner
  • Urs Uehlinger
  • Vicenç Acuña
Primary Research Paper


Natural disturbances are agents of natural selection that drive multiple biological adaptations along evolutionary time. Frequent, high magnitude disturbances are expected to select for morphological and behavioral traits to resist or to avoid them. In contrast, predictable and seasonal disturbances are expected to select for synchronized life cycles to avoid unfavorable periods. We assessed the effect of flood disturbances on aquatic macroinvertebrates in two rivers with contrasting flow regimes: the Gila (USA) with seasonal floods and droughts, and the Thur (Switzerland) with a high frequency of aseasonal floods. Macroinvertebrates were analyzed based on 46 biological trait categories classified into morphological, life-cycle synchronization, and behavioral strategies. Flood effects on diversity and composition were much clearer for the Gila than for the Thur. Overall, biological adaptations were related to the flood regime of each river. Morphological adaptations to resist or avoid floods prevailed under frequent and aseasonal disturbances (the Thur), whereas life-cycle synchronization and behavioral adaptations were associated with highly seasonal, predictable, and low-frequency disturbances (the Gila). Given that forecasted future flow regimes differ between regions, our results suggest that the effects of future flow regime alterations will ultimately depend on the adaptation strategies to current flow regimes.


Droughts Floods Predictability Resilience Resistance River ecosystems 



John Craig, Richard Illi, Sergi Sabater, Martha Schumann, Dave Van Horn, and Andreas Wolf (in alphabetical order) assisted in the field or in the laboratory. The research was funded by a MEC-Fulbright fellowship of the Spanish Science and Education Ministry, by a Marie Curie Intra-European Fellowship within the 6th European Community Framework Programme, the National Science Foundation (IGERT Freshwater Sciences Interdisciplinary Doctoral Program, DGE 9972810), the University of New Mexico, the Swiss Federal Institute of Aquatic Science and Technology (Eawag), and The Nature Conservancy.

Supplementary material

10750_2017_3437_MOESM1_ESM.docx (886 kb)
Supplementary material 1 (DOCX 886 kb)


  1. Acuña, V. & C. N. Dahm, 2007. Impact of monsoonal rains on spatial scaling patterns in water chemistry of a semiarid river network. Journal of Geophysical Research 112: G04009.CrossRefGoogle Scholar
  2. Bae, M.-J. & Y.-S. Park, 2017. Responses of the functional diversity of benthic macroinvertebrates to floods and droughts in small streams with different flow permanence. Inland Waters 6: 461–475.CrossRefGoogle Scholar
  3. Bêche, L. A., E. P. McElravy & V. H. Resh, 2006. Long-term seasonal variation in the biological traits of benthic-macroinvertebrates in two Mediterranean-climate streams in California, U.S.A. Freshwater Biology 51: 56–75.CrossRefGoogle Scholar
  4. Bonada, N. & S. Dolédec, 2011. Do mediterranean genera not included in Tachet et al. 2002 have mediterranean trait characteristics? Limnetica 30: 129–142.Google Scholar
  5. Bonada, N. & V. H. Resh, 2013. Mediterranean-climate streams and rivers: geographically separated but ecologically comparable freshwater systems. Hydrobiologia 719: 1–29.CrossRefGoogle Scholar
  6. Bonada, N., S. Dolédec & B. Statzner, 2007. Taxonomic and biological trait differences of stream macroinvertebrate communities between mediterranean and temperate regions: implications for future climatic scenarios. Global Change Biology 13: 1658–1671.CrossRefGoogle Scholar
  7. Burgess, S. C. & D. J. Marshall, 2014. Adaptive parental effects: the importance of estimating environmental predictability and offspring fitness appropriately. Oikos 123: 769–776.CrossRefGoogle Scholar
  8. Calapez, A. R., C. L. Elias, S. F. P. Almeida & M. J. Feio, 2014. Extreme drought effects and recovery patterns in benthic communities of temperate streams. Limnetica 33: 281–296.Google Scholar
  9. Champely, S. & D. Chessel, 2002. Measuring biological diversity using Euclidean metrics. Environmental and Ecological Statistics 9: 167–177.CrossRefGoogle Scholar
  10. Chessel, D., A. Dufour & J. Thioulouse, 2004. The ade4 package-I- One-table methods. R News 4: 5–10.Google Scholar
  11. Chevenet, F., S. Dolédec & D. Chessel, 1994. A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology 31: 295–309.CrossRefGoogle Scholar
  12. Cleveland, W. S., 1979. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74: 829–836.CrossRefGoogle Scholar
  13. Colwell, R. K., 1974. Predictability, constancy, and contingency of periodic phenomena. Ecology 55: 1148–1153.CrossRefGoogle Scholar
  14. Cook, B. I. & R. Seager, 2013. The response of the North American Monsoon to increased greenhouse gas forcing. Journal of Geophysical Research: Atmospheres 118: 1690–1699.Google Scholar
  15. Death, R. G., 2008. Effects of floods on aquatic invertebrates communities. In Lancaster, J. & R. A. Briers (eds.), Aquatic Insects: Challenges to Populations. CAB International, Wallingford, UK: 103–121.CrossRefGoogle Scholar
  16. Feeley, H. B., S. Davies, M. Bruen, S. Blacklocke & M. Kelly-Quinn, 2012. The impact of a catastrophic storm event on benthic macroinvertebrate communities in upland headwater streams and potential implications for ecological diversity and assessment of ecological status. Journal of Limnology 71: 299–308.CrossRefGoogle Scholar
  17. Filipe, A. F., J. E. Lawrence & N. Bonada, 2013. Vulnerability of stream biota to climate change in mediterranean climate regions: a synthesis of ecological responses and conservation challenges. Hydrobiologia 719: 331–351.Google Scholar
  18. Fleituch, T., 2003. Structure and functional organization of benthic invertebrates in a regulated stream. International Review of Hydrobiology 88: 332–344.CrossRefGoogle Scholar
  19. Gasith, A. & V. H. Resh, 1999. Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annual Review of Ecology and Systematics 30: 51–81.CrossRefGoogle Scholar
  20. Gutzler, D. S., 2013. Regional climatic considerations for borderlands sustainability. Ecosphere 4: 1–12.CrossRefGoogle Scholar
  21. Heino, J., R. Virkkala & H. Toivonen, 2009. Climate change and freshwater biodiversity: detected patterns, future trends and adaptation in northern regions. Biological Reviews 84: 39–54.CrossRefPubMedGoogle Scholar
  22. Hershkovitz, Y. & A. Gasith, 2013. Resistance, resilience, and community dynamics in mediterranean-climate streams. Hydrobiologia 719: 59–75.CrossRefGoogle Scholar
  23. Imhof, A., 1994. Habitatsansprüche und Verhalten von Perla grandis (Rambur) (Plecoptera: Perlidae) und anderen räuberischen Steinfliegenlarven. PhD thesis, ETH (Eidgenössische Technische Hochschule), Zurich.Google Scholar
  24. Lake, P. S., 2000. Disturbance, patchiness, and diversity in streams. Journal of the North American Benthological Society 19: 573–592.CrossRefGoogle Scholar
  25. Lake, P. S., 2011. Drought and aquatic ecosystems: effects and responses. Wiley-Blackwell, West Sussex, UK.CrossRefGoogle Scholar
  26. Lepori, F. & N. Hjerdt, 2006. Disturbance and aquatic biodiversity: reconciling contrasting views. BioScience 56: 809–818.CrossRefGoogle Scholar
  27. Lytle, D. A., 2001. Disturbance regimes and life-history evolution. The American Naturalist 157: 525–536.PubMedGoogle Scholar
  28. Lytle, D. A., 2002. Flash floods and aquatic insect life-history evolution: evaluation of multiple models. Ecology 83: 370–385.CrossRefGoogle Scholar
  29. Lytle, D. A. & N. L. Poff, 2004. Adaptation to natural flow regimes. Trends in Ecology and Evolution 19: 94–100.CrossRefPubMedGoogle Scholar
  30. Lytle, D. A., M. T. Bogan & D. S. Finn, 2008. Evolution of aquatic insect behaviours across a gradient of disturbance predictability. Proceedings of the Royal Society B 275: 453–462.CrossRefPubMedGoogle Scholar
  31. McCluney, K. E., N. L. Poff, M. A. Palmer, J. H. Thorp, G. C. Poole, B. S. Williams, M. R. Williams & J. S. Baron, 2014. Riverine macrosystems ecology: sensitivity, resistance, and resilience of whole river basins with human alterations. The Ecological Society of America 12: 48–58.Google Scholar
  32. Merritt, R. W. & K. W. Cummins, 1996. An introduction to the aquatic insects of North America, 3rd ed. Kendall/Hunt Publishing Company, Dubuque, IA.Google Scholar
  33. Molles, M. C. & C. N. Dahm, 1990. A perspective on El Niño and La Niña: global implications for stream ecology. Journal of the North American Benthological Society 9: 68–76.CrossRefGoogle Scholar
  34. Oksanen, J., G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2013. vegan: Community Ecology Package. R package version 2.0-8.
  35. Piniewski, M., C. Prudhomme, M. C. Acreman, L. Tylec, P. Oglecki & T. Okruszko, 2017. Responses of fish and invertebrates to floods and drought in Europe. Ecohydrology 10: e1793.CrossRefGoogle Scholar
  36. Poff, N. L. & J. V. Ward, 1989. Implications of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns. Canadian Journal of Fisheries and Aquatic Sciences 46: 1805–1818.CrossRefGoogle Scholar
  37. Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks & J. C. Stromberg, 1997. The natural flow regime: a paradigm for river conservation and restoration. BioScience 47: 769–784.CrossRefGoogle Scholar
  38. Poff, N. L., J. D. Olden, N. K. M. Vieira, D. S. Finn, M. P. Simmons & B. C. Kondratieff, 2006. Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. Journal of the North American Benthological Society 25: 730–755.CrossRefGoogle Scholar
  39. R Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  40. Richter, B. D., J. V. Baumgartner, J. Powell & D. P. Braun, 1996. A method for assessing hydrologic alteration within ecosystems. Conservation Biology 10: 1163–1174.CrossRefGoogle Scholar
  41. Robinson, C., U. Uehlinger & M. Monaghan, 2003. Effects of a multiyear experimental flood regime on macroinvertebrates downstream of a reservoir. Aquatic Sciences 65: 210–222.CrossRefGoogle Scholar
  42. Robinson, C. T., S. Aebischer & U. Uehlinger, 2004. Immediate and habitat-specific responses of macroinvertebrates to sequential, experimental floods. Journal of the North American Benthological Society 23(4): 853–867.CrossRefGoogle Scholar
  43. Rolls, R. J. & A. H. Arthington, 2014. How do low magnitudes of hydrologic alteration impact riverine fish populations and assemblage characteristics? Ecological Indicators 39: 179–188.CrossRefGoogle Scholar
  44. Schleuter, D., M. Daufresne, F. Massol & C. Argillier, 2010. A user’s guide to functional diversity indices. Ecological Monographs 80: 469–484.CrossRefGoogle Scholar
  45. Schneider, S. C. & Z. Petrin, 2017. Effects of flow regime on benthic algae and macroinvertebrates—A comparison between regulated and unregulated rivers. Science of the Total Environment 579: 1059–1072.CrossRefPubMedGoogle Scholar
  46. Schneider, C., C. L. R. Laizé, M. C. Acreman & M. Flörke, 2012. How will climate change modify river flow regimes in Europe? Hydrology and Earth System Sciences 9: 9193–9238.CrossRefGoogle Scholar
  47. Seager, R., M. Ting, I. Held, Y. Kushnir, J. Lu, G. Vecchi, H.-P. Huang, N. Harnik, A. Leetmaa, N.-C. Lau, C. Li, J. Velez & N. Naik, 2008. Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316: 1181–1184.CrossRefGoogle Scholar
  48. Skelly, D. K., L. N. Joseph, H. P. Possingham, L. K. Freidenburg, T. J. Farrugia, M. T. Kinnison & A. P. Hendry, 2007. Evolutionary responses to climate change. Conservation Biology 21: 1353–1355.CrossRefPubMedGoogle Scholar
  49. Statzner, B., N. Bonada & S. Dolédec, 2007. Conservation of taxonomic and biological trait diversity of European stream macroinvertebrate communities: a case for a collective public database. Biodiversity and Conservation 16: 3609–3632.CrossRefGoogle Scholar
  50. Tachet, H., P. Richoux, M. Bournaud & P. Usseglio-Polatera, 2010. Invertébrés d’Eau Douce (2nd corrected impression). CNRS éditions, Paris.Google Scholar
  51. Tomanova, S. & P. Usseglio-Polatera, 2007. Patterns of benthic community traits in neotropical streams: relationship to mesoscale spatial variability. Fundamental and Applied Limnology 170(3): 243–255.CrossRefGoogle Scholar
  52. Uehlinger, U., 2000. Resistance and resilience of ecosystem metabolism in a flood-prone river system. Freshwater Biology 45: 319–332.CrossRefGoogle Scholar
  53. Verberk, W. C. E. P., C. G. E. van Noordwijk & A. Hildrew, 2013. Delivering on a promise: integrating species traits to transform descriptive community ecology into a predictive science. Freshwater Science 32: 531–547.CrossRefGoogle Scholar
  54. Vörösmarty, C. J., P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. A. Sullivan, C. R. Liermannm & P. M. Davies, 2010. Global threats to human water security and river biodiversity. Nature 467: 555–561.CrossRefPubMedGoogle Scholar
  55. Wang, X. F., 2010. fANCOVA: Nonparametric Analysis of Covariance. R package version 0.5-1.
  56. Woodward, G., N. Bonada, H. B. Feeley & P. S. Giller, 2015. Resilience of a stream community to extreme climatic events and long-term recovery from a catastrophic flood. Freshwater Biology 60: 2497–2510.CrossRefGoogle Scholar
  57. Woodward, G., N. Bonada, L. E. Brown, R. G. Death, I. Durance, C. Gray, S. Hladyz, M. E. Ledger, A. M. Milner, S. J. Ormerod, R. M. Thompson & S. Pawar, 2016. The effects of climatic fluctuations and extreme events on running water ecosystems. Philosophical Transactions of the Royal Society B 371: 20150274.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Grup de Recerca Freshwater Ecology and Management (FEM), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio)Universitat de Barcelona (UB)BarcelonaSpain
  2. 2.EDF – CIH, Service Environnement et SociétéLe Bourget-du-LacFrance
  3. 3.Department of BiologyUniversity of New MexicoAlbuquerqueUSA
  4. 4.Department of Environmental Science, Policy & Management (ESPM)University of California, BerkeleyBerkeleyUSA
  5. 5.Institute of BiologyFreie Universität BerlinBerlinGermany
  6. 6.Leibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
  7. 7.Austrian Science FundViennaAustria
  8. 8.RamsenSwitzerland
  9. 9.Catalan Institute for Water Research (ICRA)GironaSpain

Personalised recommendations