Advertisement

Hydrobiologia

, Volume 829, Issue 1, pp 43–59 | Cite as

Dynamics of cyanobacteria blooms are linked to the hydrology of shallow Florida lakes and provide insight into possible impacts of climate change

  • Karl E. HavensEmail author
  • Gaohua Ji
  • John R. Beaver
  • Rolland S. FultonIII
  • Catherine E. Teacher
SHALLOW LAKES RESEARCH

Abstract

Analysis of an 18-year dataset from seven shallow lakes in Florida provides evidence of hydrologic factors controlling dynamics of cyanobacteria blooms. Depth was the most important variable, and there was a synergistic effect with flushing. When the lakes were deep, rainfall led to water discharges and disruption of stagnant conditions that maintained blooms. Factors commonly associated with bloom formation (temperature) or suppression (high organic color, which can be a light-limiting factor) did not play a significant role. A conceptual model illustrates how blooms are regulated. First, the presence of bloom-forming species, high concentrations of nutrients, and lack of large zooplankton create a potential for blooms. Second, climate cycles influence yearly rainfall, resulting in wet years and droughts that affect lake water level and volume. This either stimulates blooms (drought, shallow) or suppresses them (wet, deep). Finally, proximal drivers such as a rain events and a flush of water suppress blooms. The results illustrate how climate variability and weather can control cyanobacteria blooms by affecting several processes long known to influence bloom formation, and provide insight into how climate change might affect occurrence of blooms in nutrient-enriched shallow lakes.

Keywords

Cyanobacteria Blooms Shallow lakes Nutrients Hydrology Climate variability Climate change 

Notes

Acknowledgements

The authors are grateful to the field crews and laboratory staff at the St. Johns River Water Management District for field collections and analyzing the water quality samples, and to two anonymous reviewers whose constructive comments led to improvements in the paper.

References

  1. Abtew, W. & P. Trimble, 2010. El Niño Southern Oscillation link to south Florida hydrology and water management applications. Water Resource Management 24: 4255–4271.CrossRefGoogle Scholar
  2. Beaver, J. R., K. C. Scotese, E. E. Manis, S. T. K. Juul, K. Carroll & T. R. Renicker, 2015. Variation in water residence time is the primary determinant of phytoplankton and zooplankton composition in a Pacific Northwest Reservoir ecosystem (Lower Snake River, USA). River Systems 21: 261–275.CrossRefGoogle Scholar
  3. Bouvy, M., R. M. Molica, S. De Oliveira, M. Marinho & B. Beker, 1999. Dynamics of a toxic cyanobacterial bloom (Cylindrospermopsis raciborskii) in a shallow reservoir in the semi-arid region of northern Brazil. Aquatic Microbial Ecology 20: 285–297.CrossRefGoogle Scholar
  4. Bouvy, M., D. Falcao, M. Marinho, M. Pagano & A. Moura, 2000. Occurrence of Cylindrospermopsis (Cyanobacteria) in 39 Brazilian tropical reservoirs during the 1998 drought. Aquatic Microbiology 23: 13–27.CrossRefGoogle Scholar
  5. Brasil, J., J. L. Attayde, F. R. Vasconcelos, D. D. F. Dantas & V. L. M. Huszar, 2015. Drought-induced water-level reduction favors cyanobacteria blooms in tropical shallow lakes. Hydrobiologia.  https://doi.org/10.1007/s10750-015-2578-5.CrossRefGoogle Scholar
  6. Cai, W., A. Santoso, G. Wang, et al., 2015. ENSO and greenhouse warming. Nature Climate Change 5: 849–859.CrossRefGoogle Scholar
  7. Catalano, M. J. & M. S. Allen, 2011. A whole-lake density reduction to assess compensatory responses of gizzard shad Dorosoma cepedianum. Canadian Journal of Fisheries and Aquatic Sciences 68: 955–968.CrossRefGoogle Scholar
  8. Catalano, M. J., M. S. Allen, M. H. Schaus, D. G. Buck & J. R. Beaver, 2010. Evaluating short-term effects of omnivorous fish removal on water quality and zooplankton at a subtropical lake. Hydrobiologia 655: 159–169.CrossRefGoogle Scholar
  9. Cheung, M. Y., S. Liang & J. Lee, 2013. Toxin-producing cyanobacteria in freshwater: a review of the problems, effects on drinking water safety, and efforts for protecting public health. Journal of Microbiology 51: 1–10.CrossRefGoogle Scholar
  10. Conley, D. J., H. W. Paerl, R. W. Howarth, D. F. Boesch, S. P. Seitzinger, K. E. Havens, C. Lancelot & G. E. Likens, 2009. Controlling eutrophication: nitrogen and phosphorus. Science 323: 1014–1015.CrossRefGoogle Scholar
  11. Coveney, M. F. 2016. Water Quality Changes in Lake Apopka, Florida, and the St. Johns River Water Management District’s Restoration Program. Technical Memorandum 56. St. Johns River Water Management District, Palatka.Google Scholar
  12. Coveney, M. F., E. F. Lowe, L. E. Battoe, E. R. Marzolf & R. Conrow, 2005. Response of a eutrophic, shallow subtropical lake to reduced nutrient loading. Freshwater Biology 50: 1718–1730.CrossRefGoogle Scholar
  13. Cózar, A., M. Bruno, N. Bergamino, B. Ubeda, L. Bracchini, A. M. Dattilo & S. A. Loiselle, 2012. Basin-scale control on the phytoplankton biomass in Lake Victoria, Africa. PLoS ONE 7: e29962.CrossRefGoogle Scholar
  14. Darchambeau, F., A. V. Borges, H. Sarmento, B. Leporcq, P. M. Lsumbisho, G. Alunga, P. M. Masilya & J. P. Descy, 2013. Teleconnections between ecosystem productivity and climate indices in a tropical great lake. Geophysical Research Abstracts 15, EGU2013-9919-1.Google Scholar
  15. Fox, J. & S. Weisberg, 2011. An R Companion to Applied Regression, 2nd ed. Sage, Thousand Oaks.Google Scholar
  16. Fulton III, R. S. 2016. Nutrient Loading and Water Quality Trends in the Upper Ocklawaha Basin Lakes Through 2014. Technical Memorandum 54-2. St. Johns River Water Management District, Palatka.Google Scholar
  17. Fulton III, R. S., W. F. Godwin & M. H. Schaus, 2015. Water quality changes following nutrient loading reduction and biomanipulation in a large shallow subtropical lake, Lake Griffin, Florida, USA. Hydrobiologia 753: 243–263.CrossRefGoogle Scholar
  18. Ha, K., E. A. Cho, H. W. Kim & G. J. Joo, 1999. Microcystis bloom formation in the lower Nakdong River, South Korea: importance of hydrodynamics and nutrient loading. Marine and Freshwater Research 50: 89–94.CrossRefGoogle Scholar
  19. Havens, K. E., 2008. Cyanobacteria blooms: effects on aquatic ecosystems. Advances in Experimental Medicine and Biology 619: 745–759.Google Scholar
  20. Havens, K. E. & J. R. Beaver, 2011. Composition, size and biomass of zooplankton in large productive Florida lakes. Hydrobiologia 668: 49–60.CrossRefGoogle Scholar
  21. Havens, K. E. & H. W. Paerl, 2015. Climate change at a crossroad for control of harmful algal blooms. Environmental Science and Technology.  https://doi.org/10.1021/acs.est.5b03990.CrossRefPubMedGoogle Scholar
  22. Havens, K. E., T. L. East & J. R. Beaver, 1996. Experimental studies of zooplankton–phytoplankton–nutrient interactions in a large subtropical lake (Lake Okeechobee, Florida, USA). Freshwater Biology 36: 579–597.CrossRefGoogle Scholar
  23. Havens, K. E., E. J. Phlips, M. F. Cichra & B. L. Li, 1998. Light availability as a possible regulator of cyanobacteria species composition in a shallow subtropical lake. Freshwater Biology 39: 547–556.CrossRefGoogle Scholar
  24. Havens, K. E., R. S. Fulton III, J. R. Beaver, E. E. Samples & J. Colee, 2016. Effects of climate variability on cladoceran zooplankton and cyanobacteria in a shallow subtropical lake. Journal of Plankton Research.  https://doi.org/10.1093/plankt/fbw009.CrossRefGoogle Scholar
  25. Hillebrand, H., C. D. Dürselen, T. Kirschtel, et al., 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.CrossRefGoogle Scholar
  26. Ibelings, B. W. & K. E. Havens, 2008. Cyanobacterial toxins: a qualitative meta-analysis of concentrations, dosage and effects in freshwater, estuarine and marine biota. Advances in Experimental Medicine and Biology 619: 685–744.Google Scholar
  27. Iglesias, C., N. Mazzeo, M. Meerhoff, G. Lacerot, J. M. Clemente, F. Scasso, C. Kruk, G. Goyenola, J. Garcia-Alonso, S. L. Amsinck, J. C. Paggi, S. J. de Paggi & E. Jeppesen, 2011. High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments. Hydrobiologia 667: 133–147.CrossRefGoogle Scholar
  28. IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva: 151 pp.Google Scholar
  29. Jeppesen, E., M. Meerhoff, B. A. Jacobsen, et al., 2007. Restoration of shallow lakes by nutrient control and biomanipulation – the successful strategy varies with lake size and climate. Hydrobiologia 581: 269–285.CrossRefGoogle Scholar
  30. Kopp, J. F. & G. D. McKee, 1983. Methods for Chemical Analysis of Water and Wastewater. EPA-600/4-79-020. United States Environmental Protection Agency, Washington, DC.Google Scholar
  31. Kosten, S., V. L. M. Huszar, E. Bécares, et al., 2012. Warmer climates boost cyanobacterial dominance in shallow lakes. Global Change Biology 18: 118–126.CrossRefGoogle Scholar
  32. Lacerot, G., C. Kruk, M. Lurling, et al., 2012. The role of subtropical zooplankton as grazers of phytoplankton under different predation levels. Freshwater Biology 58: 494–503.CrossRefGoogle Scholar
  33. Lee, S. K., B. E. Mapes, C. Wang, D. B. Enfield & S. J. Weaver, 2014. Springtime ENSO phase evolution and its relation to rainfall in the continental US. Geophysical Research Letters 41: 1673–1680.CrossRefGoogle Scholar
  34. McNabb, C. D., 1960. Enumeration of freshwater phytoplankton concentrated on the membrane filter. Limnology and Oceanography 5: 57–61.CrossRefGoogle Scholar
  35. Meerhoff, M., C. Iglesias, F. Teixeira de Mello, et al., 2007. Effects of habitat complexity on community structure and predator avoidance behavior of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology 52: 1009–1021.CrossRefGoogle Scholar
  36. Moss, B., J. Madgwick & G. Phillips, 1997. A Guide to the Restoration of Nutrient-Enriched Shallow Lakes. WW Hawes, Inc., London: 180.Google Scholar
  37. Nõges, T., P. Nõges & R. Laugaste, 2003. Water level as a the mediator between climate change and phytoplankton composition in a large shallow temperate lake. Hydrobiologia 506: 257–263.CrossRefGoogle Scholar
  38. O’Reilly, C. M., S. Sharma, D. Gray, et al., 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research Letters.  https://doi.org/10.1002/2015GL066235.CrossRefGoogle Scholar
  39. Paerl, H. W. & J. Huisman, 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports 1: 27–37.CrossRefGoogle Scholar
  40. Paerl, H. W. & T. G. Otten, 2013. Harmful cyanobacterial blooms: causes, consequences and controls. Microbial Ecology 65: 995–1010.CrossRefGoogle Scholar
  41. Paerl, H. W., W. S. Gardner, K. E. Havens, A. R. Joyner, M. J. McCarthy, S. E. Newell, B. Qin & J. T. Scott, 2016. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae 54: 213–222.CrossRefGoogle Scholar
  42. Reichwaldt, E. S. & A. Ghadouani, 2012. Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: between simplistic scenarios and complex dynamics. Water Research 46: 1372–1393.CrossRefGoogle Scholar
  43. Reynolds, C. S., 2006. The Ecology of Phytoplankton. Cambridge University Press, Cambridge: 535 p.CrossRefGoogle Scholar
  44. Rodusky, A. J., B. Sharfstein, K. R. Jin & T. L. East, 2005. Thermal stratification and the potential for enhanced phosphorus release from the sediments of Lake Okeechobee, USA. Lake and Reservoir Management 21: 330–337.CrossRefGoogle Scholar
  45. Schaus, M. H., M. J. Vanni, T. E. Wissing, M. T. Bremigan, J. E. Garvey & R. A. Stein, 1997. Nitrogen and phosphorus excretion by detritivorous gizzard shad in a reservoir ecosystem. Limnology and Oceanography 42: 1386–1397.CrossRefGoogle Scholar
  46. Srifa, A., E. J. Phlips, M. F. Cichra & J. C. Hendrickson, 2016. Phytoplankton dynamics in a subtropical lake dominated by cyanobacteria: cyanobacteria like it hot and sometimes dry. Aquatic Ecology 50: 163–174.CrossRefGoogle Scholar
  47. Ter Braak, C. J. F. & P. Smilauer, 2002. CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca.Google Scholar
  48. USACE, 1999. Lake Okeechobee Regulation Schedule Study, Environmental Impact Statement. US Army Corps of Engineers, Jacksonville District, Jacksonville.Google Scholar
  49. Van Cleave, K., J. D. Lenters, J. Wang & E. M. Verhamme, 2014. A regime shift in Lake Superior ice cover, evaporation, and water temperature following the warm El Niño winter of 1997–1998. Limnology and Oceanography 59: 1889–1898.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Karl E. Havens
    • 1
    Email author
  • Gaohua Ji
    • 2
  • John R. Beaver
    • 3
  • Rolland S. FultonIII
    • 4
  • Catherine E. Teacher
    • 3
  1. 1.Florida Sea Grant College Program and University of Florida Institute of Food and Agricultural SciencesGainesvilleUSA
  2. 2.College of Fisheries and Life ScienceShanghai Ocean UniversityNanhui New CityPeople’s Republic of China
  3. 3.BSA Environmental ServicesBeachwoodUSA
  4. 4.PalatkaUSA

Personalised recommendations