Advertisement

Origin of nitrogen in the English Channel and Southern Bight of the North Sea ecosystems

  • Valérie DulièreEmail author
  • Nathalie Gypens
  • Christiane Lancelot
  • Patrick Luyten
  • Geneviève Lacroix
NORTH SEA OPEN SCIENCE CONFERENCE

Abstract

Over the last decades, nutrients loading to the sea have significantly increased due to the growing anthropogenic pressure in the river watersheds. Some areas of the English Channel and Southern Bight of the North Sea are particularly affected by the resulting eutrophication nuisances. Establishing the link between these nuisances and anthropogenic activities requires (1) the identification of the major nutrient sources and (2) the assessment of the ecosystem response to these nutrient alterations. A nutrient tracking approach has been implemented in the marine ecological model MIRO&CO to allow tracing marine nitrogen back to its continental sources over 2000–2010. On average, nitrogen atmospheric deposition contributes between 1 and 10 mmol N/m3 to marine nutrients concentrations in the English Channel and Southern Bight of the North Sea. This corresponds to relative contributions between 10 and 30%. River contributions remained localized except for the Seine and small French rivers. Different geographical patterns of sources contribution were found for wet and dry periods. Results also showed different contribution systems between offshore and coastal areas. Relative contributions from nitrogen sources to nutrients and phytoplankton biomass are similar. This study provides useful information to help identifying the causes of marine eutrophication and mitigating its nuisances.

Keywords

Tagging Nutrients Eutrophication Ecological model Southern North Sea 

Notes

Acknowledgements

This research was supported by the EMoSEM project, a two-year project (2013–2014) funded by the French National Research Agency (ANR) and the Belgian Science Policy (BELSPO, SD/ER/11) in the frame of EU FP7 ERA-NET Seas-era. The atmospheric deposition of nitrogen (2000–2010) computed in the frame of the “European Monitoring and Evaluation Program (EMEP)” have been provided to EMoSEM by Semeena Valiyaveetil and Jerzy Bartnicki (met.no). We also acknowledge the European Centre for Medium-Range Weather Forecasts (ECMWF) for the very efficient and friendly support that enabled us to perform the MIRO&CO simulations.

Supplementary material

10750_2017_3419_MOESM1_ESM.docx (62 kb)
Supplementary material 1 (DOCX 62 kb)

References

  1. Allen, J. I., J. Holt, J. Blackford & R. Proctor, 2007a. Error quantification of a high-resolution coupled hydrodynamic-ecosystem coastal-ocean model: Part 2. Chlorophyll-a, nutrients and SPM. Journal of Marine Systems 68: 381–404.CrossRefGoogle Scholar
  2. Allen, J. I., P. J. Somerfield & F. J. Gilbert, 2007b. Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models. Journal of Marine Systems 64: 3–14.CrossRefGoogle Scholar
  3. Anderson, D., P. Glibert & J. Burkholder, 2002. Harmful algal blooms and eutrophication: nutrient sources, composition and consequences. Estuaries 25: 704–726.CrossRefGoogle Scholar
  4. Billen, G. & P. Servais, 1989. Modélisation des processus de dégradation bactérienne de la matière organique en milieu aquatique. In Bianchi, M., D. Marty, J. C. Bertrand, P. Caumette & M. Gauthier (eds), Micro-organismes dans les écosystèmes océaniques. Masson, Paris: 219–245.Google Scholar
  5. Billen, G., S. Dessery, C. Lancelot & M. Meybeck, 1989. Seasonal and interannual variations of nitrogen diagenesis in the sediments of a recently impounded basin. Biogeochemistry 8: 73–100.CrossRefGoogle Scholar
  6. Conley, D. J., H. W. Paerl, R. W. Howarth, D. F. Boesch, S. P. Seitzinger, K. E. Havens, C. Lancelot & G. E. Likens, 2009. Controlling eutrophication: nitrogen and phosphorus. Science 323(5917): 1014–1015.CrossRefPubMedGoogle Scholar
  7. Deleersnijder, E., E. Wolanski & A. Norro, 1989. Numerical simulation of the three-dimensional tidal circulation in an island’s wake. In Carlomango, G. M. & C. A. Brebbia (eds), Computers and Experiments in Fluid Flow. Springer, Berlin: 355–381.Google Scholar
  8. Desmit, X., K. Ruddick & G. Lacroix, 2015a. Salinity predicts the distribution of Chlorophyll a spring peak in the southern North Sea continental waters. Journal of Sea Research 103: 59–74.CrossRefGoogle Scholar
  9. Desmit X., G. Lacroix, V. Thieu, A. Ménesguen, V. Dulière, F. Campuzano, G. Billen, R. Neves, C. Lancelot, N. Gypens, M. Dussauze, J. Garnier, M. Silvestre, P. Passy, L. Lassaletta, G. Guittard, S. Théry, B. Thouvenin, C. Garcia, L. Pinto, J. Sobrinho, M. Mateus & I. Ascione Kenov, 2015b. EMoSEM Final Report – Ecosystem Models as Support to Eutrophication Management In the North Atlantic Ocean. https://odnature.naturalsciences.be/downloads/publications/emosem_final_report.pdf.
  10. Djambazov, G. & K. Pericleous, 2015. Modelled atmospheric contribution to nitrogen eutrophication in the English Channel and the southern North Sea. Atmospheric Environment 102: 191–199.CrossRefGoogle Scholar
  11. Garnier, J., A. Beusen, V. Thieu, G. Billen & L. Bouwman, 2010. N:P: Si nutrient export ratios and ecological consequences in coastal seas evaluated by the ICEP approach. Special issue “Past and Future Trends in Nutrient Export from Global Watersheds and Impacts on Water Quality and Eutrophication”. Global Biogeochemical Cycles 24: GB0A05.CrossRefGoogle Scholar
  12. Gobler, C. J., D. J. Lonsdale & G. L. Boyer, 2005. A review of the causes, effects, and potential management of harmful brown tide blooms caused by Aureococcus anophagefferens (Hargraves et Sieburth). Estuaries 28: 726–749.CrossRefGoogle Scholar
  13. Heisler, J., P. Glibert, J. Burkholder, D. Anderson, W. Cochlan, W. Dennison, Q. Dortch, C. Gobler, C. Heil, E. Humphries, A. Lewitus, R. Magnien, H. Marshall, K. Sellner, D. Stockwell, D. Stoecker & M. Suddleson, 2008. Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8: 3–13.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Lacroix, G., K. Ruddick, J. Ozer & C. Lancelot, 2004. Modelling the impact of the Scheldt and Rhine/Meuse plumes on the salinity distribution in Belgian waters (southern North Sea). Journal of Sea Research 52: 149–163.CrossRefGoogle Scholar
  15. Lacroix, G., K. Ruddick, N. Gypens & C. Lancelot, 2007a. Modelling the relative impact of rivers (Scheldt/Rhine/Seine) and Channel water on the nutrient and diatoms/Phaeocystis distributions in Belgian waters (Southern North Sea). Continental Shelf Research 27(10–11): 1422–1446.  https://doi.org/10.1016/j.csr.2007.01.013.CrossRefGoogle Scholar
  16. Lacroix, G., K. Ruddick, Y. Park, N. Gypens & C. Lancelot, 2007b. Validation of the 3D biogeochemical model MIRO&CO with field nutrient and phytoplankton data and MERIS-derived surface Chlorophyll a images. Journal of Marine Systems 64(1–4): 66–88.  https://doi.org/10.1016/j.jmarsys.2006.01.010.CrossRefGoogle Scholar
  17. Lancelot, C., 1995. The mucilage phenomenon in the continental coastal waters of the North Sea. Science of the Total Environment 165: 83–112.CrossRefGoogle Scholar
  18. Lancelot, C. & G. Billen, 1985. Carbon–nitrogen relationship in nutrient metabolism of coastal marine ecosystem. Advances in Aquatic Microbiology 3: 263–321.Google Scholar
  19. Lancelot, C., C. Veth & S. Mathot, 1991. Modelling ice edge phytoplankton bloom in the Scotia-Weddell Sea sector of the southern Ocean during spring 1988. Journal of Marine Systems 2: 333–346.CrossRefGoogle Scholar
  20. Lancelot, C., Y. Spitz, N. Gypens, K. Ruddick, S. Becquevort, V. Rousseau, G. Lacroix & G. Billen, 2005. Modelling diatom and Phaeocystis blooms and nutrient cycles in the Southern Bight of the North Sea: the MIRO model. Marine Ecology Progress Series 289: 63–78.CrossRefGoogle Scholar
  21. Lancelot, C., V. Thieu, A. Polard, A. Garnier, G. Billen, W. Hecq & N. Gypens, 2011. Cost assessment and ecological effectiveness of nutrient reduction options for mitigating Phaeocystis colony blooms in the Southern North Sea: an integrated modeling approach. STOTEN 409(2011): 2179–2191.Google Scholar
  22. Lenhart, H.-J., D. Mills, H. Baretta-Bekker, S. van Leeuwen, J. van der Molen, J. W. Baretta, M. Blaas, X. Desmit, W. Kühn, G. Lacroix, H. J. Los, A. Ménesguen, R. Neves, R. Proctor, P. Ruardij, M. D. Skogen, A. Vanhoutte-Brunier, M. T. Villars & S. L. Wakelin, 2010. Predicting the consequences of nutrient reduction on the eutrophication status of the North Sea. Journal of Marine Systems 81(1–2): 148–170.CrossRefGoogle Scholar
  23. Loewe P., 2003. Weekly North Sea SST Analyses since 1968. In: Original digital archive held by Bundesamt für Seeschifffahrt und Hydrographie, D-20305 Hamburg, P.O. Box 301220, Germany.Google Scholar
  24. Los F. J., T. A. Troost & J. K. L. Van Beek, 2014. Finding the optimal reduction to meet all targets – applying linear programming with a nutrient tracer model of the North Sea. Journal of Marine Systems 131:91–101. http://www.sciencedirect.com/science/article/pii/S0924796313002923.
  25. Luyten P., 2011. COHERENS – A Coupled Hydrodynamical-Ecological Model for Regional and Shelf Seas: User Documentation. Version 2.0. RBINS-MUMM Report, Royal Belgian Institute of Natural Sciences.Google Scholar
  26. Maestrini, S. Y. & E. Graneli, 1991. Environmental conditions and ecophysiological mechanisms which led to the 1988 Chrysochromulina polylepis bloom: an Hypothesis. Oceanologica Acta 14(4): 397–413.Google Scholar
  27. Maréchal D., 2004. A soil-based approach to rainfall-runoff modelling in ungauged catchments for England and Wales. PhD thesis, Cranfield University: 157.Google Scholar
  28. Ménesguen, A., P. Cugier & I. Leblond, 2006. A new numerical technique for tracking chemical species in a multisource, coastal ecosystem, applied to nitrogen causing Ulva blooms in the Bay of Brest (France). Limnology and Oceanography 51(1, Part 2): 591–601.CrossRefGoogle Scholar
  29. OSPAR Commission, 2008. Nutrient reduction scenarios for the North Sea. Environmental consequences for problem areas with regard to eutrophication following nutrient reductions in model scenarios. OSPAR Eutrophication Series, publication 374/2008. OSPAR Commission, London.Google Scholar
  30. OSPAR Commission, 2011. Results of the 2009 ICG EMO Workshop on transboundary nutrient transport. HASEC 11/6/Info.1-E.Google Scholar
  31. OSPAR Commission for the Protection of the Marine Environment, 1998. OSPAR strategy to combat eutrophication. Rep. OSPAR reference 1998-18 [available at www.ospar.org].
  32. Passy, P., N. Gypens, G. Billen, J. Garnier, V. Thieu, V. Rousseau, J. Callens, J.-Y. Parent & C. Lancelot, 2013. A Model reconstruction of riverine nutrient fluxes and eutrophication in the Belgian Coastal Zone (Southern North Sea) since 1984. Journal of Marine Systems 128: 106–122.CrossRefGoogle Scholar
  33. Rabalais, N. N., W.-J. Cai, J. Carstensen, D. J. Conley, B. Fry, X. Quiñones-Rivera, R. Rosenberg, C. P. Slomp, R. E. Turner, M. Voss, B. Wissel & J. Zhang, 2014. Eutrophication-driven deoxygenation in the coastal ocean. Oceanography 70: 123–133.CrossRefGoogle Scholar
  34. Radach, G. & H. J. Lenhart, 1995. Nutrient dynamics in the North Sea: fluxes and budgets in the water column derived from ERSEM. Netherlands Journal of Sea Research 33(3–4): 301–335.CrossRefGoogle Scholar
  35. Radach, G. & A. Moll, 2006. Review of three-dimensional ecological modelling related to the North Sea shelf system – Part 2: model validation and data needs. Oceanography and Marine Biology: An Annual Review 44: 1–60.Google Scholar
  36. Radtke, H., T. Neumann, M. Voss & W. Fennel, 2012. Modeling pathways of riverine nitrogen and phosphorus in the baltic sea. Journal of Geophysical Research: Oceans 117(C9): C09024.CrossRefGoogle Scholar
  37. Rousseau, V., A. Leynaert, N. Daoud & C. Lancelot, 2002. Diatom succession, silicification and silicic acid availability in Belgian coastal waters (Southern Bight of the North Sea). Marine Ecology Progress Series 236: 61–73.CrossRefGoogle Scholar
  38. Rousseau V., E. Breton, B. De Wachter, A. Beji, M. Deconinck, J. Huijgh, T. Bolsens, D. Leroy, S. Jans & C. Lancelot, 2004. Identification of Belgian maritime zones affected by eutrophication (IZEUT). Towards the Establishment of Ecological Criteria for the Implementation of the OSPAR Common Procedure to Combat Eutrophication. Belgian Science Policy, Brussels, Final report: 77.Google Scholar
  39. RWS, 1992. Guidance Document for the NSTF Modelling Workshop, 6-8 May 1992. Den Haag, Directoraat Generaal Rijkswaterstaat, The Hague: 1–41.Google Scholar
  40. Seitzinger, S. P., E. Mayorga, A. F. Bouwman, C. Kroeze, A. H. W. Beusen, G. Billen, G. Van Drecht, E. Dumont, B. M. Fekete, J. Garnier & J. A. Harrison, 2010. Global river nutrient export: a scenario analysis of past and future trends. Global Biogeochemical Cycles.  https://doi.org/10.1029/2009GB003587.Google Scholar
  41. Taylor, K. E., 2001. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research 106(D7): 7183–7192.CrossRefGoogle Scholar
  42. Troost, T. A., M. Blaas & F. Los, 2013. The role of atmospheric deposition in the eutrophication of the North Sea: a model analysis. Journal of Marine Systems 125: 101–112.CrossRefGoogle Scholar
  43. van Leeuwen, S., P. Tett, D. Mills & J. van der Molen, 2015. Stratified and nonstratified areas in the North Sea: long-term variability and biological and policy implications. Journal of Geophysical Research 120: 4670–4686.Google Scholar
  44. Vanhellemont Q., B. Nechad & K. Ruddick, 2011. GRIMAS: gridding and archiving of satellite-derived ocean colour data for any region on earth. Proceedings of the CoastGIS 2011 Conference held in Ostend, 5–8 September, 2011.Google Scholar
  45. Walters, D., I. Boutle, M. Brooks, T. Melvin, R. Stratton, S. Vosper, H. Wells, K. Williams, N. Wood, T. Allen, A. Bushell, D. Copsey, P. Earnshaw, J. Edwards, M. Gross, S. Hardiman, C. Harris, J. Heming, N. Klingaman, R. Levine, J. Manners, G. Martin, S. Milton, M. Mittermaier, C. Morcrette, T. Riddick, M. Roberts, C. Sanchez, P. Selwood, A. Stirling, C. Smith, D. Suri, W. Tennant, P. L. Vidale, J. Wilkinson, M. Willett, S. Woolnough & P. Xavier, 2017. The met office unified model global atmosphere 6.0/6.1 and JULES global land 6.0/6.1 configurations. Geoscientific Model Development 10(4): 1487–1520.CrossRefGoogle Scholar
  46. Zhao, J., P. Jiang, Z. Y. Liu, W. Wei, H. Z. Lin, F. C. Li, J. F. Wang & S. Qin, 2013. The Yellow Sea green tides were dominated by one species, Ulva (Enteromorpha) prolifera, from 2007 to 2011. Chinese Science Bulletin 58(19): 2298–2302.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Operational Directorate Natural Environment (OD Nature), Royal Belgian Institute of Natural Sciences (RBINS)BrusselsBelgium
  2. 2.Ecology of Aquatic Systems, Université Libre de BruxellesBrusselsBelgium

Personalised recommendations