, Volume 808, Issue 1, pp 137–152 | Cite as

Contrasting patterns in the vertical distribution of decapod crustaceans throughout ontogeny

  • Asvin P. TorresEmail author
  • Patricia Reglero
  • Manuel Hidalgo
  • Pere Abelló
  • Daniela S. Simão
  • Francisco Alemany
  • Enric Massutí
  • Antonina Dos Santos
Primary Research Paper


In marine ecosystems, the most significant migration observed in terms of biomass distribution is the one connected with the vertical movements in the water column. In the present study, the vertical profiles of the mesopelagic shrimps Gennadas elegans, Eusergestes arcticus, Sergia robusta, and the epipelagic Parasergestes vigilax in the Balearic Sea (western Mediterranean), during the stratified (summer) and non-stratified (autumn) hydrographic conditions, were investigated through their ontogeny, from the larval to adult stages. The mesopelagic adults were observed to move down to the deeper layers during the night more than during the daylight hours. Most larvae aggregated within the limits of the upper water column. The P. vigilax larvae were collected only during the stratified period. The first two larval stages vertical distribution indicates that the mesopelagic crustacean spawning could occur at greater depths. During the non-stratified period, the larvae of the mesopelagic species tended to remain at about 500 m depth at night, rising towards the upper layers at sunrise. Vertical patterns are discussed, as strategies associated with predator–prey trade-offs. To our knowledge, the present study is the first such attempt to jointly analyze the vertical migrations of the developmental stages of the pelagic shrimps in the Mediterranean Sea.


Shrimps Ontogeny Diel vertical distribution Larvae Mediterranean 



The authors express their gratitude to all participants in the IDEADOS surveys, as well as the chief scientists of both cruises. Special mention of thanks is due to the laboratory colleagues from COB, IPMA, and Lucia Rueda for the valuable suggestions in data analysis. The research was performed within the framework of the IDEADOS (CTM2008-04489-C03-01) project, funded by the National Plan I + D+i. A. P. Torres and M. Hidalgo were funded by a pre-doctoral FPI Fellowship and a post-doctoral contract, respectively, bestowed by the regional government of the Balearic Islands, Conselleria d’Educació, Cultura i Universitats, and selected as part of an operational program co-financed by the European Social Fund. The authors are also grateful to Integrated Marine Biogeochemistry and Ecosystem Research for the grant given to A. P. T. to present a part of these results in the Open Science Conference 2014, ‘Future Oceans’.


  1. Alcaraz, M., A. Calbet, M. Estrada, C. Marrase, E. Saiz & I. Trepat, 2007. Physical control of zooplankton communities in the Catalan Sea. Progress in Oceanography 74: 294–312.CrossRefGoogle Scholar
  2. Alemany, F., L. Quintanilla, P. Velez-Belchi, A. García, D. Cortés, J. M. Rodríguez, M. F. de Puelles, C. González-Pola & J. L. López-Jurado, 2010. Characterization of the spawning habitat of Atlantic bluefin tuna and related species in the Balearic Sea (western Mediterranean). Progress in Oceanography 86(1): 21–38.CrossRefGoogle Scholar
  3. Andersen, V., A. Gubanova, P. Nival & T. Ruellet, 2001. Zooplankton community during the transition from spring bloom to oligotrophy in the open NW Mediterranean and effects of wind events. 2. Vertical distributions and migrations. Journal of Plankton Research 23(3): 243–261.CrossRefGoogle Scholar
  4. Andersen, V., C. Devey, A. Gubanova, M. Picheral, V. Melkinov, S. Tsarin & L. Prieur, 2004. Vertical distributions of zooplankton across the Almeria-Oran frontal zone (Mediterranean Sea). Journal of Plankton Research 2: 275–293.CrossRefGoogle Scholar
  5. Bainbridge, R., 1961. Migrations. In Waterman, T. H. (ed.), The Physiology of Crustacea, Vol. 2. Academic Press, New York: 431–463.Google Scholar
  6. Bartilotti, C., A. dos Santos, M. Castro, A. Peliz & A. M. P. Santos, 2014. Decapod larval retention within distributional bands in a coastal upwelling ecosystem. Marine Ecology Progress Series 507: 233–247.CrossRefGoogle Scholar
  7. Beaugrand, G., 2005. Monitoring pelagic ecosystems using plankton indicators. ICES Journal of Marine Science: Journal du Conseil 62: 333–338.CrossRefGoogle Scholar
  8. Burton, R. S., 1979. Depth regulatory behavior of the first stage zoea larvae of the sand crab Emerita analoga Stimpson (Decapoda: Hippidae). Journal of Experimental Marine Biology and Ecology 37: 255–270.CrossRefGoogle Scholar
  9. Calado, R., G. Dionísio & M. T. Dinis, 2007. Starvation resistance of early zoeal stages of marine ornamental shrimps Lysmata spp. (Decapoda: Hippolytidae) from different habitats. Journal of Experimental Marine Biology and Ecology 351(1–2): 226–233.CrossRefGoogle Scholar
  10. Cartes, J. E. & F. Sardá, 1992. Abundance and diversity of decapod crustaceans in the deep-Catalan Sea. Journal of Natural History 26: 1305–1323.CrossRefGoogle Scholar
  11. Cartes, J. E., F. Sardà, J. B. Company & J. Lleonart, 1993. Day–night migrations by deep-sea decapod crustaceans in experimental samplings in the western Mediterranean Sea. Journal of Experimental Marine Biology and Ecology 171: 63–73.CrossRefGoogle Scholar
  12. Cartes, J. E., J. C. Sorbe & F. Sardà, 1994. Spatial distribution of deepsea decapods and euphausiids near the bottom in the northwestern Mediterranean. Journal of Experimental Marine Biology and Ecology 179: 131–144.CrossRefGoogle Scholar
  13. Cartes, J. E., M. Hidalgo, V. Papiol, E. Massutí & J. Moranta, 2009. Changes in the diet and feeding of the hake Merluccius merluccius at the shelf-break of the Balearic Islands: influence of the mesopelagic-boundary community. Deep Sea Research Part I: Oceanographic Research Papers 56(3): 344–365.CrossRefGoogle Scholar
  14. Casanova, J. P., 1977. La faune pelagique profonde (zooplancton et micronecton) de la province atlanto-mediterraneenne. Aspects taxonomique, biologique et zoogeographique. These Doctoral, Universite de Provence, pp. 1–455Google Scholar
  15. Castelbon, C., 1987. Les migrations nycthémérales du zooplancton. Université Aix-Marseille II, Déterminisme expérimental des réactions locomotrices. Thèse de Doctorat ès Sciences: 380p.Google Scholar
  16. Cohen, J. H. & Jr. R. B. Forward, 2005. Diel vertical migration of the marine copepod Calanopia americana. I. Twilight DVM and its relationship to the diel light cycle. Marine Biology 147(2):387–398Google Scholar
  17. Criales, M. M., M. B. Robblee, J. A. Browder, H. Cárdenas & T. L. Jackson, 2010. Nearshore concentration of pink shrimp (Farfantepenaeus duorarum) postlarvae in northern Florida Bay in relation to nocturnal flood tide. Bulletin of Marine Science 86(1): 53–74.Google Scholar
  18. Dall, W., B. J. Hill, P. C. Rothlisberg & D. J. Sharples, 1990. The biology of the Penaeidae. Advances in Marine Biology 27: 1–489.Google Scholar
  19. Dekshenieks, M. M., E. E. Hofmann, J. M. Klinck & E. N. Powell, 1996. Modeling the vertical distribution of oyster larvae in response to environmental conditions. Marine Ecology Progress Series 136(1): 97–110.CrossRefGoogle Scholar
  20. Donaldson, H. A., 1975. Vertical distribution and feeding of sergestid shrimps (Decapoda: Natantia) collected near Bermuda. Marine Biology 31(1): 37–50.CrossRefGoogle Scholar
  21. Dos Santos, A. & J. A. Lindley, 2001. Crustacea Decapoda: Larvae II. Dendrobranchiata (Aristeidae, Benthesicymidae, Penaeidae, Solenoceridae, Sicyonidae, Sergestidae, and Luciferidae). ICES Identification Leaflets for Plankton. Fiches d’identification du plancton 186Google Scholar
  22. Dos Santos, A. & J. I. Gonzalez-Gordillo, 2004. Illustrated keys for the identification of the Pleocyemata (Crustacea: Decapoda) zoeal stages, from the coastal region of south-western Europe. Journal of the Marine Biological Association of the United Kingdom 84: 205–227.CrossRefGoogle Scholar
  23. Dos Santos, A., A. P. Santos, V. P. Conway, C. Bartilotti, P. Lourenço & H. Queiroga, 2008. Diel vertical migration of decapod larvae in the Portuguese coastal upwelling ecosystem: implications for offshore transport. Marine Ecology Progress Series 359: 171–183.CrossRefGoogle Scholar
  24. De Robertis, A., 2002. Size-dependent visual predation risk and the timing of vertical migration: an optimization model. Limnology and Oceanography 47: 925–933.CrossRefGoogle Scholar
  25. Estrada, M., C. Marrasé, M. Latasa, E. Berdalet, M. Delgado & T. Riera, 1993. Variability of deep chlorophyll maximum characteristics in the North-western Mediterranean. Marine Ecology Progress Series 92: 289–300.CrossRefGoogle Scholar
  26. Ewald, J., 1965. The laboratory rearing of pink shrimp, Penaeus duorarum, Burkenroad. Bulletin of Marine Science 15(2): 43649.Google Scholar
  27. Fiksen, Ø., C. Jørgensen, T. Kristiansen, F. Vikebø & G. Huse, 2007. Linking behavioural ecology and oceanography: larval behaviour determines growth, mortality and dispersal. Marine Ecology Progress Series 347: 195–205.CrossRefGoogle Scholar
  28. Foxton, P., 1970. The Vertical Distribution of Pelagic Decapods [Crustacea: Natantia] Collected on the Sond Cruise 1965 II. The Penaeidea and General Discussion. Journal of the Marine Biological Association of the United Kingdom 50(04): 961–1000.CrossRefGoogle Scholar
  29. Foxton, P. & H. S. J. Roe, 1974. Observations on the nocturnal feeding of some mesopelagic decapod Crustacea. Marine Biology 28(1): 37–49.CrossRefGoogle Scholar
  30. Franqueville, C., 1971. Macroplancton profond (invertébrés) de la Méditerranée nord-occidentale. Tethys 3: 11–56.Google Scholar
  31. Giménez, L., 2002. Effects of prehatching salinity and initial larval biomass on survival and duration of development in the zoea 1 of the estuarine crab, Chasmagnathus granulata, under nutritional stress. Journal of Experimental Marine Biology and Ecology 270(1): 93–110.CrossRefGoogle Scholar
  32. Hidalgo, M., P. Reglero, D. Álvarez-Berastegui, A. P. Torres, I. Álvarez, J. M. Rodriguez, A. Carbonell, R. Balbín & F. Alemany, 2014. Hydrographic and biological components of the seascape structure the meroplankton community in a frontal system. Marine Ecology Progress Series 505: 65–80.CrossRefGoogle Scholar
  33. Irigoien, X., D. V. Conway & R. P. Harris, 2004. Flexible diel vertical migration behaviour of zooplankton in the Irish Sea. Marine Ecology Progress Series 267: 85–97.CrossRefGoogle Scholar
  34. Jo, S. G. & M. Omori, 1996. Seasonal occurrence and vertical distribution of larvae and post-larvae of the pelagic shrimp, Acetes japonicus Kishinouye (Sergestinae), in the central part of the Seto inland sea. Bulletin of Plankton Society of Japan (Japan), Japan.Google Scholar
  35. Kitagawa, T., Y. Kato, M. J. Miller, Y. Sasai, H. Sasaki & S. Kimura, 2010. The restricted spawning area and season of Pacific bluefin tuna facilitate use of nursery areas: A modeling approach to larval and juvenile dispersal processes. Journal of Experimental Marine Biology and Ecology 393(1): 23–31.CrossRefGoogle Scholar
  36. Klages, M., K. Vopel, H. Bluhm, T. Brey, T. Soltwedel & W. E. Arntz, 2001. Deep-sea food falls: first observation of a natural event in the Arctic Ocean. Polar Biology 24(4): 292–295.CrossRefGoogle Scholar
  37. Koettker, A. G., A. S. Freire & P. Y. Sumida, 2010. Temporal, diel and spatial variability of decapod larvae from St Paul’s Rocks, an equatorial oceanic island of Brazil. Journal of the Marine Biological Association of the United Kingdom 90(06): 1227–1239.CrossRefGoogle Scholar
  38. Koukouras, A., 2000. The pelagic shrimps (Decapoda Natantia) of the Aegean Sea with an account of the Mediterranean species. Crustaceana 73: 801–814.CrossRefGoogle Scholar
  39. Kunze, H. B., S. G. Morgan & K. M. Lwiza, 2013. Field test of the behavioral regulation of larval transport. Marine Ecology Progress Series 487: 71–87.CrossRefGoogle Scholar
  40. Lindley, J. A., R. Williams & D. V. P. Conway, 1994. Variability in dry weight and vertical distributions of decapod larvae in the Irish Sea and North Sea during the spring. Marine Biology 120: 385–395.CrossRefGoogle Scholar
  41. Martin, J. W., M. M. Criales & A. Dos santos, 2014. Atlas of Crustacean Larvae. Dendrobranchiata Chapter 46: 235–238.Google Scholar
  42. Massutí, E., M. P. Olivar, S. Monserrat, L. Rueda & P. Oliver, 2014. Towards understanding the influence of environmental conditions on demersal resources and ecosystems in the western Mediterranean: motivations, aims and methods of the IDEADOS project. Journal of Marine Systems 138: 3–19.CrossRefGoogle Scholar
  43. McCullagh, P. & J. A. Nelder, 1989. Generalized linear models, 2nd ed. Chapman & Hall, London.CrossRefGoogle Scholar
  44. Millot, C., 1994. Models and data, a synergetic approach in the western Mediterranean Sea. In Malanotte-Rizzoli, P. & A. R. Robinson (eds), Ocean Processes in Climate Dynamics, Global and Mediterranean Examples. Kluwer, Amsterdam: 407–425.CrossRefGoogle Scholar
  45. Olivar, M. P., A. Bernal, B. Moli, M. Peña, R. Balbín, A. Castellón, J. Miquel & E. Massutí, 2012. Vertical distribution, diversity and assemblages of mesopelagic fishes in the western Mediterranean. Deep-Sea Research Part I 62: 53–69.CrossRefGoogle Scholar
  46. Olivar, M. P., A. Sabatés, F. Alemany, R. Balbín, M. L. Fernández de Puelles & A. P. Torres, 2014. Diel-depth distributions of fish larvae off the Balearic Islands (western Mediterranean) under two environmental scenarios. Journal of Marine Systems 138: 127–138.CrossRefGoogle Scholar
  47. Omori, M., 1974. The biology of pelagic shrimps in the ocean. Advances in Marine Biology 12: 233–324.CrossRefGoogle Scholar
  48. Omori, M. & D. Gluck, 1979. Life history and vertical migration of the pelagic shrimp Sergestes similis off the Southern California coast. Fisheries Bulletin 77(1): 183–198.Google Scholar
  49. Ouellet, P. & J. P. Allard, 2006. Vertical distribution and behaviour of shrimp Pandalus borealis larval stages in thermally stratified water columns: laboratory experiment and field observations. Fisheries Oceanography 15: 373–389.CrossRefGoogle Scholar
  50. Pakhomov, E. & O. Yamamura, eds, 2010. Report of the advisory panel on micronekton sampling inter-calibration experiment. North Pacific Marine Science Organization (PICES).Google Scholar
  51. Pearre Jr., S., 1979. Problems of detection and interpretation of vertical migration. Journal of Plankton Research 1(1): 29–44.CrossRefGoogle Scholar
  52. Pearre Jr., S., 2003. Eat and run? The hunger/satiation hypothesis in vertical migration: history, evidence and consequences. Biological Reviews 78: 1–79.CrossRefPubMedGoogle Scholar
  53. Pérez, M. T., J. R. Dolan, F. Vidussi & E. Fukai, 2000. Diel vertical distribution of planktonic ciliates within the surface layer of the NW Mediterranean (May 1995). Deep-Sea Research Part I 47(3): 479–503.CrossRefGoogle Scholar
  54. Pires, R. F. T., M. Pan, A. M. P. Santos, A. Peliz, D. Boutov & A. dos Santos, 2013. Modelling the variation in larval dispersal of estuarine and coastal ghost shrimp: Upogebia congeners in the Gulf of Cadiz. Marine Ecology Progress Series 492: 153–168. doi: 10.3354/meps10488.CrossRefGoogle Scholar
  55. Pochelon, P. N., A. Dos Santos, A. M. P. Santos & H. Queiroga, 2014. Vertical and horizontal larval distribution of an offshore brachyuran crab, Monodaeus couchii, off the south coast of Portugal. Scientia Marina 78(2): 249–256.CrossRefGoogle Scholar
  56. Pomar, L., M. Morsilli, P. Hallock & B. Bádenas, 2012. Internal waves, an under-explored source of turbulence events in the sedimentary record. Earth-Science Reviews 111(1): 56–81.CrossRefGoogle Scholar
  57. R Development Core Team (2005) R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria
  58. Raby, D., Y. Lagadeuc, J. J. Dodson & M. Mingelbier, 1994. Relationship between feeding and vertical distribution of bivalve larvae in stratified and mixed waters. Marine Ecology-Progress Series 103: 275–275.CrossRefGoogle Scholar
  59. Rothlisberg, P. C. & W. G. Pearcy, 1977. An epibenthic sampler used to study the ontogeny of vertical migration of Pandalus jordani (Decapoda, Caridea). Fishery Bulletin US 74: 994–997.Google Scholar
  60. Rotllant, G., F. J. Moyano, M. Andrés, A. Estévez, M. Díaz & E. Gisbert, 2010. Effect of delayed first feeding on larval performance of the spider crab Maja brachydactyla assessed by digestive enzyme activities and biometric parameters. Marine Biology 157: 2215–2227.CrossRefGoogle Scholar
  61. Russell, F. S., 1927. The vertical distribution of plankton in the sea. Biological Reviews 2(3): 213–261.CrossRefGoogle Scholar
  62. Saiz, E., A. Calbet, D. Atienza & M. Alcaraz, 2007. Feeding and production of zooplankton in the Catalan Sea (NW Mediterranean). Progress in Oceanography 74(2–3): 313–328.CrossRefGoogle Scholar
  63. Sardou, J., M. Etienne & V. Andersen, 1996. Seasonal abundance and vertical distributions of macroplankton and micronekton in the Northwestern Mediterranean Sea. Oceanologica Acta 19(6): 645–656.Google Scholar
  64. Simão, D. S., A. P. Torres, M. P. Olivar & P. Abelló, 2014. Vertical and temporal distribution of pelagic decapod crustaceans over the shelf-break and middle slope in two contrasting zones around Mallorca (western Mediterranean Sea). Journal of Marine Systems 138: 139–149.CrossRefGoogle Scholar
  65. Skjoldal, H. R., P. H. Wiebe, L. Postel, T. Knutsen, S. Kaartvedt & D. D. Sameoto, 2013. Intercomparison of zooplankton (net) sampling systems: Results from the ICES/GLOBEC sea-going workshop. Progress in Oceanography 108: 1–42.CrossRefGoogle Scholar
  66. Torres, A. P., A. Dos Santos, R. Balbín, F. Alemany, E. Massutí & P. Reglero, 2014. Decapod crustacean larval communities in the western Mediterranean: seasonal composition, horizontal and vertical distribution patterns. Journal of Marine Systems 138: 112–126.CrossRefGoogle Scholar
  67. van Haren, H. & T. J. Compton, 2013. Diel vertical migration in deep sea plankton is finely tuned to latitudinal and seasonal day length. PLoS ONE 8(5): e64435.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Vereshchaka, A., 1994. North Atlantic and Caribbean species of Decapoda, Sergestidae) and their horizontal and vertical distribution. Zoological Museum University of Copenhagen 20(3): 73–95.Google Scholar
  69. Vidussi, F., J. C. Marty & J. Chiavérini, 2000. Phytoplankton pigment variations during the transition from spring bloom to oligotrophy in the northwestern Mediterranean Sea. Deep-Sea Res Part I 47(3): 423–445.CrossRefGoogle Scholar
  70. Zariquiey-Alvarez, R., 1968. Crustáceos Decápodos Ibéricos. Investigaciones Pesqueras 32: 1–510.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Asvin P. Torres
    • 1
    Email author
  • Patricia Reglero
    • 1
  • Manuel Hidalgo
    • 1
  • Pere Abelló
    • 2
  • Daniela S. Simão
    • 2
  • Francisco Alemany
    • 1
  • Enric Massutí
    • 1
  • Antonina Dos Santos
    • 3
  1. 1.Instituto Español de Oceanografía, Centro Oceanográfico de BalearesPalma de MallorcaSpain
  2. 2.Institut de Ciències del Mar (CSIC)BarcelonaSpain
  3. 3.Instituto Português do Mar e da Atmosfera (IPMA)LisbonPortugal

Personalised recommendations