Systematic evaluation of the genus Alburnus (Cyprinidae) with description of a new species

Primary Research Paper

Abstract

The genus Alburnus, a member of the Cyprinidae family, includes 43 species that are widely distributed in Europe and the northern part of Western Asia. To date, inter-specific relationships within the genus have not been assessed in detail. The main objective of this research was to assess phylogenetic relationships of the genus and solve taxonomic uncertainties. For this purpose, the mitochondrial gene cytochrome c oxidase subunit I (COI) was selected and analyzed by Bayesian and maximum-likelihood approaches. Inter- and intra-specific genetic distances of the putative species were calculated. In addition, body shape was quantified by landmark-based geometric morphometrics on the available material from Turkey in order to determine whether the emerging patterns of shape are congruent with the COI phylogeny. Our data suggest multiple synonymies within the genus and the addition of a new species, Alburnus kurui sp. n., from the Dalaman River. We conclude that by including this new species and considering the synonymies, the genus Alburnus now comprises 36 species.

Keywords

Phylogeny MTDNA COI Geometric morphometrics Alburnus kurui sp. n 

Supplementary material

10750_2017_3405_MOESM1_ESM.pdf (72 kb)
Supplementary Material 1 Alburnus COI data (PDF 72 kb)
10750_2017_3405_MOESM2_ESM.docx (1.4 mb)
Supplementary Material 2 Genetic distance comparisons (DOCX 1454 kb)
10750_2017_3405_MOESM3_ESM.xlsx (53 kb)
Supplementary Material 3 Alburnus species list 3 (XLSX 53 kb)
10750_2017_3405_MOESM4_ESM.docx (2.8 mb)
Supplementary Material 4 Distribution maps (DOCX 2854 kb)

References

  1. Adams, D. C., 2014. A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Systematic Biology 63: 685–697.CrossRefPubMedGoogle Scholar
  2. Adams, D. C., M. L. Collyer & E. Sherratt, 2015. Geomorph: software for geometric morphometric analyses. R Package version 3.0.0. http://cran.r-project.org/web/packages/geomorph/index.html.
  3. Avise, J. C., 1994. Molecular Markers, Natural History and Evolution: Natural History and evolution. Chapman-Hall, New York.CrossRefGoogle Scholar
  4. Battalgazi, F., 1944. Poissons nouveaux et peu connus de la Turquie. Revue de la Faculté des Sciences de l’Université d’Istanbul, Série B, Sciences Naturelles 9: 299–305.Google Scholar
  5. Battalgil, F., 1941. Les poissons des eaux douces de la Turquie. Revue de la Faculté des Sciences de l’Université d’Istanbul, Série B, Sciences Naturelles 6: 170–186.Google Scholar
  6. Battalgil, F., 1942. Contribution a la connaissance des poisons des eaux douces de la Turquie. Revue de la Faculté des Sciences de l’Université d’Istanbul, Série B, Sciences Naturelles 7: 287–306.Google Scholar
  7. Battalgil, F., 1944. Nouveaux poisons des eaux douces de la Turquie. Revue de la Faculté des Sciences de l’Université d’Istanbul, Série B, Sciences Naturelles 9: 126–133.Google Scholar
  8. Behrens-Chapuis, S., F. Herder, M. F. Geiger, H. R. Esmaeili, N. A. Hamidan, M. Özuluğ & R. Šanda, 2015. Adding nuclear rhodopsin data where mitochondrial COI indicates discrepancies – can this marker help to explain conflicts in cyprinids. DNA Barcodes 3(1): 187–199.CrossRefGoogle Scholar
  9. Bianco, P. G., 1990. Potential role of the palaeohistory of the Mediterranean and Paratethys basin on the early dispersal of Euro-Mediterranean freshwater fishes. Ichthyological Exploration of Freshwaters 1: 167–184.Google Scholar
  10. Birecikligil, S. S., Ş. Y. Yücel & E. Çiçek, 2016. A taxonomic evaluation of Alburnus sellal Heckel, 1843 and Alburnus adanensis Battalgazi, 1944 based on morphological characters and mitochondrial DNA sequences. Pakistan Journal of Zoology 48: 465–473.Google Scholar
  11. Bogutskaya, N., 1997. Contribution to the knowledge of Leuciscinae fishes of Asia Minor. Part 2. An annotated check-list of Leuciscinae fishes (Leuciscinae, Cyprinidae) of Turkey with descriptions of a new species and two new subspecies. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 94: 161–186.Google Scholar
  12. Bogutskaya, N. G., F. Küçük & E. Ünlü, 2000. Alburnus baliki, a new species of cyprinid fish from the Manavgat River system, Turkey. Ichthyological Exploration of Freshwaters 11: 55–64.Google Scholar
  13. Bouckaert, R., J. Heled, D. Kühnert, T. Vaughan, C.-H. Wu, D. Xie, M. A. Suchard, A. Rambaut & A. J. Drummond, 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10: e1003537.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Boulenger, G. A., 1896. On freshwater fishes from Smyrna. Annals and Magazine of Natural History 6: 153–154.CrossRefGoogle Scholar
  15. Clement, M., Q. Snell, P. Walke, D. Posada & K. Crandall, 2002. TCS: estimating gene genealogies. In IEEE International Parallel Distribution Symposium, p. 0184.Google Scholar
  16. Darriba, D., G. L. Taboada, R. Doallo & D. Posada, 2012. JModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Devedjian, K., 1915. Fish and Fishery in Turkey. Düyun-u Umumiye-i Osmaniye Varidat-ı Mahsusa İdare-i Merkeziyesi Matbaası, İstanbul.Google Scholar
  18. Drummond, A. & A. Rambaut, 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7(1): 214.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Erk’akan, F., 1983. The fish species of the Sakarya basin and their abundance. Hacettepe Bulletin of Natural Sciences & Engineering 12: 21–38.Google Scholar
  20. Eschmeyer, W. N., R. Fricke & R. van der Laan (eds), 2016. Catalog of Fishes: Genera, Species, References. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp.
  21. Fricke, R., M. Bilecenoğlu & H. M. Sarı, 2007. Annotated checklist of fish and lamprey species (Gnathostomata and Petromyzontomorphi) of Turkey, including a Red List of threatened and declining species. Stuttgarter Beiträge zur Naturkunde 706: 1–169.Google Scholar
  22. Froese, R. & D. Pauly (eds), 2015. Fishbase. World Wide Web Electronic Publication. www.fishbase.org, version (03/2017).
  23. Geiger, M. F., F. Herder, M. T. Monaghan, V. Almada, R. Barbieri, M. Bariche, P. Berrebi, J. Bohlen, M. Casal-Lopez, G. B. Delmastro, et al., 2014. Spatial heterogeneity in the Mediterranean biodiversity hotspot affects barcoding accuracy of its freshwater fishes. Molecular Ecology Resources 14: 1210–1221.CrossRefPubMedGoogle Scholar
  24. Geldiay, R. & S. Balık, 2007. Freshwater Fishes of Turkey. Ege University Press, Bornova.Google Scholar
  25. GIS Development Team, 2017. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://www.qgis.org/.
  26. Gülle, İ., F. Küçük & S. S. Güçlü, 2017. Re-description and new distribution area of an endemic anatolian fish species, Alburnus nasreddini Battalgil, 1944. Turkish Journal of Fisheries and Aquatic Sciences 17(5): 863–869.CrossRefGoogle Scholar
  27. Hanko, B., 1924. Fische aus Kleinasien. Annales Musei Historico-Naturalis Hungarici 21: 137–158.Google Scholar
  28. Hebert, P. D. N., A. Cywinska, S. Ball & J. Dewaard, 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London Series B – Biological Sciences 270: 313–321.CrossRefPubMedGoogle Scholar
  29. Ivey, J. L. & S. R. Santos, 2007. The complete mitochondrial genome of the Hawaiian anchialine shrimp Halocaridina rubra Holthuis, 1963 (Crustacea: Decapoda: Atyidae). Gene 394: 35–44.CrossRefPubMedGoogle Scholar
  30. Jukes, T. H. & C. R. Cantor, 1969. Evolution of protein molecules. In Munro, H. N. (ed.), Mammalian Protein Metabolism. Academic Press, New York.Google Scholar
  31. Keskin, E. & H. H. Atar, 2013. DNA barcoding commercially important fish species of Turkey. Molecular Ecology Resources 13: 788–797.CrossRefPubMedGoogle Scholar
  32. Ketmaier, V., F. Finamore, C. Largiader, M. Milone & P. Bianco, 2009. Phylogeography of bleaks Alburnus spp. (Cyprinidae) in Italy, based on cytochrome b data. Journal of Fish Biology 75: 997–1017.CrossRefPubMedGoogle Scholar
  33. Kimura, M., 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120.CrossRefPubMedGoogle Scholar
  34. Knebelsberger, T., A. R. Dunz, D. Neumann & M. F. Geiger, 2015. Molecular diversity of Germany’s freshwater fishes and lampreys assessed by DNA barcoding. Molecular Ecology Resources 15: 562–572.CrossRefPubMedGoogle Scholar
  35. Kottelat, M., 1997. European freshwater fishes. An heuristic checklist of the freshwater fishes of Europe (exclusive of former USSR), with an introduction for non-systematists and comments on nomenclature and conservation. Biologia, Bratislava 52: 1–271.Google Scholar
  36. Kottelat, M. & J. Freyhof, 2007. Handbook of European Freshwater Fishes. Cornol/Freyhof, Switzerland/Berlin.Google Scholar
  37. Kumar, S., G. Stecher & K. Tamura, 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7): 1870–1874.CrossRefPubMedGoogle Scholar
  38. Kuru, M., 1982. Türkiye Tatlısu Balıkları Kataloğu. Hacettepe Üniversitesi Fen Fakültesi Basımevi, Beytepe.Google Scholar
  39. Kuru, M., S. V. Yerli, F. Mangıt, E. Ünlü & A. Alp, 2014. Fish biodiversity in inland waters of Turkey. Journal of Academic Documents for Fisheries and Aquaculture 1: 93–120.Google Scholar
  40. Ladiges, W., 1960. Süsswasserfische der Türkey, 1. Teil Cyprinidae. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 58: 105–150.Google Scholar
  41. Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson & D. G. Higgins, 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.CrossRefPubMedGoogle Scholar
  42. Librado, P. & J. Rozas, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452.CrossRefPubMedGoogle Scholar
  43. Mangıt, F., 2014. Morphometric and Phylogenetic Studies on Genus Alburnus (Teleostei: Cyprinidae). PhD Thesis, Hacettepe University Graduate School of Science and Engineering, 82 pp. (In Turkish).Google Scholar
  44. Mayr, E., 1963. Animal Species and Evolution. Harvard University Press, Cambridge, MA.CrossRefGoogle Scholar
  45. Özuluğ, M. & J. Freyhof, 2007a. Alburnus demiri, a new species of bleak from western anatolia, Turkey (Teleostei: Cyprinidae). Ichthyological Exploration of Freshwaters 18: 307–312.Google Scholar
  46. Özuluğ, M. & J. Freyhof, 2007b. Rediagnosis of four species of Alburnus from Turkey and description of two new species (Teleostei: Cyprinidae). Ichthyological Exploration of Freshwaters 18: 233–246.Google Scholar
  47. Parin, N. V., S. A. Evseenko & E. D. Vasili’eva, 2014. Fishes of Russian Seas: Annotated Catalogue. KMK Scientific Press, Moscow.Google Scholar
  48. Perea, S., M. Böhme, P. Zupančič, J. Freyhof, R. Šanda, M. Özuluğ, A. Abdoli & I. Doadrio, 2010. Phylogenetic relationships and biogeographical patterns in circum-mediterranean subfamily Leuciscinae (Teleostei, Cyprinidae) inferred from both mitochondrial and nuclear data. BMC Evolutionary Biology 10: 265.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Por, F. D. & C. Dimentan, 1985. Continuity of Messian biota in the Mediterranean basin. In Stanley, D. J. & F. C. Wezel (eds.), Geological Evolution of the Mediterranean Basin. Springer, New York.Google Scholar
  50. Puillandre, N., A. Lamber, S. Brouillet & G. Achaz, 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21: 1864–1877.CrossRefPubMedGoogle Scholar
  51. R Core Team, 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/.
  52. Rambaut, A., M. A. Suchard, D. Xie & A. J. Drummond, 2014. Tracer v1.6 [Computer Software and Manual]. http://beast.bio.ed.ac.uk/Tracer.
  53. Rohlf, F. J., 2015. The tps series of software. Hystrix, the Italian Journal of Mammalogy 26: 9–12.Google Scholar
  54. Stamatakis, A., 2006. Raxml-vi-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.CrossRefPubMedGoogle Scholar
  55. Steindachner, F., 1897. Bericht über dei von Dr. Escherich in der umgebung von Angora gesammelten fische und reptilian. Denkschriften (Akademie der Wissenschaften in Wien) 64: 685–699.Google Scholar
  56. Tang, K. L., M. K. Agnew, M. V. Hirt, T. Sado, L. M. Schneider, J. Freyhof, Z. Sulaiman, E. Swartz, C. Vidthayanon & M. Miya, 2010. Systematics of the subfamily Danioninae (Teleostei: Cypriniformes: Cyprinidae). Molecular Phylogenetics and Evolution 57: 189–214.CrossRefPubMedGoogle Scholar
  57. Triantafyllidis, A., D. Bobori, C. Koliamitra, E. Gbandi, M. Mpanti, O. Petriki & N. Karaiskou, 2011. DNA barcoding analysis of fish species diversity in four north Greek lakes. Mitochondrial DNA 22: 37–42.CrossRefPubMedGoogle Scholar
  58. Winfield, I. & J. S. Nelson (eds), 2012. Cyprinid Fishes: Systematics, Biology and Exploitation, Vol. 3. Springer, Dordrecht.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Biology Department, SALHacettepe UniversityBeytepe, AnkaraTurkey

Personalised recommendations