Advertisement

Hydrobiologia

, Volume 806, Issue 1, pp 227–235 | Cite as

Distribution ranges of the acorn barnacle Perforatus (=Balanus) perforatus (Bruguière, 1789) in the NE Atlantic are influenced by reproductive parameters

  • I. Cunha
  • T. Azevedo
  • V. Vasconcelos
  • J. R. Almeida
Primary Research Paper

Abstract

The acorn barnacle Perforatus perforatus has a defined breeding temperature range and reproductive season that varies geographically. This study aims to investigate the influence of reproductive parameters of P. perforatus in species distribution ranges in the NE Atlantic. The hypothesis tested is that the breeding season of P. perforatus off NW Portugal begins earlier and is longer than at the northern distribution limit of this species, and that fecundity is higher in terms of number of broods per individual per breeding season. The span of the breeding season and fecundity indices were assessed based on the presence and maturation of ovigerous lamellae and correlated with temperature. Results showed that the breeding season in the NW Portuguese coast lasts over 10 months (February–November) and the number of broods was determined to be 9.2 ind/year. Temperature seems to be a primary factor determining the breeding season, but other factors, such as food availably, light and photoperiod, are also of great importance. However, the higher quantity of embryos produced in NW Portugal is not reflected in a higher abundance of settled adults in rocky shores. Contrarily, the species is particularly abundant in artificial substrata offshore.

Keywords

Barnacles Span of breeding season Fecundity indices Reproduction Temperature Number of broods per individual Critical breeding temperatures Climate change 

Notes

Acknowledgements

This research was partially supported by the Structured Program of R&D&I INNOVMAR – Innovation and Sustainability in the Management and Exploitation of Marine Resources (reference NORTE-01-0145-FEDER-000035, Research Line NOVELMAR), which is funded by the Northern Regional Operational Programme (NORTE2020) through the European Regional Development Fund (ERDF) as well as by the Strategic Funding UID/Multi/04423/2013 through national funds provided by FCT – Foundation for Science and Technology and European Regional Development Fund (ERDF), in the framework of the programme PT2020, and also by the Portuguese Foundation for Science and Technology (FCT) through two postdoctoral scholarships to IC (SFRH/BPD/110020/2015) and JRA (SFRH/BPD/87416/2012). We acknowledge the Instituto Hidrográfico of the Portuguese Navy for providing the seawater temperature data.

References

  1. Anil, A. C., 1991. Studies on macrofouling ecology of cirripedes in Hamana Bay (Japan). Ph.D. thesis, Faculty of Agriculture, University of Tokyo.Google Scholar
  2. Barbosa, J. P., F. V. & Gomes F. T. Pinto, 2005. Analysis of the Portuguese west coast morphology and morphodynamics, based on aerial images and GIS tools. Proceedings 2nd EARSel Workshop -Remote Sensing of the Coastal Zone: 809–818 pp.Google Scholar
  3. Barnes, H., 1963. Light, temperature and breeding of Balauns balanoides. Journal of the Marine Biological Association of the United Kingdom 43: 717–727.CrossRefGoogle Scholar
  4. Barnes, H., 1989. Egg production in cirripedes. Oceanography and Marine Biology Annual Review 27: 91–166.Google Scholar
  5. Burrows, M. T., S. J. Hawkins & A. J. Southward, 1992. A comparison of reproduction in co-occurring chthamalid barnacles Chthamalus stellatus (Poli) and Chthamalus montagui Southward. Journal of Experimental Marine Biology and Ecology 160: 229–249.CrossRefGoogle Scholar
  6. Burrows, M. T., S. J. Hawkins & A. J. Southward, 1999. Larval development of the intertidal barnacles Chthamalus stellatus and Chthamalus montagui. Journal of the Marine Biological Association of the United Kingdom 79: 93–101.CrossRefGoogle Scholar
  7. Clark, S., 1988. A two phase photoperiodic response controlling the annual gametogenic cycle in Harmothoe imbricata (L.) (Polychaeta: Polynoidae). International Journal of Invertebrate Reproduction and Development 14: 245–265.CrossRefGoogle Scholar
  8. Choi, K.-H., H.-W. Choi, I.-H. Kim & J.-S. Hong, 2013. Predicting the invasion pathway of Balanus perforatus in Korean Seawaters. Ocean Polar Research 35: 63–68.CrossRefGoogle Scholar
  9. Crisp, D. J., 1950. Breeding and distribution of Chthamalus stellatus. Nature (London) 166: 311–312.CrossRefGoogle Scholar
  10. Crisp, D. J., 1964. The effects of the severe winter of 1962–63 on marine life in Britain. Journal of Animal Ecology 33: 165–210.CrossRefGoogle Scholar
  11. Crisp, D. J. & P. A. Davies, 1955. Observations in vivo on the breeding of Elminius modestus grown on glass slides. Journal of the Marine Biological Association of the United Kingdom 34: 357–380.CrossRefGoogle Scholar
  12. Crisp, D. J. & A. J. Southward, 1958. The distribution of intertidal organisms along the coasts of English Channel. Journal of the Marine Biological Association of the United Kingdom 37: 1031–1048.Google Scholar
  13. Crisp, D. J., A. J. Southward & E. C. Southward, 1981. On the distribution of the intertidal barnacles Chthamahts stellatus, Chthamahis montagui and Eumphia depressa. Journal of the Marine Biological Association of the United Kingdom 61: 359–380.CrossRefGoogle Scholar
  14. Cruz, T., 2000. Biologia e ecologia do percebe Pollicipes pollicipes (Gmelim, 1790) no litoral sudoeste português. PhD thesis. University of Evora, Portugal: 306 pp.Google Scholar
  15. Cruz, T. & J. Araújo, 1999. Reproductive patterns of Pollicipes pollicipes (Cirripedia: Pedunculata) in the SW coast of Portugal. Journal of Crustacean Biology 19(2): 260–267.CrossRefGoogle Scholar
  16. Cunha, I., L. M. Garcia & L. Guilhermino, 2005. Sea-urchin (Paracentrotus lividus) glutathione S-transferases and cholinesterase activities as biomarkers of environmental contamination. Journal of Environmental Monitoring 7(4): 288–294.CrossRefPubMedGoogle Scholar
  17. Desai, D. V., A. C. Anil & K. Venkat, 2006. Reproduction of Balanus amphitrite Darwin (Cirripedia: Thoracica): influence of temperature and food concentration. Marine Biology 149: 1431–1441.CrossRefGoogle Scholar
  18. Evans, R. G., 1947. The intertidal ecology of selected localities in the Plymouth neighbourhood. Journal of the Marine Biological Association of the United Kingdom 27: 173–218.CrossRefGoogle Scholar
  19. Fiúza, A.F.G., 1983. Upwelling patterns of Portugal. in: Coastal upwelling: Its sediment record. In Suess, E., & J. Thiede (eds), Plenum NY, Part A: 85–98.Google Scholar
  20. Fragoso, B. & J. D. Icely, 2009. Upwelling events and recruitment patterns of the major fouling speies on the costal aquaculture (Sagres), Portugal. Journal of Coastal Research 56: 419–423.CrossRefGoogle Scholar
  21. Garwood, P. R. & P. J. W. Olive, 1982. The influence of photoperiod on oocyte growth and its role in the control of the reproductive cycle of the polychaete Harmothoe imbricata (L.). Invertebrate. International Journal of Reproduction 5(3): 161–165.CrossRefGoogle Scholar
  22. Herbert, R. J. H., S. J. Hawkins, M. Sheader & A. J. Southward, 2003. Range extension and reproduction of the barnacle Balanus perforatus in the eastern English Channel. Journal of the Marine Biological Association of the United Kingdom 83: 73–82.Google Scholar
  23. Iwaki, T. & H. Hattori, 1987. First maturity and initial growth of some common species of barnacles in Japan. Bulletin of the Faculty of Fisheries-Mie University 14: 11–19.Google Scholar
  24. Kerckhof, F., B. Rumes, A. Norro, T. G. Jacques & S. Degraer, 2010. Seasonal variation and vertical zonation of the marine biofouling on a concrete offshore windmill foundation on the Thornton Bank (southern North Sea). In Degraer, S., R. Brabant & B. Rumes (eds), Offshore Wind Farms in the Belgian part of the North Sea: Early Environmental Impact Assessment and Spatio-Temporal Variability. Royal Belgian Institute of Natural Sciences, Management Unit of the North Sea Mathematical Models, Marine Ecosystem Management Unit, Brussels: 53–68.Google Scholar
  25. Lemos, R. T. & H. O. Pires, 2004. The upwelling regine off the west Portuguese coast, 1941–2000. International Journal of Climatology 24: 511–524.CrossRefGoogle Scholar
  26. Lochhead, J., 1936. On the feeding mechanism of the nauplius of Balanus perforatus Bruguière. Zoological Journal of the Linnean Society 39: 429–442.CrossRefGoogle Scholar
  27. Macho, G., 2006. Ecología reproductiva y larvaria del percebe y otros cirripídeos en Galicia. PhD Thesis, University of Vigo, Spain.Google Scholar
  28. Macho, G., E. Vasquez, R. Giráldez & J. Molares, 2010. Spatial and temporal distribution of barnacle larvae in the partially mix estuary of the Ria de Arousa (Spain). Journal of Experimental Marine Biology and Ecology 392: 129–139.CrossRefGoogle Scholar
  29. Marta-Almeida, M., J. Dubert, A. Peliz, & H. Queiroga, 2006. Influence of vertical migration pattern on retention of crab larvae in a seasonal upwelling system. Marine Ecology Progress Series 307: 1–19.Google Scholar
  30. Miron, G. Bernard, B. Boudreau & E. Bourget, 1995. Use of larval supply in benthic ecology: testing correlations between larval supply and larval settlement. Marine Ecology Progress Series 124: 301–305.CrossRefGoogle Scholar
  31. Neal, A. L. & A. B. Yule, 1994. The tenacity of Elminius modestus and Balanus perforatus cyprids to bacterial films grown under different shear regimes. Journal of the Marine Biological Association of the United Kingdom 74(1): 251–257.CrossRefGoogle Scholar
  32. Norris, E. & D. J. Crisp, 1953. The distribution and planktonic stages of the cirripede Balanus perforatus Bruguière. Proceedings of the Zoological Society of London 123: 393–409.Google Scholar
  33. O’Riordan, R. M., F. Arenas, J. Arrontes, J. J. Castro, T. Cruz, J. Delany, B. Martínez, C. Fernandez, S. J. Hawkins, D. McGrath, A. A. Myers, J. Oliveros, F. G. Pannacciulli, A. M. Power, G. Relini, J. M. Rico & T. Silva, 2004. Spatial variation in the recruitment of the intertidal barnacles Chthamalus montagui Southward and Chthamalus stellatus (Poli) (Crustacea: Cirripedia) over an European scale. Journal of Experimental Marine Biology and Ecology 304: 243–264.CrossRefGoogle Scholar
  34. Olive, P. J. W., 1981. Control of the reproductive cycle in female Eulalia Viridis (Polychaeta: Phyllodocidae). Journal of the Marine Biological Association of the United Kingdom 61: 941–958.CrossRefGoogle Scholar
  35. Orton, J. H., 1920. Sea temperature breeding and distribution in marine animals. Journal of Marine Biological Association of the United Kingdom 12: 371–378.CrossRefGoogle Scholar
  36. Patel, B. & D. J. Crisp, 1960a. The influence of temperature on the breeding and the moulting activities of some warm-water species of operculate barnacles. Journal of the Marine Biological Association of the United Kingdom 39: 667–680.CrossRefGoogle Scholar
  37. Patel, B. & D. J. Crisp, 1960b. Rates of development of embryos of several species of barnacles. Physiological Zoology 33: 104–119.CrossRefGoogle Scholar
  38. Peliz, A., P. Marchesiello, J. Dubert, M. Marta-Almeida, C. Roy & H. Queiroga, 2007. A study of crab larvae dispersal on the Western Iberian Shelf: physical processes. Journal of Marine Systems 68: 215–236.Google Scholar
  39. Poloczanska, E. S., S. J. Hawkins, A. J. Southward & M. T. Burrows, 2008. Modeling the response of populations of competing species to climate change. Ecology 89: 3138–3149.CrossRefGoogle Scholar
  40. Rees, E. I. S. & A. J. Southward, 2009. Plastic flotsam as an agent for dispersal of Perforatus perforatus (Cirripedia: Balanidae). Marine Biodiversity Records 2: 1–3.CrossRefGoogle Scholar
  41. Santos, A., 1994. Estudo e caracterização dos povoamentos bentónicos intertidais (substrato rochoso) do Norte de Portugal. Master thesis, University of Porto, Portugal.Google Scholar
  42. Santos, A., 2000. Intertidal Ecology of Northern Portuguese Rocky Shores. University of Southampton, UK: 166.Google Scholar
  43. Southward, A. J., 1991. Forty years of changes in species composition and population density of barnacles on a rocky shore near Plymouth. Journal of the Marine Biological Association of the United Kingdom 71: 495–513.CrossRefGoogle Scholar
  44. Southward, A. J., O. Langmead, N. J. Hardman-Mountford, J. Aiken, G. T. Boalch, P. R. Dando, J. Genner, I. Joint, M. A. Kendall, N. C. Halliday, R. P. Harris, R. Leaper, N. Mieszkowska, R. D. Pingree, A. J. Richardson, D. W. Sims, T. Smith, A. W. Walne & S. J. Hawkins, 2005. A review of long-term research in the western English Channel. In Southward, A. J., P. A. Tyler, C. M. Young & L. A. Fuiman (eds), Advances in Marine Biology, Vol. 47. Elsevier Academic Press, San Diego: 3–84.Google Scholar
  45. Torres, P., A. C. Costa & M. A. Dionísio, 2012. New alien barnacles in the Azores and some remarks on the invasive potential of Balanidae. Helgoland Marine Research 66: 513–522.CrossRefGoogle Scholar
  46. Underwood, A. J. & P. G. Fairweather, 1989. Supply-side ecology and benthic marine assemblages. Trends in Ecology & Evolution 4(1): 16–20.CrossRefGoogle Scholar
  47. Ward, B. B., A. P. Rees, P. J. Somerfield & I. Joint, 2011. Linking phytoplankton community composition to seasonal changes in f-ratio. Multidisciplinary Journal of Microbial Ecology 5(11): 1759–1770.Google Scholar
  48. Wooster, W. S., A. Bakun, & D. R. McLain, 1976. The seasonal upwelling cycle along the eastern boundary of the North Atlantic. Journal of Marine Research 34: 131–141.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • I. Cunha
    • 1
  • T. Azevedo
    • 1
    • 2
  • V. Vasconcelos
    • 1
    • 2
  • J. R. Almeida
    • 1
  1. 1.CIIMAR/CIMAR – Interdisciplinary Centre of Marine and Environmental ResearchUniversity of PortoMatosinhosPortugal
  2. 2.Department of Biology, Faculty of SciencesUniversity of PortoPortoPortugal

Personalised recommendations