, Volume 808, Issue 1, pp 125–135 | Cite as

Demographic inference and genetic diversity of Octopus mimus (Cephalopoda: Octopodidae) throughout the Humboldt Current System

  • M. Cecilia Pardo-Gandarillas
  • Christian M. Ibáñez
  • Carmen Yamashiro
  • Marco A. Méndez
  • Elie Poulin


Climatic and oceanographic events occurring during the last glacial cycle in the Humboldt Current System (HCS) have left genetic footprints in marine invertebrate populations. The objective of this study was to evaluate the effect of the glacial period on Octopus mimus populations found throughout the HCS. This species lays a large number of small eggs which hatch into planktonic paralarvae with the potential to undergo wide dispersal. We sequenced the COIII gene to perform phylogeographic analyses of 197 octopuses sampled from seven localities. The genetic diversity of Octopus mimus was low and decreased towards the southern end of the distribution range, which comprises a single population. The haplotype genealogy and Bayesian Skyride plot suggest that O. mimus underwent a demographic expansion after the last glacial maximum (LGM). This would imply a contraction of the range of this organism toward northern latitudes during the LGM followed by southward expansion and recolonization once the contemporary interglacial period began.


Phylogeography Paralarvae Glaciation Octopus Coalescence 



We thank all our colleagues, institutions, and projects, national and international, who helped us obtain octopus samples: Juan Arguelles and other Peruvian colleagues of the coastal laboratories in Ilo, Callao, and Paita of the IMARPE. We also thank Ricardo Galleguillos, Cristián E. Hernández, and Sandra Ferrada, who contributed octopus samples from Project-FIP 2008-39. This study was supported by the following Grants, Institutions, and Projects: Thesis support Grant AT2480029, Project P05-002 ICM (Institute of Ecology and Biodiversity, Universidad de Chile), and MECESUP UCO-0214.


  1. Ahumada, R. B., L. Pinto & P. A. Camus, 2000. The Chilean coast. In Sheppard, C. R. C. (ed.), Seas at the Millenium: An Environmental Evaluation. Pergamon, Amsterdam: 699–717.Google Scholar
  2. Aljanabi, S. M. & I. Martinez, 1997. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research 25: 4692–4693.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Allcock, A. L., J. M. Strugnell & M. P. Johnson, 2008. How useful are the recommended counts and indices in the systematics of the Octopodidae (Mollusca: Cephalopoda). Biological Journal of the Linnean Society 95: 205–218.CrossRefGoogle Scholar
  4. Bandelt, H. J., P. Forster & A. Róhl, 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16: 37–48.CrossRefPubMedGoogle Scholar
  5. Beheregaray, L. B., 2008. Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere. Molecular Ecology 17: 3754–3774.PubMedGoogle Scholar
  6. Boletzky, S., 1992. Evolutionary aspects of development, life style, and reproductive mode in incirrate octopods (Mollusca, Cephalopoda). Revue Suisse De Zoologie 99: 755–770.CrossRefGoogle Scholar
  7. Boletzky, S., 1997. Post-hatching behaviour and mode of life in cephalopods. Symposium of the Zoological Society of London 38: 557–567.Google Scholar
  8. Burban, C., R. J. Petit, E. Carcreff & H. Jactel, 1999. Range wide variation of the maritime pine bast scale Matsucoccus feytaudi Duc. (Homoptera: Matsucoccidae) in relation to the genetic structure of its host. Molecular Ecology 8: 1593–1602.CrossRefPubMedGoogle Scholar
  9. Burridge, C. P., D. Craw, D. Fletcher & J. M. Waters, 2008. Geological dates and molecular rates: fish DNA sheds light on time dependency. Molecular Biology and Evolution 25: 624–633.CrossRefPubMedGoogle Scholar
  10. Cahuín, S. M., L. A. Cubillos, M. Ñiquen & R. Escribano, 2009. Climatic regimes and the recruitment rate of anchoveta, Engraulis ringens, off Peru. Estuarine and Coastal Shelf Science 84: 591–597.CrossRefGoogle Scholar
  11. Camus, P. A., 2001. Biogeografía marina de Chile continental. Revista Chilena de Historia Natural 74: 587–617.CrossRefGoogle Scholar
  12. Cárdenas, L., J. C. Castilla & F. Viard, 2009a. A phylogeographical analysis across three biogeographical provinces of the south-eastern Pacific: the case of the marine gastropod Concholepas concholepas. Journal of Biogeography 36: 969–981.CrossRefGoogle Scholar
  13. Cárdenas, L., A. X. Silva, A. Magoulas, J. Cabezas, E. Poulin & F. P. Ojeda, 2009b. Genetic population structure in the Chilean jack mackerel, Trachurus murphyi (Nichols) across the South-eastern Pacific Ocean. Fisheries Research 100: 109–115.CrossRefGoogle Scholar
  14. Cardoso, F., P. Villegas & C. Estrella, 2004. Observaciones sobre la biología de Octopus mimus (Cephalopoda: Octopoda) en la costa peruana. Revista Peruana de Biología 11: 45–50.Google Scholar
  15. Chavez, F. P., J. Ryan, S. E. Lluch-Cota & M. Ñiquen, 2003. From anchovies to sardines and back: multidecadal change in the Pacific Ocean. Science 299: 217–221.CrossRefPubMedGoogle Scholar
  16. Chavez, F., A. Bertrand, R. Guevara-Carrasco, P. Soler & J. Csirke, 2008. The northern Humboldt Current System: brief history, present status and a view towards the future. Progress in Oceanography 79: 95–105.CrossRefGoogle Scholar
  17. Cheng, R., X. Zheng, X. Lin, J. Yang & Q. Li, 2012. Determination of the complete mitochondrial DNA sequence of Octopus minor. Molecular biology reports 39(4): 3461–3470.CrossRefPubMedGoogle Scholar
  18. Cheng, R., X. Zheng, Y. Ma & Q. Li, 2013. The complete mitochondrial genomes of two octopods Cistopus chinensis and Cistopus taiwanicus: revealing the phylogenetic position of the genus Cistopus within the Order Octopoda. PloS One 8(12): e84216.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Collie, J. S., K. Richardson & J. H. Steele, 2004. Regime shifts: can ecological theory illuminate the mechanisms. Progress in Oceanography 60: 281–302.CrossRefGoogle Scholar
  20. Cortez, T., B. G. Castro & A. Guerra, 1995. Reproduction and condition of female Octopus mimus (Mollusca: Cephalopoda). Marine Biology 123: 505–510.CrossRefGoogle Scholar
  21. Defeo, O. & J. C. Castilla, 1998. Harvesting and economic patterns in the artisanal Octopus mimus (Cephalopoda) fishery in a northern Chile cove. Fisheries Research 38: 121–130.CrossRefGoogle Scholar
  22. Drummond, A. J., A. Rambaut, B. Shapiro & O. G. Pybus, 2005. Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution 22: 1185–1192.CrossRefPubMedGoogle Scholar
  23. Drummond, A. J., M. A. Suchard, D. Xie & A. Rambaut, 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology & Evolution 29: 1969–1973.CrossRefGoogle Scholar
  24. Echevin, V., O. Amount, J. Ledesma & G. Flores, 2008. The seasonal cycle of surface chlorophyll in the Peruvian upwelling system: a modeling study. Progress in Oceanography 79: 167–176.CrossRefGoogle Scholar
  25. Excoffier, L. & H. E. L. Lischer, 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567.CrossRefPubMedGoogle Scholar
  26. Feldberg, M. J. & A. C. Mix, 2003. Planktonic foraminifera, sea surface temperatures, and mechanisms of oceanic change in the Peru and south equatorial currents, 0–150 ka BP. Paleoceanography 18: 1016–1029.CrossRefGoogle Scholar
  27. Filatov, D. A., 2002. ProSeq: a software for preparation and evolutionary analysis of DNA sequence data sets. Molecular Ecology Notes 2: 621–624.CrossRefGoogle Scholar
  28. Fraser, C., M. Thiel, H. Spencer & J. Waters, 2010. Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp. BMC Evolutionary Biology 10: 203.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Freeland, J. R., 2005. Molecular Ecology. Wiley, New York.Google Scholar
  30. Fu, Y. X., 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915–925.PubMedPubMedCentralGoogle Scholar
  31. Galleguillos, R., C. B. Canales-Aguirre, S. Ferrada & A. Barrera, 2011. SSRs in Octopus mimus: development and characterization of nine microsatellite loci. Revista de Biología Marina y Oceanografía 46: 491–494.CrossRefGoogle Scholar
  32. Gates, D. M., 1993. Climate Change and its Biological Consequences. Sinauer Associates, Sunderland, MA.Google Scholar
  33. Gonzalez-Wevar, C. A., B. David & E. Poulin, 2011. Phylogeography and demographic inference in Nacella (Patinigera) concinna (Strebel, 1908) in the western Antarctic Peninsula. Deep Sea Research Part II: Topical Studies in Oceanography 58(1): 220–229.CrossRefGoogle Scholar
  34. González-Wevar, C. A., M. Hüne, J. I. Cañete, A. Mansilla, T. Nakano & E. Poulin, 2012. Towards a model of postglacial biogeography in shallow marine species along the Patagonian Province: lessons from the limpet Nacella magellanica (Gmelin, 1791). BMC Evolutionary Biology 12: 139.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gratton, P., M. K. Konopinski & V. Sbordoni, 2008. Pleistocene evolutionary history of the Clouded Apollo (Parnassius mnemosyne): genetic signatures of climate cycles and a ‘time-dependent’ mitochondrial substitution rate. Molecular Ecology 17: 4248–4262.CrossRefPubMedGoogle Scholar
  36. Guerra, A., T. Cortez & F. Rocha, 1999. Redescripción del pulpo de los Changos, Octopus mimus Gould, 1852, del litoral chileno-peruano (Mollusca, Cephalopoda). Iberus 17: 37–57.Google Scholar
  37. Haye, P. A., P. Salinas, E. Acuña & E. Poulin, 2010. Heterochronic phenotypic plasticity with lack of genetic differentiation in the southeastern Pacific squat lobster Pleuroncodes monodon. Evolution and Development 12: 628–633.CrossRefPubMedGoogle Scholar
  38. Haye, P. A., N. I. Segovia, N. C. Muñoz, F. E. Gálvez, A. Martínez, A. Meynard, M. C. Pardo-Gandarillas, E. Poulin & S. Faugeron, 2014. Contrasting phylogeographic structure in benthic marine invertebrates on the Southeast Pacific coast with differing dispersal potential. PLoS ONE 9(2): e88613. doi: 10.1371/journal.pone.0088613.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hebbeln, D., M. Marchant & G. Wefer, 2002. Paleoproductivity in the southern Peru-Chile current through the last 33,000 years. Marine Geology 186: 487–504.CrossRefGoogle Scholar
  40. Hewitt, G. M., 2004. Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society B 359: 183–195.CrossRefGoogle Scholar
  41. Hewitt, G. M. & K. M. Ibrahim, 2001. Inferring glacial refugia and historical migrations with molecular phylogenies. In Silvertown, J. & J. Antonovics (eds), Integrating ecology and evolution in a spatial context. British Ecological Society Symposium, Blackwell, Oxford: 271–294.Google Scholar
  42. Ho, S. Y. W. & B. Shapiro, 2011. Skyline-Plot methods for estimating demographic history from nucleotide sequences. Molecular Ecology Resources 11: 423–434.CrossRefPubMedGoogle Scholar
  43. Ho, S. Y. W., M. J. Phillips, A. Cooper & A. J. Drummond, 2005. Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Molecular Biology and Evolution 22: 1561–1568.CrossRefPubMedGoogle Scholar
  44. Hulton, N. R. J., R. S. Purves, R. D. McCulloch, D. E. Sugden & M. J. Bentley, 2002. The last glacial maximum and deglaciation in southern South America. Quaternary Science Review 21: 233–241.CrossRefGoogle Scholar
  45. Ibáñez, C. M., J. Argüelles, C. Yamashiro, L. Adasme, R. Céspedes & E. Poulin, 2012. Spatial genetic structure and demographic inference of the Patagonian squid Doryteuthis gahi in the Southeastern Pacific Ocean. Journal of the Marine Biological Association UK 92: 197–203.Google Scholar
  46. Ibáñez, C. M., L. A. Cubillos, R. Tafur, J. Argüelles, C. Yamashiro & E. Poulin, 2011. Genetic diversity and demographic history of Dosidicus gigas (Cephalopoda: Ommastrephidae) in the Humboldt Current System. Marine Ecology Progress Series 431: 163–171.CrossRefGoogle Scholar
  47. Ichii, T., K. Mahapatra, T. Watanabe, A. Yatsu, D. Inagake & Y. Okada, 2002. Occurrence of jumbo flying squid Dosidicus gigas aggregations associated with the countercurrent ridge off the Costa Rica Dome during 1997 El Niño and 1999 La Niña. Marine Ecology Progress Series 231: 151–166.CrossRefGoogle Scholar
  48. Kaplan, M. R., C. J. Fogwilla, D. E. Sugdena, N. R. J. Hultona, P. W. Kubikd & S. P. H. T. Freeman, 2008. Southern Patagonian glacial chronology for the last glacial period and implications for Southern Ocean climate. Quaternary Science Review 27: 284–294.CrossRefGoogle Scholar
  49. Keefer, D., S. D. deFrance, M. E. Moseley, J. B. Richardson III, D. R. Satterlee & A. Day-Lewis, 1998. Early maritime economy and El Niño Events at Quebrada Tacahuay, Peru. Science 281: 1833–1835.CrossRefPubMedGoogle Scholar
  50. Kelly, R. P. & R. S. Palumbi, 2010. Genetic structure among 50 species of the northeastern pacific rocky intertidal community. PLoS ONE 5: e8594.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kennett, J. P., 1977. Cenozoic evolution of Antarctic glaciation, the Circum-Antarctic Ocean, and their impact on global paleo-oceanography. Journal of Geophisical Research 82: 3843–3860.CrossRefGoogle Scholar
  52. Kim, J. H., R. R. Schneider, D. Hebbeln, P. J. Müller & G. Wefer, 2002. Last deglacial sea-surface temperature evolution in the Southeast Pacific compared to climate changes on the South American continent. Quaternary Science Review 21: 2085–2097.CrossRefGoogle Scholar
  53. Lamy, F., J. Kaiser, U. Ninnemann, D. Hebbeln, H. Arz & J. Stoner, 2004. Antarctic timing of surface water changes off Chile and Patagonian ice sheet response. Science 304: 1959–1962.CrossRefPubMedGoogle Scholar
  54. Macaya, E. & G. Zuccarello, 2010. Genetic structure of the giant kelp Macrocystis pyrifera along the southeastern Pacific. Marine Ecology Progress Series 420: 103–112.CrossRefGoogle Scholar
  55. Marko, P. B., J. M. Hoffman, S. A. Emme, T. M. Mcgovern, C. C. Keever & L. N. Cox, 2010. The ‘expansion–contraction’ model of Pleistocene biogeography: rocky shores suffer a sea change? Molecular Ecology 19: 146–169.CrossRefPubMedGoogle Scholar
  56. Minin, V. N., E. W. Bloomquist & M. A. Suchard, 2008. Smooth skyride through a rough skyline: Bayesian coalescent-based inference of population dynamics. Molecular Biology and Evolution 25: 1459–1471.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Montecino, V. & C. B. Lange, 2009. The Humboldt Current System: ecosystem components and processes, fisheries, and sediment studies. Progress in Oceanography 83: 65–79.CrossRefGoogle Scholar
  58. Montecino, V., P. T. Strub, F. P. Chavez, A. C. Thomas, J. Tarazona & T. Baumgartner, 2005. Chapter 10 Bio-physical interactions off western South America. In Robinson, A. R. & K. H. Brink (eds), The Sea. Harvard University Press, Cambridge, MA: 329–390.Google Scholar
  59. Newton, M. A. & A. E. Raftery, 1994. Approximate bayesian-inference with the weighted likelihood bootstrap. Journal of the Royal Statistical Society Series B-Methodological 56: 3–48.Google Scholar
  60. Oosthuizen, A., M. Jiwaji & P. Shaw, 2004. Genetic analysis of the Octopus vulgaris population on the coast of South Africa. South African Journal of Science 100: 603–607.Google Scholar
  61. Ortlieb, L., G. Vargas & J. F. Saliège, 2011. Marine radiocarbon reservoir effect along the northern Chile–southern Peru coast (14–24°S) throughout the Holocene. Quaternary Research 75: 91–103.CrossRefGoogle Scholar
  62. Pardo-Gandarillas, M. C., C. M. Ibáñez, J. F. Ruiz, F. Peña, C. A. Bustos & M. F. Landaeta, 2016. Paralarvae of cephalopods around channels and fjords from the southern tip of Chile (46°–53°S). Fisheries Research 173: 175–182.CrossRefGoogle Scholar
  63. Pérez-Losada, M., M. J. Nolte, K. A. Crandall & P. W. Shaw, 2007. Testing hypotheses of population structuring in the Northeast Atlantic Ocean and Mediterranean Sea using the common cuttlefish Sepia officinalis. Molecular Ecology 16: 2667–2679.CrossRefPubMedGoogle Scholar
  64. Pons, O. & R. J. Petit, 1995. Estimation, variance and optimal sampling of genetic diversity. I. Haploid locus. Theoretical Application Genetics 90: 462–470.Google Scholar
  65. Pons, O. & R. J. Petit, 1996. Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144: 1237–1245.PubMedPubMedCentralGoogle Scholar
  66. Produce, 2014. Ministerio de la Producción del Perú. Anuario estadístico de Pesca, Peru.
  67. Posada, D., 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.CrossRefPubMedGoogle Scholar
  68. Provan, J. & K. Bennett, 2008. Phylogeographic insights into cryptic glacial refugia. Trends Ecology and Evolution 23: 564–571.CrossRefPubMedGoogle Scholar
  69. Rabassa, J., 2008. Late Cenozoic of Patagonia and Tierra Del Fuego. Developments in Quaternary Sciences 11: 151–205.CrossRefGoogle Scholar
  70. Rabassa, J., A. M. Coronato & M. Salemme, 2005. Chronology of the late Cenozoic Patagonian glaciations and their correlation with biostratigraphic units of the pampean region (Argentina). Journal of South American Earth Science 20: 81–103.CrossRefGoogle Scholar
  71. Rabassa, J., A. Coronato & O. Martinez, 2011. Late Cenozoic glaciations in Patagonia and Tierra del Fuego: an updated review. Biological Journal of the Linnean Society 103: 316–335.CrossRefGoogle Scholar
  72. Rambaut, A. & A.J. Drummond, 2009. Tracer v1.5
  73. Ramos, M., B. Dewitte, O. Pizarro & G. Garric, 2008. Vertical propagation of extratropical Rossby waves during the 1997–1998 El Niño off the west coast of South America in a medium-resolution OGCM simulation. Journal of Geophysical Research 113: C08041.CrossRefGoogle Scholar
  74. Rodbell, D. T., G. O. Seltzer, M. B. Abbott, D. B. Enfield & J. H. Newman, 1999. An approximately 15000-year record of El Niño-driven alleviation in southwestern Ecuador. Science 283: 515–520.CrossRefGoogle Scholar
  75. Romero, O. E., J. H. Kim & D. Hebbeln, 2006. Paleoproductivity evolution off central Chile from the Last Glacial Maximum to the Early Holocene. Quaternary Research 65: 519–525.CrossRefGoogle Scholar
  76. Ruzzante, D., S. Walde, V. E. Cussac, M. L. Dalebout, J. Seibert, S. Ortubay & E. Habit, 2006. Phylogeography of the Percichthyidae (Pisces) in Patagonia: roles of orogeny, glaciation, and volcanism. Molecular Ecology 15: 2949–2968.CrossRefPubMedGoogle Scholar
  77. Sales, J. B. D. L., L. F. D. S. Rodrigues-Filho, Y. D. S. Ferreira, J. Carneiro, N. E. Asp, P. W. Shaw, M. Haimovici, U. Markaida, J. Ready, H. Schneider & I. Sampaio, 2017. Divergence of cryptic species of Doryteuthis plei Blainville, 1823 (Loliginidae, Cephalopoda) in the Western Atlantic Ocean is associated with the formation of the Caribbean Sea. Molecular Phylogenetics and Evolution 106: 44–54.CrossRefPubMedGoogle Scholar
  78. Sánchez, R., R. D. Sepúlveda, A. Brante & L. Cárdenas, 2011. Spatial pattern of genetic and morphological diversity in the direct developer Acanthina monodon (Gastropoda: Mollusca). Marine Ecology Progress Series 434: 121–131.CrossRefGoogle Scholar
  79. Sernapesca, 2015. Servicio Nacional de Pesca, Ministerio de Economía, Fomento y Turismo: Anuario estadístico de Pesca. Chile.
  80. Steele, J. H., 2004. Regime shifts in the ocean: reconciling observations and theory. Progress in Oceanography 60: 135–141.CrossRefGoogle Scholar
  81. Strugnell, J. M. & A. R. Lindgren, 2007. A barcode of life database for the Cephalopoda? Considerations and concerns. Reviews in Fish Biology and Fisheries 17: 337–344.CrossRefGoogle Scholar
  82. Subramanian, S. & D. M. Lambert, 2011. Time dependency of molecular evolutionary rates? Yes and no. Genome Biology and Evolution 3: 1324–1328.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Subramanian, S., D. R. Denver, C. D. Millar, T. Heupink, A. Aschrafi, S. D. Emslie, C. Baroni & D. M. Lambert, 2009. High mitogenomic evolutionary rates and time Dependency. Trends in Genetics 25: 482–486.CrossRefPubMedGoogle Scholar
  84. Suchard, M. A., R. E. Weiss & J. S. Sinsheimer, 2001. Bayesian selection of continuous-time Markov chain evolutionary models. Molecular Biology and Evolution 18: 1001–1013.CrossRefPubMedGoogle Scholar
  85. Tajima, F., 1989. Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics 23: 585–595.Google Scholar
  86. Thiel, M., E. Macaya, E. Acuña, W. Arntz, H. Bastias, K. Brokordt, P. Camus, J. C. Castilla, L. R. Castro, M. Cortés, C. P. Dumont, R. Escribano, M. Fernández, D. Lancelloti, J. A. Gajardo, C. F. Gaymer, I. Gomez, A. E. González, H. E. González, P. A. Haye, J. E. Illanes, J. L. Iriarte, G. Luna-Jorquera, C. Luxoro, P. H. Manríquez, V. Marín, P. Muñoz, S. A. Navarrete, E. Pérez, E. Poulin, J. Sellanes, A. Sepúlveda, W. Stotz, F. Tala, A. Thomas, C. A. Vargas, J. A. Vásquez & A. Vega, 2007. The Humboldt Current System of northern and central Chile. Oceanographic processes, ecological interactions and socioeconomic feedback. Oceanography and Marine Biology 45: 195–344.CrossRefGoogle Scholar
  87. Tsuchi, R., 2002. Neogene evolution of surface marine climate in the Pacific and notes on related events. Revista Mexicana de Ciencia y Geología 19: 260–270.Google Scholar
  88. Vega, M. A., F. J. Rocha, A. Guerra, C. Osorio & V. H. Marin, 1999. Estudio preliminar de paralarvas de Cefalópodos frente a la Península de Mejillones (Antofagasta, Chile). Amici Molluscarum 7: 25–31.Google Scholar
  89. Villanueva, R. & M. D. Norman, 2008. Biology of the planktonic stages of benthic octopuses. Oceanography and Marine Biology 46: 105–202.Google Scholar
  90. Xu, M., J., Li, B., Guo, Z., Lü, C., Zhou & C., Wu. 2011. Genetic diversity of seven populations of Octopus variabilis in China’s coastal waters based on the 12S rRNA and COIII gene analysis. Oceanologia et Limnologia Sinica 42: 387–396Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Departamento de Ciencias Ecológicas, Facultad de CienciasUniversidad de ChileÑuñoa, SantiagoChile
  2. 2.Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos NaturalesUniversidad Andres BelloSantiagoChile
  3. 3.Instituto del Mar del PerúCallaoPeru
  4. 4.Departamento de Ciencias Ecológicas, Facultad de Ciencias, Instituto de Ecología y BiodiversidadUniversidad de ChileÑuñoa, SantiagoChile

Personalised recommendations