, Volume 806, Issue 1, pp 47–65 | Cite as

Native and non-native halophytes resiliency against sea-level rise and saltwater intrusion

  • Lian Xue
  • Xiuzhen LiEmail author
  • Zhongzheng Yan
  • Qian Zhang
  • Wenhui Ding
  • Xing Huang
  • Bo Tian
  • Zhenming Ge
  • Qiuxiao Yin
Primary Research Paper


We quantified the independent impacts of flooding salinity, flooding depth, and flooding frequency on the native species, Phragmites australis and Scirpus mariqueter, and on the invasive species Spartina alterniflora in the Yangtze River Estuary, China. Total biomass of all three species decreased significantly with increasing salinity, but S. alterniflora was less severely affected than P. australis and S. mariqueter. Elevated flooding depth significantly decreased their live aboveground biomass of P. australis and S. mariqueter, while S. alterniflora still had high live aboveground biomass and total biomass even at the highest flooding depth. These findings indicated that S. alterniflora was more tolerant to experimental conditions than the two native species, and an unavoidable suggestion is the expansion of this non-native species in relation to the native counterparts in future scenarios of increased sea-level and saltwater intrusion. Even so, environmental stresses might lead to significant decreases in total biomass and live aboveground biomass of all three species, which would potentially weaken their ability to trap sediments and accumulate organic matter. However, the relatively high belowground-to-aboveground biomass ratio indicated phenotypic plasticity in response to stressful environmental conditions, which suggest that marsh species can adapt to sea-level rise and maintain marsh elevation.


Salt marsh Macrophytes Environmental gradient Salinity Biomass Global changes 



This work was sponsored by the National Natural Science Foundation of China (Grant Numbers 41271065, 41371112 and 41571083), the Natural Science Foundation of Shanghai (16ZR1410300), and the National Key Research and Development Program of China (2017YFC0506000). We thank André A. Padial, the associate editor, and three anonymous reviewers for their constructive suggestions. We also greatly appreciate the efforts of Yunqing Zhang, Bin Yang, and Junyan Jiang in conducting field and laboratory work.


  1. Artigas, F., J. Y. Shin, C. Hobble, A. Marti-Donati, K. V. R. Schäfer & I. Pechmann, 2015. Long term carbon storage potential and CO2 sink strength of a restored salt marsh in New Jersey. Agricultural and Forest Meteorology 200: 313–321.CrossRefGoogle Scholar
  2. Barbier, E. B., S. D. Hacker, C. Kennedy, E. W. Koch, A. C. Stier & B. R. Silliman, 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81: 169–193.CrossRefGoogle Scholar
  3. Baustian, J. J., I. A. Mendelssohn & M. W. Hester, 2012. Vegetation’s importance in regulating surface elevation in a coastal salt marsh facing elevated rates of sea level rise. Global Change Biology 18: 3377–3382.CrossRefGoogle Scholar
  4. Brownstein, G., J. B. Wilson & D. J. Burritt, 2013. Waterlogging tolerance on a New Zealand saltmarsh. Journal of Experimental Marine Biology and Ecology 446: 202–208.CrossRefGoogle Scholar
  5. Canalejo, A., D. Martínez-Domínguez, F. Córdoba & R. Torronteras, 2014. Salt tolerance is related to a specific antioxidant response in the halophyte cordgrass, Spartina densiflora. Estuarine, Coastal and Shelf Science 146: 68–75.CrossRefGoogle Scholar
  6. Chambers, R. M., T. J. Mozdzer & J. C. Ambrose, 1998. Effects of salinity and sulfide on the distribution of Phragmites australis and Spartina alterniflora in a tidal saltmarsh. Aquatic Botany 62: 161–169.CrossRefGoogle Scholar
  7. Chen, Z. Y., B. Li, Y. Zhong & J. K. Chen, 2004. Local competitive effects of introduced Spartina alterniflora on Scirpus mariqueter at Dongtan of Chongming Island, the Yangtze River estuary and their potential ecological consequences. Hydrobiologia 528: 99–106.CrossRefGoogle Scholar
  8. Chmura, G. L., S. C. Anisfeld, D. R. Cahoon & J. C. Lynch, 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17: 1111.CrossRefGoogle Scholar
  9. Colmer, T. D. & T. J. Flowers, 2008. Flooding tolerance in halophytes. New Phytologist 179: 964–974.CrossRefPubMedGoogle Scholar
  10. Colmer, T. D., O. Pedersen, A. M. Wetson & T. J. Flowers, 2013. Oxygen dynamics in a salt-marsh soil and in Suaeda maritima during tidal submergence. Environmental and Experimental Botany 92: 73–82.CrossRefGoogle Scholar
  11. Darby, F. A. & R. E. Turner, 2008. Below- and aboveground Spartina alterniflora production in a Louisiana salt marsh. Estuaries and Coasts 31: 223–231.CrossRefGoogle Scholar
  12. Dausse, A., A. Garbutt, L. Norman, S. Papadimitriou, L. M. Jones, P. E. Robins & D. N. Thomas, 2012. Biogeochemical functioning of grazed estuarine tidal marshes along a salinity gradient. Estuarine, Coastal and Shelf Science 100: 83–92.CrossRefGoogle Scholar
  13. Davy, A. J., M. J. H. Brown, H. L. Mossman & A. Grant, 2011. Colonization of a newly developing salt marsh: disentangling independent effects of elevation and redox potential on halophytes. Journal of Ecology 99: 1350–1357.CrossRefGoogle Scholar
  14. de Klein, J. J. M. & A. K. van der Werf, 2014. Balancing carbon sequestration and GHG emissions in a constructed wetland. Ecological Engineering 66: 36–42.CrossRefGoogle Scholar
  15. Ding, W. H., J. Y. Jiang, X. Z. Li, X. Huang, X. Z. Li, Y. X. Zhou & C. D. Tang, 2015. Spatial distribution of species and influencing factors across salt marsh in southern Chongming Dongtan. Chinese Journal of Plant Ecology 39: 704–716 (in Chinese with English abstract).CrossRefGoogle Scholar
  16. Diskin, M. S. & D. L. Smee, 2017. Effects of black mangrove Avicennia germinans expansion on salt marsh nekton assemblages before and after a flood. Hydrobiologia. doi: 10.1007/s10750-017-3179-2.Google Scholar
  17. Engels, J. G., F. Rink & K. Jensen, 2011. Stress tolerance and biotic interactions determine plant zonation patterns in estuarine marshes during seedling emergence and early establishment. Journal of Ecology 99: 277–287.CrossRefGoogle Scholar
  18. Flowers, T. J. & T. D. Colmer, 2008. Salinity tolerance in halophytes. New Phytologist 179: 945–963.CrossRefPubMedGoogle Scholar
  19. Freschet, G. T., E. M. Swart & J. H. Cornelissen, 2015. Integrated plant phenotypic responses to contrasting above- and below-ground resources: key roles of specific leaf area and root mass fraction. New Phytologist 206: 1247–1260.CrossRefPubMedGoogle Scholar
  20. Funk, J. L., 2008. Differences in plasticity between invasive and native plants from a low resource environment. Journal of Ecology 96: 1162–1173.CrossRefGoogle Scholar
  21. Galvan-Ampudia, C. S. & C. Testerink, 2011. Salt stress signals shape the plant root. Current Opinion in Plant Biology 14: 296–302.CrossRefPubMedGoogle Scholar
  22. Ge, Z. M., H. Q. Guo, B. Zhao, C. Zhang, H. Peltola & L. Q. Zhang, 2016. Spatiotemporal patterns of the gross primary production in the salt marshes with rapid community change: a coupled modeling approach. Ecological Modelling 321: 110–120.CrossRefGoogle Scholar
  23. Gedan, K. B., B. R. Silliman & M. D. Bertness, 2009. Centuries of human-driven change in salt marsh ecosystems. Annual Review of Marine Science 1: 117–141.CrossRefPubMedGoogle Scholar
  24. Gillanders, B. M., T. S. Elsdon, I. A. Halliday, G. P. Jenkins, J. B. Robins & F. J. Valesini, 2011. Potential effects of climate change on Australian estuaries and fish utilising estuaries: a review. Marine and Freshwater Research 62: 1115–1131.CrossRefGoogle Scholar
  25. He, Q., B. S. Cui, Y. Z. Cai, J. F. Deng, T. Sun & Z. F. Yang, 2009. What confines an annual plant to two separate zones along coastal topographic gradients? Hydrobiologia 630: 327–340.CrossRefGoogle Scholar
  26. He, Y. L., X. Z. Li, C. Craft, Z. G. Ma & Y. G. Sun, 2011. Relationships between vegetation zonation and environmental factors in newly formed tidal marshes of the Yangtze River estuary. Wetlands Ecology and Management 19: 341–349.CrossRefGoogle Scholar
  27. Hopkinson, C. S., W. Cai & X. Hu, 2012. Carbon sequestration in wetland dominated coastal systems – a global sink of rapidly diminishing magnitude. Current Opinion in Environmental Sustainability 4: 186–194.CrossRefGoogle Scholar
  28. Hu, Y., L. Wang, Y. S. Tang, Y. L. Li, J. H. Chen, X. F. Xi, Y. N. Zhang, X. H. Fu, J. H. Wu & Y. Sun, 2014. Variability in soil microbial community and activity between coastal and riparian wetlands in the Yangtze River estuary – Potential impacts on carbon sequestration. Soil Biology and Biochemistry 70: 221–228.CrossRefGoogle Scholar
  29. Hyndes, G. A., I. Nagelkerken, R. J. McLeod, R. M. Connolly, P. S. Lavery & M. A. Vanderklift, 2014. Mechanisms and ecological role of carbon transfer within coastal seascapes. Biological Reviews 89: 232–254.CrossRefPubMedGoogle Scholar
  30. IPCC, 2013. Summary for policymakers. In Stocker, T., D. Qin, G. K. Plattner, M. Tignor, S. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P. Midgley (eds), Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York: 3–32.Google Scholar
  31. Jennerjahn, T. C. & S. B. Mitchell, 2013. Pressures, stresses, shocks and trends in estuarine ecosystems – an introduction and synthesis. Estuarine, Coastal and Shelf Science 130: 1–8.CrossRefGoogle Scholar
  32. Julkowska, M. M. & C. Testerink, 2015. Tuning plant signaling and growth to survive salt. Trends in Plant Science 20: 586–594.CrossRefPubMedGoogle Scholar
  33. Kang, H., I. Jang & S. Kim, 2012. Key processes in CH4 dynamics in wetlands and possible shifts with climate change. In Middleton, B. A. (ed.), Global Change and the Function and Distribution of Wetlands. Springer, Netherlands: 99–114.CrossRefGoogle Scholar
  34. Kathilankal, J. C., T. J. Mozdzer, J. D. Fuentes, P. D’Odorico, K. J. McGlathery & J. C. Zieman, 2008. Tidal influences on carbon assimilation by a salt marsh. Environmental Research Letters 3: 044010.CrossRefGoogle Scholar
  35. Kirwan, M. L. & G. R. Guntenspergen, 2012. Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. Journal of Ecology 100: 764–770.CrossRefGoogle Scholar
  36. Kirwan, M. L. & J. P. Megonigal, 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504: 53–60.CrossRefPubMedGoogle Scholar
  37. Kirwan, M. L. & S. M. Mudd, 2012. Response of salt-marsh carbon accumulation to climate change. Nature 489: 550–553.CrossRefPubMedGoogle Scholar
  38. Langley, J. A., T. J. Mozdzer, K. A. Shepard, S. B. Hagerty & J. P. Megonigal, 2013. Tidal marsh plant responses to elevated CO2, nitrogen fertilization, and sea level rise. Global Change Biology 19: 1495–1503.CrossRefGoogle Scholar
  39. Lewis, D. B., J. A. Brown & K. L. Jimenez, 2014. Effects of flooding and warming on soil organic matter mineralization in Avicennia germinans mangrove forests and Juncus roemerianus salt marshes. Estuarine, Coastal and Shelf Science 139: 11–19.CrossRefGoogle Scholar
  40. Li, B., C. Z. Liao, X. D. Zhang, H. L. Chen, Q. Wang, Z. Y. Chen, X. J. Gan, J. H. Wu, B. Zhao, Z. J. Ma, X. L. Cheng, L. F. Jiang & J. K. Chen, 2009. Spartina alterniflora invasions in the Yangtze River estuary, China: an overview of current status and ecosystem effects. Ecological Engineering 35: 511–520.CrossRefGoogle Scholar
  41. Li, X. Z., L. J. Ren, Y. Liu, C. Craft, Ü. Mander & S. L. Yang, 2014. The impact of the change in vegetation structure on the ecological functions of salt marshes: the example of the Yangtze estuary. Regional Environmental Change 14: 623–632.CrossRefGoogle Scholar
  42. Liu, Y., X. Z. Li, Z. Z. Yan, X. Z. Chen, Y. L. He, W. Y. Guo & P. Y. Sun, 2013. Biomass and carbon storage of Phragmites australis and Spartina alterniflora in Jiuduan Shoal Wetland of Yangtze Estuary, East China. Chinese Journal of Applied Ecology 24: 2129–2134 (in Chinese with English abstract.PubMedGoogle Scholar
  43. Luisetti, T., R. K. Turner, T. Jickells, J. Andrews, M. Elliott, M. Schaafsma, N. Beaumont, S. Malcolm, D. Burdon, C. Adams & W. Watts, 2014. Coastal zone ecosystem services: from science to values and decision making; a case study. Science of the Total Environment 493: 682–693.CrossRefPubMedGoogle Scholar
  44. Ma, Z. J., D. S. Melville, J. G. Liu, Y. Chen, H. Y. Yang, W. W. Ren, Z. W. Zhang, T. Piersma & B. Li, 2014. Rethinking China’s new great wall. Science 346: 912–914.CrossRefPubMedGoogle Scholar
  45. Mcleod, E., G. L. Chmura, S. Bouillon, R. Salm, M. Bjork, C. M. Duarte, C. E. Lovelock, W. H. Schlesinger & B. R. Silliman, 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9: 552–560.CrossRefGoogle Scholar
  46. Medeiros, D. L., D. S. White & B. L. Howes, 2013. Replacement of Phragmites australis by Spartina alterniflora: the role of competition and salinity. Wetlands 33: 421–430.CrossRefGoogle Scholar
  47. Melton, J. R., R. Wania, E. L. Hodson, B. Poulter, B. Ringeval, R. Spahni, T. Bohn, C. A. Avis, D. J. Beerling, G. Chen, A. V. Eliseev, S. N. Denisov, P. O. Hopcroft, D. P. Lettenmaier, W. J. Riley, J. S. Singarayer, Z. M. Subin, H. Tian, S. Zürcher, V. Brovkin, P. M. van Bodegom, T. Kleinen, Z. C. Yu & J. O. Kaplan, 2012. Present state of global wetland extent and wetland methane modelling: conclusions from a model intercomparison project (WETCHIMP). Biogeosciences Discussions 9: 11577–11654.CrossRefGoogle Scholar
  48. Moriuchi, K. S. & A. A. Winn, 2004. Relationships among growth, development and plastic response to environment quality in a perennial plant. New Phytologist 166: 149–158.CrossRefGoogle Scholar
  49. Morris, J. T., 2007. Ecological engineering in intertidial saltmarshes. Hydrobiologia 577: 161–168.CrossRefGoogle Scholar
  50. Morris, J. T., P. V. Sundareshwar, C. T. Nietch, B. Kjerfve & D. R. Cahoon, 2002. Responses of coastal wetlands to rising sea level. Ecology 83: 2869–2877.CrossRefGoogle Scholar
  51. Morris, J. T., K. Sundberg & C. S. Hopkinson, 2013. Salt marsh primary production and its responses to relative sea level and nutrients in estuaries at Plum Island, Massachusetts, and North Inlet, South Carolina, USA. Oceanography 26: 78–84.CrossRefGoogle Scholar
  52. Mudd, S. M., A. D’Alpaos & J. T. Morris, 2010. How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. Journal of Geophysical Research-Atmospheres 115: F03029.Google Scholar
  53. Mueller, P., K. Jensen & J. P. Megonigal, 2016. Plants mediate soil organic matter decomposition in response to sea level rise. Global Change Biology 22: 404–414.CrossRefPubMedGoogle Scholar
  54. Munns, R. & M. Tester, 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59: 651–681.CrossRefPubMedGoogle Scholar
  55. Negrin, V. L., A. E. de Villalobos, G. Gonzalez Trilla, S. E. Botte & J. E. Marcovecchio, 2012. Above- and belowground biomass and nutrient pools of Spartina alterniflora (smooth cordgrass) in a South American salt marsh. Chemistry and Ecology 28: 391–404.CrossRefGoogle Scholar
  56. Niklas, K. J. & B. J. Enquist, 2002. On the vegetative biomass partitioning of seed plant leaves, stems, and roots. American Naturalist 159: 482–497.CrossRefPubMedGoogle Scholar
  57. Onkware, A. O., 2000. Effect of soil salinity on plant distribution and production at Loburu Delta, Lake Bogoria National Reserve, Kenya. Austral Ecology 25: 140–149.CrossRefGoogle Scholar
  58. Osland, M. J., N. M. Enwright, R. H. Day, C. A. Gabler, C. L. Stagg & J. B. Grace, 2016. Beyond just sea-level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change. Global Change Biology 22: 1–11.CrossRefPubMedGoogle Scholar
  59. Pendleton, L., D. C. Donato, B. C. Murray, S. Crooks, W. A. Jenkins, S. Sifleet, C. Craft, J. W. Fourqurean, J. B. Kauffman, N. Marba, P. Megonigal, E. Pidgeon, D. Herr, D. Gordon & A. Baldera, 2012. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7: e43542.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Pennings, S. C., M. B. Grant & M. D. Bertness, 2005. Plant zonation in low-latitude salt marshes: disentangling the roles of flooding, salinity and competition. Journal of Ecology 93: 159–167.CrossRefGoogle Scholar
  61. Pfennig, D. W., M. A. Wund, E. C. Snell-Rood, T. Cruickshank, C. D. Schlichting & A. P. Moczek, 2010. Phenotypic plasticity’s impacts on diversification and speciation. Trends in Ecology & Evolution 25: 459–467.CrossRefGoogle Scholar
  62. Poffenbarger, H. J., B. A. Needelman & J. P. Megonigal, 2011. Salinity influence on methane emissions from tidal marshes. Wetlands 31: 831–842.CrossRefGoogle Scholar
  63. Poorter, H., K. J. Niklas, P. B. Reich, J. Oleksyn, P. Poot & L. Mommer, 2012. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist 193: 30–50.CrossRefPubMedGoogle Scholar
  64. Regnier, P., P. Friedlingstein, P. Ciais, F. T. Mackenzie, N. Gruber, I. A. Janssens, G. G. Laruelle, R. Lauerwald, S. Luyssaert, A. J. Andersson, S. Arndt, C. Arnosti, A. V. Borges, A. W. Dale, A. Gallego-Sala, Y. Goddéris, N. Goossens, J. Hartmann, C. Heinze, T. Ilyina, F. Joos, D. E. LaRowe, J. Leifeld, F. J. R. Meysman, G. Munhoven, P. A. Raymond, R. Spahni, P. Suntharalingam & M. Thullner, 2013. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience 6: 597–607.CrossRefGoogle Scholar
  65. Scarton, F., J. W. Day & A. Rismondo, 2002. Primary production and decomposition of Sarcocornia fruticosa (L.) Scott and Phragmites australis Trin. ex Steudel in the Po Delta, Italy. Estuaries and Coasts 25: 325–336.CrossRefGoogle Scholar
  66. Shelford, V. E., 1931. Some concepts of bioecology. Ecology 12: 455–467.CrossRefGoogle Scholar
  67. Silvestri, S., A. Defina & M. Marani, 2005. Tidal regime, salinity and salt marsh plant zonation. Estuarine, Coastal and Shelf Science 62: 119–130.CrossRefGoogle Scholar
  68. Snedden, G. A., K. Cretini & B. Patton, 2015. Inundation and salinity impacts to above- and belowground productivity in Spartina patens and Spartina alterniflora in the Mississippi River deltaic plain: Implications for using river diversions as restoration tools. Ecological Engineering 81: 133–139.CrossRefGoogle Scholar
  69. SOA (State Oceanic Administration People’s Republic of China), 2015. China sea-level communique. Accessed July 5, 2016.
  70. SOA (State Oceanic Administration People’s Republic of China), 2016. China sea-level communique. Accessed July 5, 2016.
  71. Sousa, A. I., A. I. Lillebø, M. A. Pardal & I. Caçador, 2010a. Productivity and nutrient cycling in salt marshes: contribution to ecosystem health. Estuarine, Coastal and Shelf Science 87: 640–646.CrossRefGoogle Scholar
  72. Sousa, A. I., A. I. Lillebø, M. A. Pardal & I. Caçador, 2010b. The influence of Spartina maritima on carbon retention capacity in salt marshes from warm-temperate estuaries. Marine Pollution Bulletin 61: 215–223.CrossRefPubMedGoogle Scholar
  73. Spalding, E. A. & M. W. Hester, 2007. Interactive effects of hydrology and salinity on oligohaline plant species productivity: implications of relative sea-level rise. Estuaries and Coasts 30: 214–225.CrossRefGoogle Scholar
  74. Steinman, A. D., M. E. Ogdahl, M. Weinert & D. G. Uzarski, 2014. Influence of water-level fluctuation duration and magnitude on sediment-water nutrient exchange in coastal wetlands. Aquatic Ecology 48: 143–159.CrossRefGoogle Scholar
  75. Sutter, L. A., R. M. Chambers & J. E. Perry, 2015. Seawater intrusion mediates species transition in low salinity, tidal marsh vegetation. Aquatic Botany 122: 32–39.CrossRefGoogle Scholar
  76. Tang, L., Y. Gao, B. Li, Q. Wang, C. H. Wang & B. Zhao, 2014. Spartina alterniflora with high tolerance to salt stress changes vegetation pattern by outcompeting native species. Ecosphere 5: 116.CrossRefGoogle Scholar
  77. Theuerkauf, E. J., J. D. Stephens, J. T. Ridge, F. J. Fodrie & A. B. Rodriguez, 2015. Carbon export from fringing saltmarsh shoreline erosion overwhelms carbon storage across a critical width threshold. Estuarine, Coastal and Shelf Science 164: 367–378.CrossRefGoogle Scholar
  78. Wang, C. H., M. Lu, B. Yang, Q. Yang, X. D. Zhang, T. Hara & B. Li, 2010. Effects of environmental gradients on the performances of four dominant plants in a Chinese saltmarsh: implications for plant zonation. Ecological Research 25: 347–358.CrossRefGoogle Scholar
  79. Wang, Q., C. H. Wang, B. Zhao, Z. J. Ma, Y. Q. Luo, J. K. Chen & B. Li, 2006. Effects of growing conditions on the growth of and interactions between salt marsh plants: implications for invasibility of habitats. Biological Invasions 8: 1547–1560.CrossRefGoogle Scholar
  80. Yan, G., Z. M. Ge & L. Q. Zhang, 2014. Distribution of soil carbon storage in different saltmarsh plant communities in Chongming Dongtan wetland. Chinese Journal of Applied Ecology 25: 85–91 (in Chinese with English abstract).PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Lian Xue
    • 1
  • Xiuzhen Li
    • 1
    Email author
  • Zhongzheng Yan
    • 1
  • Qian Zhang
    • 1
  • Wenhui Ding
    • 1
  • Xing Huang
    • 1
  • Bo Tian
    • 1
  • Zhenming Ge
    • 1
  • Qiuxiao Yin
    • 2
  1. 1.State Key Laboratory of Estuarine and Coastal ResearchEast China Normal UniversityShanghaiChina
  2. 2.Shanghai Chongming Dongtan Wetland ParkShanghaiChina

Personalised recommendations