Hydrobiologia

, Volume 806, Issue 1, pp 29–46 | Cite as

Abundance and habitat associations of tuna larvae in the surface water of the Gulf of Mexico

  • Maëlle Cornic
  • Brad L. Smith
  • Larissa L. Kitchens
  • Jaime R. Alvarado Bremer
  • Jay R. Rooker
Primary Research Paper

Abstract

Summer ichthyoplankton surveys were conducted in the northern Gulf of Mexico from 2007 to 2010 to characterize the distribution and abundance of tuna larvae. Larval assemblages of tunas were comprised of four genera: Thunnus, Auxis, Euthynnus, and Katsuwonus. Thunnus were the most abundant and four species were detected; T. atlanticus [blackfin tuna], T. obesus [bigeye tuna], T. albacares [yellowfin tuna], and T. thynnus [bluefin tuna]. Intra- and inter-annual variability in the distribution and abundance of Thunnus species were observed with higher densities in 2008 and 2009, with a decline in abundance observed in 2010. Distribution and abundance of Thunnus larvae were influenced by physical and chemical conditions of the water mass, notably sea surface temperature and salinity. Distinct species-specific habitat preferences were observed and the location of mesoscale oceanographic features influenced larval abundance with higher densities of T. atlanticus, T. obesus, and T. albacares near anticyclonic (warm core) regions and the Loop Current, while T. thynnus was observed in higher densities near cyclonic (cold core) regions. This study demonstrates that spatial and temporal variability in the location of mesoscale oceanographic features may be important to partitioning nursery habitat among Thunnus species.

Keywords

Bluefin Yellowfin Bigeye Blackfin Eddies Loop Current 

Notes

Acknowledgement

We thank Landes Randall, Kimberly Clausen-Sparks, Michael Dance, Lynne Wetmore, Kaylan Dance, Ching-Ping Lu, Lori Davis, and Jessica Lee for their assistance in the field and lab. This research was made possible in part by a grant from The Gulf of Mexico Research Initiative (Deep Pelagic Nekton Dynamics consortium), the McDaniel Charitable Foundation, Louisiana State University, and the Louisiana Department of Wildlife and Fisheries. Data are publicly available through the Gulf of Mexico Research Initiative Information & Data Cooperative (GRIIDC) at https://data.gulfresearchinitiative.org (doi: 10.7266/N7610XFM).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10750_2017_3330_MOESM1_ESM.tif (1.6 mb)
Fig. S1Comparison of Thunnus larvae density (larvae 1000 m−3) between neuston net and bongo nets from 2011 to 2013 and 2015. Supplementary material 1 (TIFF 1686 kb)
10750_2017_3330_MOESM2_ESM.tif (578 kb)
Fig. S2Mississippi River discharges (ft3s-1) in June and July from 2007 to 2010 (USGS 07374000). Supplementary material 2 (TIFF 577 kb)

References

  1. Alemany, F., L. Quintanilla, P. Velez-Belchi, A. Garcia, D. Cortés, J. M. Rodríguez, M. L. Fernández, C. de Puelles & J. L. López-Jurado González-Pola, 2010. Characterization of the spawning habitat of Atlantic bluefin tuna and related species in the Balearic Sea (western Mediterranean). Progress in Oceanography 86: 21–38.CrossRefGoogle Scholar
  2. Alvarado Bremer, J. R., B. L. Smith, D. L. Moulton, C. P. Lu & M. Cornic, 2014. Shake and stew: a non-destructive PCR-ready DNA isolation method from a single preserved fish larva. Journal of Fish Biology 84: 267–272.CrossRefPubMedGoogle Scholar
  3. Anderson, M. J., 2001. Permutation tests for univariate or multivariate analysis of variance and regression. Canadian Journal of Fisheries and Aquatic Sciences 58: 626–639.CrossRefGoogle Scholar
  4. Anderson, M., R. Gorley & K. Clarke, 2008. PERMANOVA for PRIMER, guide to software and statistical methods. PRIMER-E Ltd., Plymouth.Google Scholar
  5. Arocha, F., D. W. Lee, L. A. Marcano & J. S. Marcano, 2001. Update information on the spawning of yellowfin tuna, Thunnus albacares, in the western central Atlantic. International Commission for the Conservation of Atlantic Tunas, Collective Volumes of Scientific Papers 52: 167–176.Google Scholar
  6. Baum, J. K. & B. Worm, 2009. Cascading top-down effects of changing oceanic predator abundances. Journal of Animal Ecology 78: 699–714.CrossRefPubMedGoogle Scholar
  7. Bakun, A., 2006. Fronts and eddies as key structures in the habitat of marine fish larvae: opportunity, adaptive response and competitive advantage. Scientia Marina 70S2: 105–122.CrossRefGoogle Scholar
  8. Biggs, D. C., C. Hu & F. E. Müller-Karger, 2008. Remotely sensed sea-surface chlorophyll and POC flux at Deep Gulf of Mexico Benthos sampling stations. Deep-Sea Research II 55: 2555–2562.CrossRefGoogle Scholar
  9. Brette, F., B. Machado, C. Cros, J. P. Incardona, N. L. Scholz & B. A. Block, 2014. Crude oil impairs cardiac excitation-contraction coupling in fish. Sciences 343: 772–776.CrossRefGoogle Scholar
  10. Camilli, R., C. M. Reddy, D. Yoerger, B. A. S. Van Mooy, M. V. Jakuba, J. C. Kinsey, C. P. McIntyre, S. P. Sylva & J. V. Maloney, 2010. Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 330: 201–204.CrossRefPubMedGoogle Scholar
  11. Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6, User manual/tutorial. PRIMER-E, Plymouth.Google Scholar
  12. Crone, T. J. & M. Tolstoy, 2010. Magnitude of the 2010 Gulf of Mexico oil leak. Science 330: 634–643.CrossRefPubMedGoogle Scholar
  13. Dagg, M. J. & G. A. Breed, 2003. Biological effects of Mississippi River nitrogen on the northern Gulf of Mexico-a review and synthesis. Journal of Marine Systems 43: 133–152.CrossRefGoogle Scholar
  14. Dorado, S., J. R. Rooker, B. Wissel & A. Quigg, 2012. Isotope baseline shifts in pelagic food webs of the Gulf of Mexico. Marine Ecology Progress Series 464: 37–49.CrossRefGoogle Scholar
  15. Domingues, R., G. Goni, F. Bringas, B. Muhling, D. Lindo-Atichati & J. Walter, 2016. Variability of preferred environmental conditions for Atlantic bluefin tuna (Thunnus thynnus) larvae in the Gulf of Mexico during 1993–2011. Fisheries Oceanography 25: 320–336.CrossRefGoogle Scholar
  16. Epinosa-Fuentes, M. L., C. Flores-Coto, F. Zavala-García, L. Sanvicente-Añorve & R. Funes- Rodríguez, 2013. Seasonal vertical distribution of fish larvae in the southern Gulf of Mexico. Hidrobiológica 23: 42–59.Google Scholar
  17. Essington, T. E., D. E. Schindler, R. J. Olson, J. F. Kitchell, C. Boggs & R. Hilborn, 2002. Alternative fisheries and the predation rate of yellowfin tuna in the eastern Pacific Ocean. Ecological Applications 12: 724–734.CrossRefGoogle Scholar
  18. Fitzcharles, E. M., 2012. Rapid discrimination between four Antarctic fish species, genus Macrourus, using HRM analysis. Fisheries Research 127–128: 166–170.CrossRefGoogle Scholar
  19. Fromentin, J.-M. & J. E. Powers, 2005. Atlantic bluefin tuna: population dynamics, ecology, fisheries and management. Fish and Fisheries 6: 281–306.CrossRefGoogle Scholar
  20. Govoni, J. J., 2005. Fisheries oceanography and the ecology of early life histories of fishes: a perspective over fifty years. Scientia Marina 69: 125–137.CrossRefGoogle Scholar
  21. Grimes, C. B. & J. H. Finucane, 1991. Spatial distribution and abundance of larval and juvenile fish, chlorophyll and macrozooplankton around the Mississippi River discharge plume, and the role of the plume in fish recruitment. Marine Ecolology Progress Series 75: 109–119.CrossRefGoogle Scholar
  22. Grimes, C. B. & M. J. Kingsford, 1996. How do riverine plumes of different sizes influence fish larvae: do they enhance recruitment? Marine and Freshwater Research 47: 191–208.CrossRefGoogle Scholar
  23. Habtes, S., F. E. Müller-Karger, M. Roffer, J. T. Lamkin & B. Muhling, 2014. A comparison of sampling methods for larvae of medium and large epipelagic fish species during spring SEAMAP ichthyoplankton surveys in the Gulf of Mexico. Limnology and Oceanography: Methods 12: 86–101.CrossRefGoogle Scholar
  24. Hsiesh, C. H., C. S. Reiss, J. R. Hunter, J. R. Beddington, R. M. May, G. Sugihara, 2006. Fishing elevates variability in the abundance of exploited species. Nature 443: 859–862.Google Scholar
  25. ICCAT, 2015. Report for biennal period, 2014-15 Part II-Vol. 2.Google Scholar
  26. ICCAT, 2016. Small tunas species group intercessional meeting. Collective Volumes of Scientific Papers 72: 2120–2185.Google Scholar
  27. Incardona, J. P., L. D. Gardner, T. L. Linbo, T. L. Brown, A. J. Esbaugh, E. M. Mager, J. D. Stieglitz, B. L. French, J. S. Labenia, J. S. Laetz, M. Tagal, C. A. Sloan, A. Elizur, D. D. Benetti, M. Grosell, B. A. Block & N. L. Scholz, 2014. Deepwater Horizon crude oil impacts the developing hearts of large predatory pelagic fish. Proceedings of the National Academy of Sciences USA 111: E1510–E1518.CrossRefGoogle Scholar
  28. Ingram Jr., G. W., W. J. Richard, J. T. Lamkin & B. Muhling, 2010. Annual indices of Atlantic bluefin tuna (Thunnus thynnus) larvae in the Gulf of Mexico developed using delta-lognormal and multivariate models. Aquatic Living Resources 23: 35–47.CrossRefGoogle Scholar
  29. Kitchens, L. L. & J. R. Rooker, 2014. Habitat associations of dolphinfish larvae in the Gulf of Mexico. Fisheries Oceanography 23: 460–471.CrossRefGoogle Scholar
  30. Knapp, J. M., G. Aranda, A. Medina & M. Lutcavage, 2014. Comparative assessment of the reproductive status of female Atlantic bluefin tuna from the Gulf of Mexico and the Mediterranean sea. PLoS ONE 9: e98233.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Korsmeyer, K. E. & H. Dewar, 2001. Tuna metabolism and energetic. Fish Physiology 19: 35–78.CrossRefGoogle Scholar
  32. Lamkin, J., 1997. The Loop Current and the abundance of larval Cubiceps pauciradiatus (Pisces: Nomeidae) in the Gulf of Mexico: evidence for physical and biological interaction. Fisheries Bulletin 95: 250–266.Google Scholar
  33. Lang, K. L., C. B. Grimes & R. F. Shaw, 1994. Variations in the age and growth of yellowfin tuna larvae, Thunnus albacares, collected about the Mississippi River plume. Environmental Biology of Fishes 39: 259–270.CrossRefGoogle Scholar
  34. Leben, R. R., G. H. Born & B. R. Engebreth, 2002. Operational altimeter data processing for mesoscale monitoring. Marine Geodesy 25: 3–18.CrossRefGoogle Scholar
  35. Lindo-Atichati, D., F. Bringas, G. Gon, B. Muhling, F. E. Muller-Karger & S. Habtes, 2012. Varying mesoscale structures influence larval fish distribution in the northern Gulf of Mexico. Marine Ecology Progress Series 463: 245–257.CrossRefGoogle Scholar
  36. Malca, E., B. Muhling, J. Franks, A. Garcia, J. Tilley, T. Gerard, W. Ingram & J. T. Lamkin, 2017. The first larval age and growth curve for bluefin tuna (Thunnus thynnus) from the Gulf of Mexico: comparisons to the Straits of Florida, and the Balearic Sea (Mediterranean). Fisheries Research 190: 24–33.CrossRefGoogle Scholar
  37. Mathieu, H., C. Pau & L. Reynal, 2013. Thon à nageoires noires. ICCAT Manual. Chapitre 2.1.10.7.Google Scholar
  38. Muhling, B. A., J. T. Lamkin & M. A. Roffer, 2010. Predicting the occurrence of Atlantic bluefin tuna (Thunnus thynnus) larvae in the northern Gulf of Mexico: building a classification model from archival data. Fisheries Oceanography 19: 526–539.CrossRefGoogle Scholar
  39. Muhling, B. A., S. K. Lee, J. T. Lamkin & Y. Liu, 2011. Predicting the effects of climate change on bluefin tuna (Thunnus thynnus) spawning habitat in the Gulf of Mexico. ICES Journal of Marine Science 68: 1051–1062.CrossRefGoogle Scholar
  40. Muhling, B. A., P. Reglero, L. Ciannelli, D. Alvarez-Berastegui, F. Alemany, J. T. Lamkin & M. A. Roffer, 2013. Comparison between environmental characteristics of larval bluefin tuna Thunnus thynnus habitat in the Gulf of Mexico and western Mediterranean Sea. Marine Ecology Progress Series 486: 257–276.CrossRefGoogle Scholar
  41. Olson, R. J., B. N. Popp, B. S. Graham, G. A. López-Ibarra, F. Galván-Magaña, C. E. Lennert-Cody, N. Bocanegra-Castillo, N. J. Wallsgrove, E. Gier, V. Alatorre-Ramírez, L. T. Balance & B. Fry, 2010. Food-web inferences of stable isotope spatial patterns in copepods and yellowfin tuna in the pelagic eastern Pacific Ocean. Progress in Oceanography 86: 124–138.CrossRefGoogle Scholar
  42. Randall, L. L., B. L. Smith, J. H. Cowan & J. R. Rooker, 2015. Habitat characteristics of bluntnose flyingfish Prognichthys occidentalis (Actinopterygii, Exocoetidae), across mesoscale features in the Gulf of Mexico. Hydrobiologia 749: 97–111.CrossRefGoogle Scholar
  43. Reglero, P., D. P. Tittensor, D. Álvarez-Berastegui, A. Aparicio-González & B. Worm, 2014. Worldwide distributions of tuna larvae: revisiting hypotheses on environmental requirements for spawning habitats. Marine Ecology Progress Series 501: 207–224.CrossRefGoogle Scholar
  44. Richards, W. J., 2006. Scombridae: mackerels and tunas. In Richards, W. J. (ed.), Early stages of Atlantic fishes: an identification guide for the western central North Atlantic. CRC, Boca Raton: 2187–2227.Google Scholar
  45. Richards, W. J., T. Potthoff & J. Kim, 1990. Problems identifying tuna larvae species (Pisces: Scombridae: Thunnus) from the Gulf of Mexico. Fisheries Bulletin 88: 607–609.Google Scholar
  46. Richards, W. J., M. F. McGowan, T. Leming, J. T. Lamkin & S. Kelley, 1993. Larval fish assemblages at the loop current boundary in the Gulf of Mexico. Bulletin of Marine Sciences 53: 475–537.Google Scholar
  47. Richardson, D. E., J. K. Llopiz, C. M. Guigand & R. K. Cowen, 2010. Larval assemblages of large and medium-sized pelagic species in the Straits of Florida. Progress in Oceanography 86: 8–20.CrossRefGoogle Scholar
  48. Richardson, D. E., K. E. Marancik, J. R. Guyon, M. E. Lutcavage, B. Galuardie, C. H. Lam, H. J. Walsha, S. Wildes, D. A. Yates & J. A. Harea, 2016. Discovery of a spawning ground reveals diverse migration strategies in Atlantic bluefin tuna (Thunnus thynnus). Proceedings of the National Academy of Sciences USA 113: 3299–3304.CrossRefGoogle Scholar
  49. Rooker, J. R., J. R. Alvarado Bremer, B. A. Block, H. Dewar, G. De Metrio, R. T. Kraus, E. D. Prince, E. Rodriquez-Marin & D. H. Secor, 2007. Life history and stock structure of Atlantic bluefin tuna (Thunnus thynnus). Reviews in Fisheries Sciences 15: 265–310.CrossRefGoogle Scholar
  50. Rooker, J. R., J. R. Simms, R. J. D. Wells, S. A. Holt, G. J. Holt, J. E. Graves & N. B. Furey, 2012. Distribution and habitat associations of billfish and swordfish larvae across mesoscale features in the Gulf of Mexico. PLoS ONE 7: e34180.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Rooker, J. R., L. L. Kitchens, M. A. Dance, R. D. Wells, B. Falterman & M. Cornic, 2013. Spatial, temporal, and habitat-related variation in abundance of pelagic fishes in the Gulf of Mexico: potential implications of the Deepwater Horizon oil spill. PLoS ONE 8: e76080.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Scott, G. P., S. C. Turner, G. B. Churchill, W. J. Richards & E. B. Brothers, 1993. Indices of larval bluefin tuna, Thunnus thynnus, abundance in the Gulf of Mexico; modeling variability in growth, mortality, and gear selectivity. Bulletin of Marine Sciences 53: 912–929.Google Scholar
  53. Simms, J. R., J. R. Rooker, S. A. Holt, G. J. Holt & J. Bangma, 2010. Distribution, growth, mortality of sailfish (Istiophorus platypterus) larvae in the northern Gulf of Mexico. Fishery Bulletin 108: 478–490.Google Scholar
  54. Smith, B. L., C.-P. Lu & J. R. Alvarado Bremer, 2010. High-resolution melting analysis (HRMA): a highly sensitive inexpensive genotyping alternative for population studies. Molecular Ecology Resources 10: 193–196.CrossRefPubMedGoogle Scholar
  55. Sponaugle, S., K. L. Denit, S. A. Luthy, J. E. Serafy & R. K. Cowen, 2005. Growth variation in larval Makaira nigricans. Journal of Fish Biology 66: 822–835.CrossRefGoogle Scholar
  56. Stevens, J. D., R. Bonfil, N. K. Dulvy & P. A. Walker, 2000. The effects of fishing on sharks, rays, and chimaeras (chondrichthyans), and the implications for marine ecosystems. ICES Journal of Marine Science 57: 476–494.CrossRefGoogle Scholar
  57. Teo, S. L. H., A. M. Boustany & B. A. Block, 2007. Oceanographic preferences of Atlantic bluefin tuna, Thunnus thynnus, on their Gulf of Mexico breeding grounds. Marine Biology 152: 1105–1119.CrossRefGoogle Scholar
  58. U.S. Geological Survey, USGS 07374000 Mississippi River at Baton Rouge LA, https://waterdata.usgs.gov/usa/nwis/uv?site_no=07374000, accessed December 2016.
  59. Oostende, N. V., J. Harlay, B. Vanelslander, L. Chou, W. Vyerman & K. Sabbe, 2012. Phytoplankton community dynamics during late spring coccolithophore blooms at the continental margin of the Celtic Sea (North East Atlantic, 2006–2008). Progress in Oceanography 104: 1–16.CrossRefGoogle Scholar
  60. Walker, N. D. & N. N. Rabalais, 2006. Relationships among Satellite Chlorophyll a, River Inputs, and Hypoxia on the Louisiana Continental Shelf, Gulf of Mexico. Estuaries and Coasts 29: 1081–1093.CrossRefGoogle Scholar
  61. Wexler, J. B., S. Chow, T. Wakabayashi, K. Nohara & D. Margulies, 2007. Temporal variation in growth of yellowfin tuna (Thunnus albacares) larvae in the Panama Bight, 1990-97. Fishery Bulletin 105: 1–18.Google Scholar
  62. Wexler, J. B., D. Margulies & V. V. Scholey, 2011. Temperature and dissolved oxygen requirements for survival of yellowfin tuna, Thunnus albacares, larvae. Journal of Experimental Marine Biology and Ecology 404: 63–72.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Marine BiologyTexas A&M University at GalvestonGalvestonUSA
  2. 2.Biology DepartmentBrigham Young University HawaiiLaieUSA
  3. 3.Department of Wildlife and Fisheries SciencesTexas A&M UniversityCollege StationUSA

Personalised recommendations