, Volume 806, Issue 1, pp 13–27 | Cite as

Patterns of microbial food webs in Mediterranean shallow lakes with contrasting nutrient levels and predation pressures

  • Arda Özen
  • Ülkü Nihan Tavşanoğlu
  • Ayşe İdil Çakıroğlu
  • Eti Ester Levi
  • Erik Jeppesen
  • Meryem Beklioğlu
Primary Research Paper


To elucidate the specific and combined effects of bottom-up and top-down control on the microbial community in warm lakes, we sampled microbial community along with physical–chemical and biological variables and performed in situ food web experiments, in 14 Turkish shallow lakes with contrasting nutrient levels and predation pressures. Our field results revealed that differences in microbial communities correlated with differences in zooplankton community structure, temperature (increasing nutrient concentrations, change in zooplankton composition), nutrient concentrations (increasing bacteria and heterotrophic nanoflagellate abundances with increasing nitrogen concentrations and temperature) and macrophyte coverage (ciliates as potential consumers of bacteria and HNF was strongest in macrophyte-dominated lakes). Our in situ experimental study revealed that the zooplankton not only affect the biomass and composition of microbial communities but also alter the microbial structure and trophic relationships. Our results therefore indicate that both bottom-up factors and top-down effects were important for the efficiency of the carbon transfer from bacteria to higher trophic levels in the study lakes. Due to an anticipated increase in eutrophication, temperature and alteration of the classical food web with climate warming, major changes in the microbial community of lakes are, therefore, expected in a warmer future in semi-arid Mediterranean climatic regions.


Trophic interactions Bacteria Ciliates Heterotrophic nanoflagellates Zooplankton 



This study and Arda Özen were supported by the METU-DPT ÖYP programme of Turkey (BAP-08-11-DP T-2002-K120510) and by TUBITAK ÇAYDAG (Project Nos: 105Y332, 109Y181 and 110Y125). During the writing-up phase support was given by FP7-ENV-2009-1, REFRESH (Adaptive strategies to Mitigate the Impacts of Climate Change on European Freshwater Ecosystems, Contract No: 244121). EEL, ÜNT and AİC were also supported by TÜBITAK ÇAYDAG (Project Nos: 105Y332 and 110Y125), and EJ was supported by CLEAR (a Villum Kann Rasmussen Centre of Excellence project) and The Research Council for Nature and Universe, Denmark (272-08-0406) and CRES. Additionally, EJ and MB were supported by MARS (Managing Aquatic ecosystems and water Resources under multiple Stress, Contract No.: 603378, The authors are grateful to A.M. Poulsen for editing the manuscript and to Korhan Özkan for valuable comments on the manuscript. This study was a part of the PhD dissertation of Arda Özen at the Middle East Technical University.


  1. Adamczewski, T., R. J. Chrost, K. Kalinowska & A. Skowronska, 2010. Relationships between bacteria and heterotrophic nanoflagellates in lake water examined by different techniques controlling grazing pressure. Aquatic Microbial Ecology 60: 203–213.CrossRefGoogle Scholar
  2. Adrian, R., S. A. Wickham & N. M. Butler, 2001. Trophic interactions between zooplankton and the microbial community in contrasting food webs: the epilimnion and deep chlorophyll maximum of a mesotrophic lake. Aquatic Microbial Ecology 24: 83–97.CrossRefGoogle Scholar
  3. Andersen, T. & D. O. Hessen, 1991. Carbon, nitrogen and phosphorus content of freshwater zooplankton. Limnology and Oceanography 36: 807–814.CrossRefGoogle Scholar
  4. Arndt, H., 1993. Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates)—a review. Hydrobiologia 255/256: 231–246.CrossRefGoogle Scholar
  5. Auer, B., U. Elzer & H. Arndt, 2004. Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: influence of resource and predation. Journal of Plankton Research 26: 697–709.CrossRefGoogle Scholar
  6. Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. MeyerReil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263.CrossRefGoogle Scholar
  7. Baines, S. B. & M. L. Pace, 1991. The production of dissolved organic matter by phytoplankton and its importance to bacteria. Limnology and Oceanography 36: 1078–1090.CrossRefGoogle Scholar
  8. Boll, T., E. E. Levi, G. Bezirci, M. Özuluğ, Ü. N. Tavşanoğlu, Aİ. Çakıroğlu, S. Özcan, S. Brucet, E. Jeppesen & M. Beklioğlu, 2016. Fish assemblage and diversity in lakes of western and Central Turkey: role of geo-climatic and other environmental variables. Hydrobiologia 771: 31–44.CrossRefGoogle Scholar
  9. Borsheim, K. Y. & G. Bratbak, 1987. Cell volume to cell carbon conversion factors for bacterivorous Monas sp. Enriched from seawater. Marine Ecology Progress Series 36: 171–175.CrossRefGoogle Scholar
  10. Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.Google Scholar
  11. Bratbak, G. & I. Dundas, 1984. Bacterial dry matter content and biomass estimations. Applied and Environmental Microbiology 48: 755–757.PubMedPubMedCentralGoogle Scholar
  12. Bratbak, G. & T. F. Thingstad, 1985. Phytoplankton-bacteria interactions – an apparent paradox – analysis of a model system with both competition and commensalism. Marıne Ecology Progress Series 25: 23–30.CrossRefGoogle Scholar
  13. Burks, R. L., D. M. Lodge, E. Jeppesen & T. L. Lauridsen, 2002. Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwater Biology 47: 343–363.CrossRefGoogle Scholar
  14. Çakıroğlu, Aİ., Ü. N. Tavşanoğlu, E. E. Levi, T. A. Davidson, T. Bucak, A. Özen, G. K. Akyıldız, E. Jeppesen & M. Beklioğlu, 2014. Relatedness between contemporary and subfossil cladoceran assemblages in Turkish lakes. Journal of Paleolimnology 52: 367–383.CrossRefGoogle Scholar
  15. Callieri, C., S. M. Karjalainen & S. Passoni, 2002. Grazing by ciliates and heterotrophic nanoflagellates on picocyanobacteria in Lago Maggiore, Italy. Journal of Plankton Research 24: 785–796.CrossRefGoogle Scholar
  16. Canfield, D. E., J. V. Shireman, D. E. Colle, W. T. Hailer, C. E. Watkins & M. J. Maceina, 1984. Prediction of chlorophyll a concentrations in Florida lakes: importance of aquatic macrophytes. Canadian Journal of Fisheries and Aquatic Sciences 41: 497–507.CrossRefGoogle Scholar
  17. Carrick, H. J., G. L. Fahnenstiel, E. F. Stoermer & R. G. Wetzel, 1991. The importance of zooplankton–protozoan trophic couplings in Lake Michigan. Limnology Oceanography 36: 1335–1345.CrossRefGoogle Scholar
  18. Christoffersen, K., B. Riemann, A. Klysner & M. Søndergaard, 1993. Potential role of natural populations of zooplankton on plankton community structure in eutrophic lake water. Limnology Oceanography 38: 561–573.CrossRefGoogle Scholar
  19. Christoffersen, K., N. Andersen, M. Søndergaard, L. Liboriussen & E. Jeppesen, 2006. Implications of climate enforced temperature increases on freshwater pico- and nanoplankton populations studied in artificial ponds during 16 months. Hydrobiologia 560: 259–266.CrossRefGoogle Scholar
  20. Chróst, R. J., T. Adamczewski, K. Kalinowska & A. Skowrońska, 2009. Abundance and structure of microbial loop components (bacteria and protist) in lakes of different trophic status. Journal of Microbiology and Biotechnology 19: 858–868.CrossRefGoogle Scholar
  21. Conty, A. & E. Becares, 2013. Unimodal patterns of microbial communities with eutrophication in Mediterranean shallow lakes. Hydrobiologia 700: 257–265.CrossRefGoogle Scholar
  22. Conty, A., F. Garcia-Criado & E. Becares, 2007. Changes in bacterial and ciliate densities with trophic status in Mediterranean shallow lakes. Hydrobiologia 584: 327–335.CrossRefGoogle Scholar
  23. Culver, D. A., M. M. Boucherle, D. J. Bean & J. W. Fletcher, 1985. Biomass of freshwater crustacean zooplankton from length-weight regressions. Canadian Journal of Fisheries and Aquatic Sciences 42: 1380–1390.CrossRefGoogle Scholar
  24. Dumont, H. J., I. V. de Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.CrossRefPubMedGoogle Scholar
  25. Fenchel, T., 1982. Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as consumers of bacteria. Marine Ecology Progress Series 9: 35–42.CrossRefGoogle Scholar
  26. Fenchel, T., 1988. Marine plankton food chains. Annual Review of Ecology and Systematics 19: 19–38.CrossRefGoogle Scholar
  27. Fenchel, T., 2008. The microbial loop, 25 years later. Journal of Experimental Marine Biology and Ecology 366: 99–103.CrossRefGoogle Scholar
  28. Foissner, W., H. Berger & J. Schaumburg, 1999. Identification and ecology of limnetic plankton ciliates. Informationsberichte des Bayer. Landesamtes für Wasserwirtschaft. 3: 793 pp.Google Scholar
  29. Foissner, W. & H. Berger, 1996. A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshwater Biology 35: 375–482.Google Scholar
  30. Gilbert, J. J. & J. D. Jack, 1993. Rotifers as predators on small ciliates. Hydrobiologia 255(256): 247–253.CrossRefGoogle Scholar
  31. Jeppesen, E., M. Søndergaard, M. Søndergaard, K. Christoffersen, K. Jürgens, J. Theil-Nielsen & L. Schlüter, 2002. Cascading trophic interactions in the littoral zone: an enclosure experiment in shallow Lake Stigsholm, Denmark. Archiv für Hydrobiologie 153: 533–555.CrossRefGoogle Scholar
  32. Jeppesen, E., B. Kronvang, M. Meerhoff, M. Søndergaard, K. M. Hansen, H. E. Andersen, T. L. Lauridsen, L. Liboriussen, M. Beklioglu, A. Özen & J. E. Olesen, 2009. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. Journal of Environmental Quality 38: 1930–1941.CrossRefPubMedGoogle Scholar
  33. Jeppesen, E., M. Meerhoff, K. Holmgren, I. Gonzalez-Bergonzoni, F. Teixeira-de Mello, S. A. J. Declerck, L. De Meester, M. Søndergaard, T. L. Lauridsen, R. Bjerring, J. M. Conde-Porcuna, N. Mazzeo, C. Iglesias, M. Reizenstein, H. J. Malmquist, Z. Liu, D. Balayla & X. Lazzaro, 2010. Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia 646: 73–90.CrossRefGoogle Scholar
  34. Jeppesen, E., T. Mehner, I. J. Winfield, K. Kangur, J. Sarvala, D. Gerdeaux, M. Rask, H. J. Malmquist, K. Holmgren, P. Volta, S. Romo, R. Eckmann, A. Sandström, S. Blanco, A. Kangur, H. R. Stabo, M. Tarvainen, A. M. Ventelä, M. Søndergaard, T. L. Lauridsen & M. Meerhoff, 2012. Impacts of climate warming on lake fish assemblages: evidence from 24 European longterm data series. Hydrobiologia 694: 1–39.CrossRefGoogle Scholar
  35. Jeppesen, E., M. Meerhoff, T. A. Davidson, M. Søndergaard, T. L. Lauridsen, M. Beklioglu, S. Brucet, P. Volta, I. González-Bergonzoni, A. Nielsen & D. Trolle, 2014. Climate change impacts on lakes: an integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. Journal of Limnology 73: 88–111.CrossRefGoogle Scholar
  36. Jespersen, A. M. & K. Christoffersen, 1987. Measurements of chlorophyll a from phytoplankton using ethanol as extraction solvent. Archiv für Hydrobiologie 109: 445–454.Google Scholar
  37. Jürgens, K. & E. Jeppesen, 1998. Cascading effects on microbial food web structure in a dense macrophyte canopy. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes, Vol. 131., Ecological Studies Springer, New York: 262–274.CrossRefGoogle Scholar
  38. Jürgens, K. & E. Jeppesen, 2000. The impact of metazooplankton on the structure of the microbial food web in a shallow, hypertrophic lake. Journal of Plankton Research 22: 1047–1070.CrossRefGoogle Scholar
  39. Jürgens, K. & C. Matz, 2002. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie Van Leeuwenhoek (International Journal of General and Molecular Microbiology) 81: 413–434.CrossRefGoogle Scholar
  40. Jürgens, K., S. Wickham, K. O. Rothhaupt & B. Santer, 1996. Feeding rates of macro- and microzooplankton on heterotrophic nanoflagellates. Limnology and Oceanography 41: 1833–1839.CrossRefGoogle Scholar
  41. Kisand, V. & P. Zingel, 2000. Dominance of ciliate grazing on bacteria during spring in a shallow eutrophic lake. Aquatic Microbial Ecology 22: 135–142.CrossRefGoogle Scholar
  42. Levi, E. E., Aİ. Çakıroğlu, T. Bucak, B. V. Odgaard, T. A. Davidson, E. Jeppesen & M. Beklioğlu, 2014. Similarity between contemporary vegetation and plant remains in the sediment surface in Mediterranean lakes. Freshwater Biology 59: 724–736.CrossRefGoogle Scholar
  43. Luokkanen, E., 1995. The Species Composition, Biomass and Production of the Pelagic Cladoceran Community in the Enonselkä basin of Lake Vesijärvi. University of Helsinki, Helsinki. Research and Education Center of Lahti, Report No. 25 (in Finnish with English summary).Google Scholar
  44. Mackereth, F. J., H. J. Heron & J. F. Talling, 1978. Water analyses: some methods for limnologists. Freshwater Biological Association Scientific Publication No: 36.Google Scholar
  45. Malley, D. F., S. G. Lawrence, M. A. Maclver & W. J. Findlay, 1989. Range and variation in estimates of dry weight for planktonic Crustacea and Rotifera from temperate North American Lakes. Canadian Technical Report of Fisheries and Aquatic Sciences 1666: 1–49.Google Scholar
  46. Mathes, J. & H. Arndt, 1994. Biomass and composition of protozooplankton in relation to lake trophy in North German lakes. Marine Microbial Food Webs 8: 357–375.Google Scholar
  47. McCauley, E., 1984. The estimation of the abundance and biomass of zooplankton in samples. In Downing, J. A. & F. H. Rigler (eds), A Manual on Methods for the Assessment of Secondary Production in Fresh Waters. Blackwell Scientific, Oxford: 228–265.Google Scholar
  48. Meerhoff, M., F. Teixeira-de Mello, C. Kruk, C. Alonso, I. González-Bergonzoni, J. P. Pacheco, G. Lacerot, M. Arim, M. Beklioğlu, S. Brucet, G. Goyenola, C. Iglesias, N. Mazzeo, S. Kosten & E. Jeppesen, 2012. Environmental warming in shallow lakes: a review of potential changes in community structure as evidenced from space-for-time substitution approaches. Advances in Ecological Research 46: 259–349.CrossRefGoogle Scholar
  49. Michaloudi, E., 2005. Dry weights of the zooplankton of Lake Mikri Prespa (Macedonia, Greece). Belgian Journal of Zoology 135: 223–227.Google Scholar
  50. Mieczan, T., 2008. Influence of emergent and submerged macrophytes on the structure of planktonic ciliate communities in shallow freshwater lakes (Eastern Poland). International Review of Hydrobiology 93: 269–283.CrossRefGoogle Scholar
  51. Modenutti, B., C. Queimaliños, E. Balseiro & M. Reissig, 2003. Impact of different zooplankton structures on the microbial food web of a South Andean oligotrophic lake. Acta Oecology 24: 289–298.CrossRefGoogle Scholar
  52. Moss, B., D. Mckee, D. Atkinson, S. E. Collings, J. W. Eaton, A. B. Gill, I. Harvey, K. Hatton, T. Heyes & D. Wilson, 2003. How important is climate? Effects of warming, nutrient addition and fish on phytoplankton in shallow lake microcosms. Journal of Applied Ecology 40: 782–792.CrossRefGoogle Scholar
  53. Nixdorf, B. & H. Arndt, 1993. Seasonal dynamics of plankton components including the microbial web in Lake Müggelsee. Internationale Revue der gesamten Hydrobiologie 78: 403–410.CrossRefGoogle Scholar
  54. Nõges, T., V. Kisand, P. Nõges, A. Polluame, L. Tuvikene & P. Zingel, 1998. Plankton seasonal dynamics and its controlling factors in shallow polymictic eutrophic Lake Vortsjarv, Estonia. Internationale Revue der gesamten Hydrobiologie 83: 279–296.CrossRefGoogle Scholar
  55. Özen, A., M. Šorf, C. Trochine, L. Liboriussen, M. Beklioglu, M. Søndergaard, T. L. Lauridsen, L. S. Johansson & E. Jeppesen, 2013. Long-term effects of warming and nutrients on microbes and other plankton in mesocosms. Freshwater Biology 58: 483–493.CrossRefGoogle Scholar
  56. Pace, M. L. & J. J. Cole, 1994. Comparative and experimental approaches to top down and bottom up regulation of bacteria. Microbial Ecology 28: 181–193.CrossRefPubMedGoogle Scholar
  57. Pace, M. L. & E. Funke, 1991. Regulation of planktonic microbial communities by nutrients and herbivores. Ecology 73: 904–914.CrossRefGoogle Scholar
  58. Pace, M. L., G. B. McManus & S. E. G. Findlay, 1990. Planktonic community structure determines the fate of bacterial production in a temperate lake. Limnology and Oceanography 35: 795–808.CrossRefGoogle Scholar
  59. Peel, M. C., B. L. Finlayson & T. A. McMahon, 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth Systems Sciences 11: 1633–1644.CrossRefGoogle Scholar
  60. Pernthaler, J., K. Simek, B. Sattler, A. Schwarzenbacher, J. Bobkova & R. Psenner, 1996. Short term changes of protozoan control on autotrophic picoplankton in an oligo-mesotrophic lake. Journal of Plankton Resarch 18: 443–462.CrossRefGoogle Scholar
  61. Pomeroy, L. R. & W. J. Wiebe, 2001. Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquatic Microbial Ecology 23: 187–204.CrossRefGoogle Scholar
  62. Pomeroy, L. R., J. Peter, I. B. Williams, F. Azam & J. E. Hobie, 2007. The Microbial Loop. Oceanography 20: 28–33.CrossRefGoogle Scholar
  63. Porter, K. G., 1988. Phagotrophic phytoflagellates in microbial food webs. Hydrobiologia 159: 89–97.CrossRefGoogle Scholar
  64. Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25: 943–948.CrossRefGoogle Scholar
  65. Putt, M. & D. K. Stoecker, 1989. An experimentally determined carbon: carbon: volume ratio for marine oligotrichous ciliates from estuarine and coastal waters. Limnology and Oceanography 34: 1097–1103.CrossRefGoogle Scholar
  66. Rae, R. & W. F. Vincent, 1998. Effects of temperature and ultraviolet radiation on microbial foodweb structure: potential responses to global change. Freshwater Biology 40: 747–758.CrossRefGoogle Scholar
  67. Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 384 pp.Google Scholar
  68. Riemann, B., 1985. Potential importance of fish predation and zooplankton grazing on natural populations of freshwater bacteria. Applied Environmental Microbiology 50: 187–193.PubMedPubMedCentralGoogle Scholar
  69. Riemann, B. & K. Christoffersen, 1993. Microbial trophodynamics in temperate lakes. Marine Microbial Food Webs 7: 69–100.Google Scholar
  70. Ruttner-Kolisko, A., 1977. Suggestions for biomass calculations of plankton rotifers. Archiv für Hydrobiogeih Beiheft 8: 71–76.Google Scholar
  71. Sanders, R. W., D. A. Leeper, C. H. King & K. G. Porter, 1994. Grazing by rotifers and crustacean zooplankton on nanoplanktonic protists. Hydrobiologia 288: 167–181.CrossRefGoogle Scholar
  72. Sanders, R. W., U. G. Berninger, E. L. Lim, P. F. Kemp & D. A. Caron, 2000. Heterotrophic and mixotrophic nanoplankton predation on picoplankton in the Sargasso Sea and on Georges Bank. Marine Ecology Progress Series 192: 103–118.CrossRefGoogle Scholar
  73. Savage, V. M., J. F. Gillooly, J. H. Brown, G. B. West & E. L. Charnov, 2004. Effects of body size and temperature on population growth. The American Naturalist 163: 429–441.CrossRefPubMedGoogle Scholar
  74. Sigge, D., 2005. Freshwater Microbiology: Biodiversity and Dynamic Interactions of Microorganisms in the Aquatic Environment, Vol. 1. Wiley, Chichester.Google Scholar
  75. Šimek, K., J. Pernthaler, M. G. Weinbauer, K. Hornak, J. Dolan, J. Nedoma, M. Masin & R. Amann, 2001. Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellates grazing in a mesoeutrophic reservoir. Applied Environmental Microbiology 67: 2723–2733.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Sinistro, R., M. L. Sanchez, M. C. Marinone & I. Izaguirre, 2007. Experimental study of the zooplankton impact on the trophic structure of phytoplankton and the microbial assemblages in a temperate wetland (Argentina). Limnologica 37: 88–99.CrossRefGoogle Scholar
  77. Smith, E. M. & Y. T. Prairie, 2004. Bacterial metabolism and growth efficiency in lakes: the importance of phosphorus availability. Limnology and Oceanography 49: 137–147.CrossRefGoogle Scholar
  78. Sommer, U. & F. Sommer, 2006. Cladocerans versus copepods: the cause of contrasting top-down controls on freshwater and marine phytoplankton. Oecologia 147: 183–194.CrossRefPubMedGoogle Scholar
  79. Sommer, U., F. Sommer, B. Santer, E. Zöllner, K. Jürgens, C. Jamieson, M. Boersma & K. Gocke, 2003. Daphnia versus copepod impact on summer phytoplankton: functional compensation at both trophic levels. Oecologia 135: 639–647.CrossRefPubMedGoogle Scholar
  80. Stanley, E. H., M. D. Johnson & A. K. Ward, 2003. Evaluating the influence of macrophytes on algal and bacterial production in multiple habitats of a freshwater wetland. Limnology and Oceanography 48: 1101–1111.CrossRefGoogle Scholar
  81. Szelag-Wasielewska, E. & J. Fyda, 1999. Phytoplankton and ciliate communities often lobelian Pomeranian lakes (NW Poland). Acta Hydrobiologia 41: 153–164.Google Scholar
  82. Tadonléké, R., B. Pinel-Alloul, N. Bourbonnais & F. R. Pick, 2004. Factors affecting the bacteria – heterotrophic nanoflagellate relationship in oligo-mesotrophic lakes. Journal of Plankton Research. 26: 681–695.CrossRefGoogle Scholar
  83. Tavşanoğlu, Ü. N., S. Brucet, E. E. Levi, T. Bucak, G. Bezirci, A. Özen, L. S. Johansson, E. Jeppesen & M. Beklioğlu, 2015. Size-based diel migration of zooplankton in Mediterranean shallow lakes assessed from in situ experiments with artificial plants. Hydrobiologia 753: 47–59.CrossRefGoogle Scholar
  84. ter Braak, C. J. E., 1989. CANOCO-an extension of Decor- ana to analyze species environment relationships. Vegetatio 75: 159–160.Google Scholar
  85. Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitteilungen-Internationale Vereinigung Theoretische und Angewandte Limnologie 9: 1–38.Google Scholar
  86. Weisse, T., 1991. The annual cycle of heterotrophic freshwater nanoflagellates: role of bottom-up versus top-down control. Journal of Plankton Research 13: 167–185.CrossRefGoogle Scholar
  87. Wetzel, R. G. & M. Søndergaard, 1998. Role of submerged macrophytes for the microbial community and dynamics of dissolved organic carbon in aquatic ecosystems. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 133–148.CrossRefGoogle Scholar
  88. Zingel, P. & T. Nõges, 2008. Protozoan grazing in shallow macrophyte- and plankton lakes. Fundamental and Applied Limnology (Archiv für Hydrobiologie) 171: 15–25.CrossRefGoogle Scholar
  89. Zingel, P., H. Agasild, T. Nõges & V. Kisand, 2007. Ciliates are the dominant grazers on pico- and nanoplankton in a shallow, naturally highly eutrophic lake. Mıcrobial Ecology 53: 134–142.CrossRefPubMedGoogle Scholar
  90. Zöllner, E., B. Santer, M. Boersma, H. G. Hoppe & K. Jürgens, 2003. Cascading predation effects of Daphnia and copepods on microbial food web components. Freshwater Biology 48: 2174–2193.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Forest EngineeringCankiri Karatekin UniversityÇankırıTurkey
  2. 2.Department of Biology, Faculty of ScienceAtatürk UniversityErzurumTurkey
  3. 3.Limnology Laboratory, Department of Biological SciencesMiddle East Technical UniversityÇankayaTurkey
  4. 4.Department of Bioscience and Arctic Research Centre (ARC)Aarhus UniversitySilkeborgDenmark
  5. 5.Sino-Danish Centre for Education and Research (SDC)BeijingChina
  6. 6.Kemal Kurdaş Ecological Research and Training Centre, Lake EymirMiddle East Technical UniversityÇankayaTurkey

Personalised recommendations