, Volume 805, Issue 1, pp 365–375 | Cite as

How climate change may affect the early life stages of one of the most common freshwater fish species worldwide: the common carp (Cyprinus carpio)

  • Emilie Réalis-Doyelle
  • Alain Pasquet
  • Pascal Fontaine
  • Fabrice Teletchea
Primary Research Paper


The aim of the present study is to test the effects of temperature on the early life stages of one of the most common freshwater fish species worldwide, the common carp. About 16,000 eggs coming from 3-year-old broodstock were randomly distributed into five incubators, one incubator by tested temperature (16, 18, 20, 22, and 24°C). Several parameters (survival and malformation rates, development time, morphometric parameters, and energy values) were studied at three key biological stages (hatching, emergence and first food intake). We found no significant impact of temperature on both survival and malformation rates. However, as expected, development time was three times longer at 16°C than at 24°C. At both 16 and 24°C, the consumption of the yolk sac was highest; yet larvae were smaller at 16°C and largest at 24°C. Our results suggest that the early life stages of common carp developing at 22–24°C could survive better in the wild, which is in accordance with current models that predict a small change of the distribution area of the common carp in France, but probably an extension in Northern European regions, in the next decades consequently to climate change.


Climate change Early life stages Survival Morphometric parameters Energy value 



The project was funded by ONEMA (National Agency for Water and Aquatic Environments). All facilities are conformed to the French legislation concerning experimentation with animals, and their agreement number is C54-547-18. Fish were handled in accordance with national and international guidelines for protection and animal welfare (Directive 2010/63/EU). The author would like to thank Julien Périz, Dominique Bouchet and Thibaut Glasser from the Domaine de Lindre who provided the fish. The authors would also like to thank two anonymous reviewers for their comments on an earlier draft.


  1. Afonso, J. M., D. Montero, L. Robaina, N. Astorga, M. S. Izquierdo & R. Gines, 2000. Association of a lordosis-scoliosis-kyphosis deformity in gilthead seabream (Sparus aurata) with family structure. Fish Physiology and Biochemistry 22: 159–163.CrossRefGoogle Scholar
  2. Balon, K., 1995. Origin and domestication of the wild carp, Cyprinus carpio: from Roman gourmets to the swimming flowers. Aquaculture 129: 3–48.CrossRefGoogle Scholar
  3. El-Hakim, A. & E. El-Gamal, 2009. Effect of temperature on hatching and larval development and mucin secretion in common carp, Cyprinus carpio (Linnaeus, 1758). Global Veterinaria 3: 80–90.Google Scholar
  4. FAO (2013) Accessed on May 10
  5. Ficke, A., C. Myrick & L. Hansen, 2007. Potential impacts of global climate change on freshwater fisheries. Reviews in Fish Biology and Fisheries 17: 581–613.CrossRefGoogle Scholar
  6. Field, C., V. Barros, T. Stocker, Q. Dahe, D.J. Dokken, K. Elbi, M. Mastrandrea, K. Mach, G.K. Plattner, S. Allen, M. Tignor & P. Midgley, 2014. Rapport spécial sur la gestion des risques de catastrophes et de phénomènes extrêmes pour les besoins de l’adaptation au changement climatique. Résumé à l’intention des décideurs. Rapport des Groupes de travail I et II du GIEC. Publié pour le Groupe d’experts intergouvernemental sur l’évolution du climat. ISBN 978-92-9169-233-0Google Scholar
  7. Flajšhans, M. & G. Hulata, 2006. Common carp—Cyprinus carpio. Genimpact final scientific report University of South Bohemia, Vodnany.Google Scholar
  8. Freyhof, J. & M. Kottelat, 2008. Cyprinus carpio. The IUCN Red List of Threatened Species 2008: e.T6181A12559362., Accessed on May 10.
  9. Frimpong, E. A. & S. E. Lochmann, 2005. Mortality of fish larvae exposed to varying concentrations of cyclopoid copepods. North American Journal of Aquaculture 67: 66–71.CrossRefGoogle Scholar
  10. Fuiman, L. A., 1994. The interplay of ontogeny and scaling in the interactions on their fish larvae and their predator. Journal of Fish biology 45: 65–79.CrossRefGoogle Scholar
  11. Fuiman, L. A., et al., 2002. Special consideration of fish eggs and larvae. In Fuiman, L. A. & R. G. Werner (eds), Fishery Science: The Unique Contribution of Early Live Stages. Blackwell publishing, Oxford: 1–32.Google Scholar
  12. Geldhauser, F., 1995. Some aspects of embryonic and larval development of tench (Tinca tinca L.). Polish Archives of Hydrobiology 42: 87–95.Google Scholar
  13. Heino, J., R. Virkkala & H. Toivonen, 2009. Change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biological Reviews Climate 84: 39–54.CrossRefGoogle Scholar
  14. Herzig, A. & H. Winkler, 1986. The influence of temperature on the embryonic development of three cyprinid fishes, Abramis brama, Chalcalburnus chalcoides mento and Vimba vimba. Journal of Fish Biology 28: 171–181.CrossRefGoogle Scholar
  15. Holm, J., V. Palace, P. Siwik, G. Sterling, R. Evans, C. Baron, J. Werner & K. Wautier, 2005. Developmental effects of bioaccumulated selenium in eggs and fry of two salmonid species. Environmental Toxicology and Chemistry 24: 2373–2381.CrossRefPubMedGoogle Scholar
  16. Hulata, G., R. Moav & G. Wohlfarth, 1974. The relationship of gonad and egg size to weight and age in the European and Chinese races of the common carp Cyprinus carpio L. Journal of Fish Biology 6: 745–758.CrossRefGoogle Scholar
  17. IPCC, 2014. Working Group I Contribution to the IPCC Fifth Assessment Report Climate Change: The Physical Science Basis Summary for Policymaker.Google Scholar
  18. Jaworski, A. & E. Kamler, 2002. Development of a bioenergetics model for fish embryos and larvae during the yolk feeding period. Journal of Fish biology 60: 785–809.CrossRefGoogle Scholar
  19. Jeppesen, E., T. Mehner, I. J. Winfield, K. Kangur, J. Sarvala, D. Gerdeaux, M. Rask, P. Holmgren, S. Romo, R. Eckmann, A. Sandstrom, S. L. Blanco, H. Kangur, A. Ragnarsson, M. Tarvainen, A.-M. Ventela, M. Søndergaard, T. L. Lauridsen & M. Meerhoff, 2012. Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes. Hydrobiologia 694: 1–39.CrossRefGoogle Scholar
  20. Jezierska, B., K. Lugowska & M. Witeska, 2000. Malformation of newly hatched common carp larvae. Electronic Journal of Polish Agricultural University 2000: 3.Google Scholar
  21. Kai, G., K. Külli, K. Andu, K. Peeter & H. Marina, 2012. Shifts in prey selection and growth of juvenile pikeperch (Sander lucioperca) over half a century in a changing lake Võrtsjärv. Journal of Applied Sciences Research 2: 168–176.Google Scholar
  22. Kamler, E., 2002. Ontogeny of yolk-feeding fish: an ecological perspective. Reviews in Fish Biology and Fisheries 12: 79–103.CrossRefGoogle Scholar
  23. Kamler, E., 2008. Ressource allocation in yolk-feeding fish. Reviews in Fish Biolology Fisheries 18: 143–200.CrossRefGoogle Scholar
  24. Kamler, E. & B. Malczewski, 1982. Quality of carp eggs obtained by induced breeding. Polish Archives of Hydrobiology 29: 599–606.Google Scholar
  25. Kamler, E., H. Keckeis & E. Bauer-Nemeschkal, 1998. Temperature-induced changes of survival, development and yolk partitioning in Chondrostoma nasus. Journal of Fish Biology 52: 658–682.Google Scholar
  26. Korwin-Kossakowski, K. M., 2008. The influence of temperature during the embryonic period on larval growth and development in carp, Cyprinus carpio L., and grass carp, Ctenopharyngodon idella: theoretical and practical aspect. Archive Polish Fisheries 16: 231–316.CrossRefGoogle Scholar
  27. Kumar, R., S. Souissi & J. S. Hwang, 2012. Vulnerability of carp larvae to copepod predation as a function of larval age and body length. Aquaculture 338: 274–283.CrossRefGoogle Scholar
  28. Lahnsteiner, F., 2012. Thermotolerance of brown trout, Salmo trutta, gametes and embryos to increased water temperatures. Journal of Applied Ichthyology 28: 745–751.CrossRefGoogle Scholar
  29. Linhart, O., S. Kudo, R. Billard, V. Slechta & E. V. Mikodina, 1995. Morphology, composition and fertilization of carp eggs: a review. Aquaculture 129: 75–93.CrossRefGoogle Scholar
  30. Ludwig, G. M., 1999. Zooplankton Succession and Larval Fish Culture in Freshwater Ponds. SRAC Publication No 700, College station.Google Scholar
  31. Milla, S., E. Sambroni, P. Kestemont & B. Jalabert, 2011. Effects of mechanical perturbation at various times during incubation on egg survival, hatching and malformation rates in the rainbow trout Oncorhynchus mykiss, and the influence of post-ovulatory oocyte ageing. Aquaculture Research 42: 1061–1065.CrossRefGoogle Scholar
  32. Miller, T. J., L. B. Crowder, J. A. Rice & E. A. Marschall, 1988. Larval size and recruitment mechanisms in fishes: toward a conceptual framework. Canadian Journal of Fisheries and Aquatic Sciences 45: 1657–1670.CrossRefGoogle Scholar
  33. Mooij, W., J. Janse, N. De Senerpont Domis, H. lsmann & B. W. Ibelings, 2007. Predicting the effect of climate change on temperate shallow lakes with the ecosystem model PCLake. Hydrobiologia 584: 443–454.CrossRefGoogle Scholar
  34. Ojanguren, A. F. & F. Braña, 2003. Thermal dependence of embryonic growth and development in brown trout. Journal of Fish Biology 62: 580–590.CrossRefGoogle Scholar
  35. Pauly, D. & R. Pullin, 1988. Hatching time in spherical, pelagic, marine fish eggs in response to temperature and egg size. Environmental Biology of Fish. 22: 261–271.CrossRefGoogle Scholar
  36. Peňáz, M., M. Proješ, J. Kouřil & J. Hamáčková, 1983. Early development of the carp, Cyprinus carpio. Acta Sciences Natural Brno 17: 1–39.Google Scholar
  37. Pepin, P., 1991. Effect of temperature and size on development, mortality, and survival rates of the pelagic early life history stages of marine fish. Canadian Journal of Fisheries and Aquatic Sciences 48: 503–518.CrossRefGoogle Scholar
  38. Peterson, R. H., H. C. E. Spinney & A. Sreedharan, 1977. Development of Atlantic salmon (Salmo salar) eggs and alevins under varied temperature regimes. Journal of the Fisheries Research Board of Canada 34: 31–43.CrossRefGoogle Scholar
  39. Peterson, R. H. & D. J. Martin-Robichaud, 1989. First feeding of Atlantic salmon (Salmo salar L.) fry as influenced by temperature regime. Aquaculture 78: 35–53.CrossRefGoogle Scholar
  40. Poulet, N., L. Beaulaton & S. Dembski, 2011. Time trends in fish populations in metropolitan France: insights from national monitoring data. Journal of Fish Biology 79: 1436–1452.CrossRefPubMedGoogle Scholar
  41. Réalis-Doyelle, E., A. Pasquet, D. De Charleroy, P. Fontaine & F. Teletchea, 2016. Strong effects of temperature on the early life stages of a cold stenothermal fish species, brown trout (Salmo trutta L.). PLoS ONE 11(5): e0155487.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Rombough, P. J., 1997. The effects of temperature on embryonic and larval development. In Wood, C. M. & D. G. McDonald (eds), Global Warming. Implications for Freshwater and Marine Fish. Cambridge University Press, Cambridge: 177–223.CrossRefGoogle Scholar
  43. Sala, O. E., F. S. Chapin, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Sykes, B. H. Walker, M. Walker & D. H. Wall, 2000. Global biodiversity scenarios for the year 2100. Science 287: 1770–1774.CrossRefPubMedGoogle Scholar
  44. Schindler, D. W., 1997. Widespread effects of climate warming on freshwater ecosystems in North America. Hydrological Processes 11: 1043–1067.CrossRefGoogle Scholar
  45. Teletchea, F., 2011. Guide des poissons de France, Cours d’eau, lacs et étangs. Editions Belin. 175 p.Google Scholar
  46. Teletchea, F. & P. Fontaine, 2010. Comparison of early life-stage strategies in temperate freshwater fish species: trade-offs are directed towards first feeding of larvae in spring and early summer. Journal of Fish Biology 77: 257–278.CrossRefPubMedGoogle Scholar
  47. Teletchea, F. & P. Fontaine, 2011. Particularities of early life stages in temperate freshwater fish species: comparisons with marine species and implications for aquaculture practices. Aquaculture Research 42: 630–654.CrossRefGoogle Scholar
  48. Teletchea, F. & P. Fontaine, 2014. Levels of domestication in fish: implications for the sustainable future of aquaculture. Fish and Fisheries 15: 181–195.CrossRefGoogle Scholar
  49. Teletchea, F., A. Fostier, P. Y. Le Bail, B. Jalabert, J. N. Gardeur & P. Fontaine, 2007. STOREFISH: a new database dedicated to the reproduction of temperate freshwater teleost fishes. Cybium 31: 227–235.Google Scholar
  50. Teletchea, F., A. Fostier, E. Kamler, J. N. Gardeur, P. Y. Le Bail, B. Jalabert & P. Fontaine, 2009a. Comparative analysis of reproductive traits in 65 freshwater fish species: application to the domestication of new fish species. Review Fish Biology and Fisheries 19: 403–430.CrossRefGoogle Scholar
  51. Teletchea, F., J. N. Gardeur, E. Kamler & P. Fontaine, 2009b. The relationship of oocyte diameter and incubation temperature to incubation time in temperate freshwater fish species. Journal of Fish Biology 74: 652–668.CrossRefPubMedGoogle Scholar
  52. Trabelsi, A., J. N. Gardeur, F. Teletchea, J. Brun-Bellut & P. Fontaine, 2013. Hatching time effect on the intraspawning larval morphology and growth in Northern pike (Esox lucius). Aquacuture Research 44: 657–666.CrossRefGoogle Scholar
  53. Wolnicki, J. & K. Opuszynski, 1988. Point of no return in carp (Cyprinus carpio) and herbivorous fish (Ctenopharygodon idella val., Hypophthalmychthys molitrix val., Aristichthys nobilis rich.) larvae. Journal of Polish Agricultural Universities Series Biology 101: 61–69.Google Scholar
  54. Wolnicki, J., J. Sikorska & R. Kamiński, 2009. Response of larval and juvenile rudd Scardinius erythrophthalmus (L.) to different diets under controlled conditions. Czech Journal of Animal Science 54: 331–337.Google Scholar
  55. Woynarovich, E., 1962. Hatching of carp-eggs in “zuger” glasses and breeding of carp larvae until an age of 10 days. Bamidgeh 14: 38–46.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Emilie Réalis-Doyelle
    • 1
  • Alain Pasquet
    • 1
    • 2
  • Pascal Fontaine
    • 1
  • Fabrice Teletchea
    • 1
  1. 1.University of Lorraine, UR AFPANancyFrance
  2. 2.CNRS (National center for the scientific research - France)NancyFrance

Personalised recommendations