Advertisement

Hydrobiologia

, Volume 805, Issue 1, pp 351–364 | Cite as

Andesiops peruvianus (Ephemeroptera: Baetidae): a species complex based on molecular markers and morphology

  • Paula A. Ossa-López
  • Maria I. Camargo-Mathias
  • Fredy A. Rivera-Páez
Primary Research Paper

Abstract

Andesiops peruvianus is widely distributed in the Andean region and has been preliminarily used as a bioindicator of good water quality. Given the morphological variations that are reported for the species, this study aimed to address whether such morphological variability in nymphs captured in tributaries of the Upper Chinchiná River Basin, Caldas-Colombia, could be connected to genetic differences, suggesting the existence of hidden, hitherto unknown taxonomic diversity. The morphological evaluation allowed confirming the presence of 73 females and 83 males belonging to what can be considered A. peruvianus sensu lato. However, Automatic Barcode Gap Discovery and Poisson Tree Processes modeling identified four different taxonomic units. The genetic distances found for specimens of A. peruvianus were higher than expected for conspecific organisms, and DNA analyses allowed to separate A. peruvianus into taxonomic units, which were further supported by morphological characters (shape and size of the abdominal gills and number of denticles of the tarsal claws). The results of this study show that A. peruvianus represents a species complex, with four putative species inferred, contributing to the growing knowledge of the existence of pseudocryptic species. These new findings could influence the conservation status of these rivers.

Keywords

Bioindicator DNA Morphological characters Putative species Pseudocryptic species 

Notes

Acknowledgements

To the Research Group GEBIOME, the IIES Institute, Laboratory of Microbiology, and the Colección Entomológica del Programa de Biología de la Universidad de Caldas (CEBUC), especially Dra. Lucimar Gomes Dias for the taxonomic confirmation of the species. To Carlos Augusto Gil for the illustrations. To COLCIENCIAS for financing the project “Evaluation of mining, agriculture, and livestock impact through ecological and genetic responses of aquatic macroinvertebrates”.

Supplementary material

10750_2017_3321_MOESM1_ESM.docx (19 kb)
Appendix 1 Physical, hydrobiological, and chemical characteristics of the creeks assessed. The values correspond to the mean values of the parameters measured in each sampling station. E1, E2 and E3: La Elvira streams, E4: Romerales stream, E5: California stream, E6: Toldafría stream. Supplementary material 1 (DOCX 19 kb)
10750_2017_3321_MOESM2_ESM.tif (11.8 mb)
Appendix 2 Automatic partitioning of the ABGD method Kimura two – Parameters; A) mtDNA 16SrDNA gene; B) mtDNA COI gene. Supplementary material 2 (TIFF 12039 kb)

References

  1. Aduvire, O., 2006. Drenaje acido de mina generación y tratamiento; Instituto Geológico y Minero de España 431 Dirección de Recursos Minerales y Geoambiente. España, Madrid: 1–140.Google Scholar
  2. Alexander, L., M. Delion, D. J. Hawthorne & W. O. Lamp, 2009. Mitochondrial lineages DNA barcoding of closely related species in the mayfly genus Ephemerella (Ephemeroptera: Ephemerellidae). Journal of the North American Benthological Society 28: 584–595.CrossRefGoogle Scholar
  3. Avise, J. C., 2000. Phylogeography: The History and Formation of Species. Harvard University Press, Cambridge.Google Scholar
  4. Ball, S. L., P. D. N. Hebert, S. K. Burian & J. M. Webb, 2009. Biological identifications of mayflies (Ephemeroptera) using DNA barcodes. Journal of the North American Benthological Society 24: 508–524.CrossRefGoogle Scholar
  5. Barber-James, H. M., J. L. Gattolliat, M. Sartori & M. D. Hubbard, 2008. Global diversity of mayflies (Ephemeroptera Insecta) in freshwater. Hydrobiologia 595: 339–350.CrossRefGoogle Scholar
  6. Bickford, D., D. J. Lohman, N. S. Sodhi, P. K. L. Ng, R. Meier, K. Winker, K. Ingram & I. Das, 2007. Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution 22: 148–155.CrossRefPubMedGoogle Scholar
  7. Bonada, N., N. Prat, V. H. Resh & B. Statzner, 2006. Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annual Review of Entomology 51: 495–523.CrossRefPubMedGoogle Scholar
  8. Buckley, T. R., C. Simon & G. K. Chambers, 2001. Phylogeography of the New Zealand Cicada Maoricicada campbelli based on mitochondrial DNA sequences: ancient clades associated with cenozoic environmental change. Evolution 55: 395–1407.CrossRefGoogle Scholar
  9. Dijkstra, K. D., M. T. Monaghan & S. U. Pauls, 2014. Freshwater biodiversity and aquatic insect diversification. Annual Review of Entomology 59: 143–163.CrossRefPubMedGoogle Scholar
  10. Ditsche-Kuru, P., W. Barthlott & J. H. Koop, 2012. At which surface roughness do claws cling? Investigations with larvae of the running water mayfly Epeorus assimilis (Heptageniidae Ephemeroptera). Zoology 115: 379–388.CrossRefPubMedGoogle Scholar
  11. Domínguez, E., C. Molineri, M. L. Pescador, M. D. Hubbard & C. Nieto, 2006. Diversidad Acuática en América Latina. Pensoft Publishers, Sofia.Google Scholar
  12. Drummond, A. J., B. Ashton, M. Cheung, J. Heled, M. Kearse, R. Moir, H. S. Stones, T. Thierer & A. Wilson, 2009. Geneious version 8.14 [computer program]. Retrieved on June 01st 2015, http://www.geneious.com
  13. ESRI, 2014. ArcGIS Desktop: Release 10. Environmental Systems Research Institute, Redlands.Google Scholar
  14. Finn, D. S., C. Zamora-Muñoz, C. Múrria, M. Sáinz-Bariáin & J. Alba-Tercedor, 2014. Evidence from recently deglaciated mountain ranges that Baetis alpinus (Ephemeroptera) could lose significant genetic diversity as alpine glaciers disappear. Freshwater Science 33: 207–216.CrossRefGoogle Scholar
  15. Finn, D. S., A. C. Encalada & H. Hampel, 2016. Genetic isolation among mountains but not between stream types in a tropical high-altitude mayfly. Freshwater Biology 61: 702–714.CrossRefGoogle Scholar
  16. Folmer, O., M. Black, W. Hoeh, R. Lutz & R. Vrijenhoek, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.PubMedGoogle Scholar
  17. Gattolliat, J.-L., C. Emilie, L. Vuataz & M. Sartori, 2015. DNA barcoding of Corsican mayflies (Ephemeroptera) with implications on biogeography, systematics and biodiversity. Senckenberg Gesellschaft für Naturforschung 73: 3–18.Google Scholar
  18. Gene Codes Corporation, Ann Arbor, Michigan, USA. Sequencher® version 4.1 sequence analysis [computer program]. Retrieved on June 22th 2016, http://www.genecodes.com.
  19. Gill, B. A., R. A. Harrington, B. C. Kondratieff, K. R. Zamudio, N. L. Poff & W. C. Funk, 2014. Morphological taxonomy, DNA barcoding, and species diversity in southern Rocky Mountain headwater streams. Freshwater Science 33: 288–301.CrossRefGoogle Scholar
  20. Gill, B. A., B. C. Kondratieff, K. L. Casner, A. C. Encalada, A. S. Flecker, D. G. Gannon, C. K. Ghalambor, J. M. Guayasamin, N. L. Poff, M. P. Simmons, S. A. Thomas, K. R. Zamudio & W. C. Funk, 2016. Cryptic species diversity reveals biogeographic support for the ‘mountain passes are higher in the tropics’ hypothesis. Proceedings Royal Society B 283(1832): 20160553.CrossRefGoogle Scholar
  21. Gutiérrez, Y. & L. Dias, 2015. Ephemeroptera (Insecta) de Caldas – Colombia claves taxonómicas para los géneros y notas sobre su distribución. Papéis Avulsos de Zoologia 55: 13–46.CrossRefGoogle Scholar
  22. Hebert, P. D. N., S. Ratnasingham & J. R. De Waard, 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London, Series B 270: 596–599.CrossRefGoogle Scholar
  23. Hoyos, D., T. L. García, F. Rivera, G. López, M. D. C. Zúñiga & L. Dias, 2014. Contribución al conocimiento de las especies de Haplohyphes allen (Insecta: Ephemeroptera: Leptohyphidae) en Colombia. Caldasia 36: 164–165.Google Scholar
  24. Jiménez-Pérez, P., B. Toro-Restrepo & E. Hernández-Atilano, 2014. Relación entre la comunidad de fitoperifiton y diferentes fuentes de contaminación en una quebrada de los Andes Colombianos. Relación fitoperifiton y contaminación ambiental. Boletín Científico Museo de Historia Natural 18: 49–66.Google Scholar
  25. Katoh, K., K. Misawa, K. Kuma & T. Miyata, 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research. 30: 3059–3066.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kimura, M., 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120.CrossRefPubMedGoogle Scholar
  27. Lucentini, L., M. Rebora, M. E. Puletti, L. Gigliarelli, D. Fontaneto, E. Gaino & F. Panara, 2011. Geographical and seasonal evidence of cryptic diversity in the Baetis rhodani complex (Ephemeroptera, Baetidae) revealed by means of DNA taxonomy. Hydrobiologia 673: 215–228.CrossRefGoogle Scholar
  28. Lugo-Ortiz, C. R. & W. P. McCafferty, 1999. Three new genera of small minnow mayflies (Insecta: Ephemeroptera) from the Andes and Patagonia. Studies on Neotropical Fauna and Environment 34: 88–104.CrossRefGoogle Scholar
  29. Macher, J. N., R. K. Salis, K. S. Blakemorec, R. Tollriana, C. D. Matthaei & F. Leese, 2016. Multiple-stressor effects on stream invertebrates: DNA barcoding reveals contrasting responses of cryptic mayfly species. Ecological Indicators 61: 159–169.CrossRefGoogle Scholar
  30. Menetrey, N., B. Oertli, M. Sartori, A. Wagner & J. B. Lachavanne, 2008. Eutrophication: are mayflies (Ephemeroptera) good bioindicators for ponds? Hydrobiologia 597: 125–135.CrossRefGoogle Scholar
  31. Monaghan, M. T., R. Wild, M. Elliot, T. Fujisawa, M. Balke, D. J. G. Inward, D. C. Lees, R. Ranaivosolo, P. Eggleton, T. G. Barraclough & A. P. Vogler, 2009. Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Systematic Biology 58: 298–311.CrossRefPubMedGoogle Scholar
  32. Moore, W. S., 1995. Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution 49: 718–729.PubMedGoogle Scholar
  33. Morgan, A. H. & M. C. Grierson, 1932. The functions of the gills in burrowing mayflies (Hexagenia recurvata). Physiological Zoology 5: 230–245.CrossRefGoogle Scholar
  34. Múrria, C., M. Morante, M. Rieradevall, C. Ribera & N. Prat, 2014. Genetic diversity and species richness patterns in Baetidae (Ephemeroptera) in the Montseny Mountain range (North-East Iberian Peninsula). Limnetica 33(2): 313–326.Google Scholar
  35. Múrria, C., A. T. Rugenski, M. R. Whiles & A. P. Vogler, 2015. Long-term isolation and endemicity of Neotropical aquatic insects limit the community responses to recent amphibian decline. Diversity and Distributions 21: 938–949.CrossRefGoogle Scholar
  36. Navás, L., 1933. Algunos Insectos de Chile. Revista Chilena De Historia Natural 37: 230–234.Google Scholar
  37. Nieto, C., 2004. South American Baetidae (Ephemeroptera): a new generic synonymy. Studies on Neotropical Fauna and Environment 39: 95–101.CrossRefGoogle Scholar
  38. Notestine, M. K., 1994. Comparison of the respiratory currents produced by ephemeropteran nymphs with operculate gills. Journal of the Australian Entomological Society 33: 399–403.CrossRefGoogle Scholar
  39. Ogden, T. H. & M. F. Whiting, 2005. Phylogeny of Ephemeroptera (mayflies) based on molecular evidence. Molecular Phylogenetics and Evolution 37: 625–643.CrossRefPubMedGoogle Scholar
  40. Pereira-da-Conceicoa, L. L., B. W. Price, H. M. Barber-James, N. P. Barker, F. C. De Moor & M. H. Villet, 2012. Cryptic variation in an ecological indicator organism: mitochondrial and nuclear DNA sequence data confirm distinct lineages of Baetis harrisoni Barnard (Ephemeroptera: Baetidae) in southern Africa. BMC Evolutionary Biology 29: 12–26.Google Scholar
  41. Puillandre, N., A. Lambert, S. Brouillet & G. Achaz, 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21: 1864–1877.CrossRefPubMedGoogle Scholar
  42. Pruthi, H. S., 1927. The ability of fishes to extract oxygen at different hydrogen ion concentrations of the medium. Journal of the Marine Biological Association UK 14: 741–748.CrossRefGoogle Scholar
  43. R Development Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing.Google Scholar
  44. Roldán, G., 1999. Los macroinvertebrados y su valor como indicadores de la calidad del agua. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales 23(88): 375–387.Google Scholar
  45. Rutschmann, S., J. L. Gattolliat, S. L. Hughes, M. Báez, M. Sartori & M. T. Monaghan, 2014. Evolution and island endemism of morphologically cryptic Baetis and Cloeon species (Ephemeroptera Baetidae) on the Canary Islands and Madeira. Freshwater Biology 59: 2516–2527.CrossRefGoogle Scholar
  46. Rutschmann, S., H. Detering, S. Simon, D. H. Funk, J. L. Gattolliat, S. J. Hughes, P. M. Raposeiro, R. DeSalle, M. Sartori & M. T. Monaghan, 2017. Colonization and diversification of aquatic insects on three Macaronesian archipelagos using 59 nuclear loci derived from a draft Genome. Molecular Phylogenetics and Evolution 107: 27–38.CrossRefPubMedGoogle Scholar
  47. Sabando, M. C., I. Vila, R. Peñaloza & D. Véliz, 2011. Contrasting population genetic structure of two widespread aquatic insects in the Chilean high-slope rivers. Marine and Freshwater Research 62: 1–10.CrossRefGoogle Scholar
  48. Santos, A. P. M., D. M. Takiya & J. L. Nessimian, 2016. Integrative taxonomy of Metrichia Ross (Trichoptera: Hydroptilidae: Ochrotrichiinae) microcaddisflies from Brazil: descriptions of twenty new species. PeerJ 4: e2009.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Tamura, K., G. Stecher, D. Peterson, A. Filipski & S. Kumar, 2013. MEGA 6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin & D. G. Higgins, 1997. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876–4882.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ulmer, G., 1920. Neue ephemeropteren. Archiv für Naturgeschichte 85: 1–80.Google Scholar
  52. Virgilio, M., M. T. Backeljau, B. Nevado & M. De Meyer, 2010. Comparative performances of DNA barcoding across insect orders. BMC Bioinformatic 11: 1–10.CrossRefGoogle Scholar
  53. Waltz, R. D. & W. P. McCafferty, 1987. Revision of the genus Cloeodes Traver (Ephemeroptera: Baetidae). Annals of the Entomological Society of America 80: 191–207.CrossRefGoogle Scholar
  54. Wichard, W., H. Komnick & J. H. Abel Jr., 1972. Typology of ephemerid chloride cells. Zeitschrift für Zellforschung und Mikroskopische Anatomie 132: 533–551.CrossRefPubMedGoogle Scholar
  55. Williams, H. C., S. J. Ormerod & M. W. Bruford, 2006. Molecular systematics and phylogeography of the cryptic species complex Baetis rhodani (Ephemeroptera Baetidae). Molecular Phylogenetics and Evolution 40: 370–382.CrossRefPubMedGoogle Scholar
  56. Wilson, R. & J. Kennedy, 2012. Life histories of Edwardsina sp. and Andesiops ardua from Navarino Island Chile. Retrieved on August 01st 2015, http://digital.library.unt.edu/ark:/67531/metadc86770/.
  57. Wingfield, C. A., 1939. The function of the gills of mayfly nymphs from different habitats. Journal of Experimental Biology 16: 363–373.Google Scholar
  58. Zar, J. H., 1999. Biostatistical analysis, 4th ed. Prentice Hall, Upper Saddle River.Google Scholar
  59. Zhan, J., P. Kapli, P. Pavlidis & A. Stamatakis, 2013. A general species delimitation method with applications to phylogenetic placements. Bionformatics 29(2): 2869–2876.CrossRefGoogle Scholar
  60. Zhou, C.-F., 2010. Accessory gills in mayflies (Ephemeroptera). Stuttgarter Beiträge zur Naturkunde, Serie A Biologie 3: 79–84.Google Scholar
  61. Zhou, X., S. J. Adamowicz, L. M. Jacobus, R. E. De Walt & P. D. N. Hebert, 2009. Towards a comprehensive barcode library for arctic life – Ephemeroptera, Plecoptera, and Trichoptera of Churchill, Manitoba, Canada. Frontiers in Zoology 6: 1–9.CrossRefGoogle Scholar
  62. Zúñiga, M. D. C., 2009. Bioindicadores de calidad de agua y caudal ambiental. In Cantera, J. R. K., Y. E. Carvajal & L. M. H. Castro (eds), El caudal ambiental: conceptos experiencias y desafíos. Programa Editorial Universidad del Valle, Valle: 176–206.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Paula A. Ossa-López
    • 1
  • Maria I. Camargo-Mathias
    • 2
  • Fredy A. Rivera-Páez
    • 1
    • 2
  1. 1.Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y NaturalesUniversidad de Caldas - Grupo de Investigación GEBIOMEManizalesColombia
  2. 2.Departamento de Biologia, Instituto de BiociênciasUniversidade Estadual Paulista - UNESPRio ClaroBrasil

Personalised recommendations