, Volume 803, Issue 1, pp 307–315 | Cite as

Chemical changes in detrital matter upon digestive processes in a sesarmid crab feeding on mangrove leaf litter

  • Tarek Bakkar
  • Véronique Helfer
  • Raika Himmelsbach
  • Martin ZimmerEmail author


Pathways and rates of decomposition of detrital matter partly depend on its chemical composition. Digestive processes of detritivores drive changes in the chemical composition of detritus, and these changes translate into the chemical composition of the organic matter sequestered into soils and sediments. The latter, in turn, determines how stable organic matter stocks are towards further decay and release of climate-active gases thereupon. We used metabolic fingerprinting to monitor changes in the chemical composition of mangrove detritus upon digestion by a mangrove crab. According to analyses through pyrolysis-GC/MS, the decaying leaf litter of three mangrove species of the Indo-West Pacific, Bruguiera gymnorhiza (L.) Savigny ex Lam. and Poiret 1798, Ceriops tagal (Perr.) C.B. Robinson 1908, and Rhizophora mucronata Lam. 1804, clearly differed from each other in their chemical signature. The feces of detritivorous crabs (Sesarma bidens de Haan 1835) feeding on these detrital sources differed from the source litter in their chemical composition, obviously owing to digestive processes. However, the chemical signatures of feces were more similar to those of their source litter than to those of feces from different litter sources, indicating that the origin of organic matter can be tracked in fecal material. Moreover, male and female crabs appear to exhibit sex-specific digestive processes, as they produced feces that clearly differed from each other in their chemical signature. The 15 chemical compounds most relevant for distinguishing litter sources and fecal material provide first hints on which compounds discriminate the different tree species and characterize digestion by S. bidens. For instance, coumaran (dihydro-benzofuran), indicative of certain carbohydrates, was abundant as a pyrolysis product of the litter of R. mucronata and, to a much lesser degree, C. tagal. Hence, the carbohydrates that were pyrolysed into coumaran seem to discriminate the former two litter sources. Similarly, a pyrolysis-derivate of plant phenolics or proteins, discriminated C. tagal from the other litter sources. From this, we conclude that even subtle differences in litter chemistry and digestive processes of detritivores can be characterized and followed with high resolution through (py-)GC/MS. Further, we propose that the origin of fecal material can be identified with the aid of this technique, and we are currently studying whether the origin of organic matter in the sediment can also be inferred from (py-)GC/MS-data.


Mangrove leaf litter Detritivorous crabs Digestive processes Organic matter composition Bruguiera gymnorhiza Ceriops tagal Rhizophora mucronata Sesarma bidens Metabolomics fingerprint Environmental metabolomics 



We are grateful to Lucy Gillis (ZMT) for having brought mangrove seedlings from Zanzibar in 2014, and to Matthias Birkicht (ZMT), Hans-Konrad Nettmann (University Bremen), and the entire Mangrove Ecology Group of ZMT for valuable discussions.


  1. Alongi, D., 2009. The Energetics of Mangrove Forests. Springer, Amsterdam.Google Scholar
  2. Alongi, D., 2012. Carbon sequestration in mangrove forests. Carbon Management 3: 313–322.CrossRefGoogle Scholar
  3. Ashton, E. C., P. J. Hogarth & R. Ormond, 1999. Breakdown of mangrove leaf litter in a managed mangrove forest in Peninsular Malaysia. Hydrobiologia 413: 77–88.CrossRefGoogle Scholar
  4. Ashwini, K. M. & K. R. Sridhar, 2005. Leaf litter preference and conversion by a saprophagous tropical pill millipede, Arthrosphaera magna Attems. Pedobiologia 49: 307–316.CrossRefGoogle Scholar
  5. Buurman, P. & R. Roscoe, 2011. Different chemical composition of free light, occluded light and extractable SOM fractions in soils of Cerrado and tilled and untilled fields, Minas Gerais, Brazil: a pyrolysis-GC/MS study. European Journal of Soil Science 62: 253–266.CrossRefGoogle Scholar
  6. Buurman, P., J. Schellekens, H. Fritze & K. G. J. Nierop, 2007. Selective depletion of organic matter in mottled podzol horizons. Soil Biology & Biochemistry 39: 607–621.CrossRefGoogle Scholar
  7. Buurman, P., K. G. J. Nierop, J. Kaal & N. Senesi, 2009a. Analytical pyrolysis and thermally assisted hydrolysis and methylation of EUROSOIL humic acid samples – A key to their source. Geoderma 150: 10–22.CrossRefGoogle Scholar
  8. Buurman, P., K. G. J. Nierop, J. Kaal & N. Senesi, 2009b. Analytical pyrolysis and thermally assisted hydrolysis and methylation of EUROSOIL humic acid samples – A key to their source. Geoderma 150(2009): 10–22.CrossRefGoogle Scholar
  9. Catalán, T. P., M. A. Lardies & F. Bozinovic, 2008. Food selection and nutritional ecology of woodlice in Central Chile. Physiological Entomology 33: 89–94.CrossRefGoogle Scholar
  10. Chatterjee, S. & S. K. Chakraborty, 2015. Population and reproductive biology of two species of brachyuran crabs (Family: Grapsidae) Sesarma (Chiromantes) bidens and Metopograpsus maculatus at coastal belt of Midnapore, West Bengal, India. International Journal of Aquatic Science 6: 15–36.Google Scholar
  11. da Silva, S. M. J., G. L. Hirose & M. L. Negreiros-Fransozo, 2007. Population dynamic of Sesarma rectum (Crustacea, Brachyura, Sesarmidae) from a muddy flat under human impact, Paraty, Rio de Janeiro, Brazil. Iheringia, Série Zoologica 97: 207–214.CrossRefGoogle Scholar
  12. Du, X. & S. H. Zeisel, 2013. Spectral deconvolution for gas chromatography mass spectrometry-based metabolomics: current status and future perspectives. Computational and Structural Biotechnology Journal 4: e201201013.CrossRefGoogle Scholar
  13. Hübner, L., S. C. Pennings & M. Zimmer, 2015. Sex- and habitat-specific movement of an omnivorous semi-terrestrial crab controls habitat connectivity and subsidies: a multi-parameter approach. Oecologia 178: 999–1015.CrossRefPubMedGoogle Scholar
  14. Islam, M. S. & T. Uehara, 2008. Feeding habits of the sesarmid crab Perisesarma bidens (De Haan) in the mangroves of the Ryukyu Islands, Japan. Bangladesh Journal of Fisheries Research 12: 213–224.Google Scholar
  15. Kaiser, M. J., 2005. Marine Ecology – Processes, Systems, and Impacts. Oxford University Press, New York.Google Scholar
  16. Koch, B. P., J. Rullkötter & R. J. Lara, 2003. Evaluation of triterpenols and sterols as organic matter biomarkers in a mangrove ecosystem in northern Brazil. Wetlands Ecology and Management 11: 257–263.CrossRefGoogle Scholar
  17. Koch, B. P., J. Harder, R. J. Lara & G. Kattner, 2005. The effect of selective microbial degradation on the composition of mangrove derived pentacyclic triterpenols in surface sediments. Organic Geochemistry 36: 273–285.CrossRefGoogle Scholar
  18. Koch, B. P., P. W. M. Souza Filho, H. Behling, M. C. L. Cohen, G. Kattner, J. Rullkötter, B. Scholz-Böttcher & R. J. Lara, 2011. Triterpenols in mangrove sediments as a proxy for organic matter derived from the red mangrove (Rhizophora mangle). Organic Geochemistry 42: 62–73.CrossRefGoogle Scholar
  19. Lancia, J. P., A. Fernández Gimenez, C. Bas & E. Spivak, 2012. Adaptive differences in digestive enzyme activity in the crab Neohelice granulata in relation to sex and habitat. Journal of Crustacean Biology 32: 940–948.CrossRefGoogle Scholar
  20. Li, H., A. Cowie, J. A. Johnson, D. Webster, C. J. Martyniuk & C. A. Gray, 2016. Determining the mode of action of anti-mycobacterial C17 diyne natural products using expression profiling: evidence for fatty acid biosynthesis inhibition. BMC Genomics 17: 261.CrossRefGoogle Scholar
  21. Linton, S., B. Allardyce, W. Hagen, P. Wencke & R. Saborowski, 2009. Food utilisation and digestive ability of aquatic and semi-terrestrial crayfishes, Cherax destructor and Engaeus sericatus (Astacidae, Parastacidae). Journal of Comparative Physiology B 179: 493–507.CrossRefGoogle Scholar
  22. Liu, Y., M. Hui, Z. Cui, D. Luo, C. Song, Y. Li & L. Liu, 2015. Comparative transcriptome analysis reveals sex-biased gene expression in juvenile Chinese Mitten Crab Eriocheir sinensis. PLoS one 10: e0133068.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Markman, S., H. Tadmor-Melamed, A. Arieli & I. Izhaki, 2006. Sex differences in food intake and digestive constraints in a nectarivorous bird. Journal of Experimental Biology. 209: 1058–1063.CrossRefPubMedGoogle Scholar
  24. Mchenga, I. S. S. & M. Tsuchiya, 2010. Feeding choice and the fate of organic materials consumed by Sesarma crabs Perisesarma bidens (De Haan) when offered different diets. Journal of Marine Biology 2010.Google Scholar
  25. Mfilinge, P. L. & M. Tsuchiya, 2008. Effect of temperature on leaf litter consumption by grapsid crabs in a subtropical mangrove (Okinawa, Japan). Journal of Sea Research 59: 94–102.CrossRefGoogle Scholar
  26. Nguyen, R. T., H. R. Harvey, X. Zang, J. D. H. van Heemst, M. Hetényi & P. G. Hatcher, 2003. Preservation of algaenan and proteinaceous material during the oxic decay of Botryococcus braunii as revealed by pyrolysis-gas chromatography/mass spectrometry and13C NMR spectroscopy. Organic Geochemistry 34: 483–497.CrossRefGoogle Scholar
  27. Nordhaus, I. & M. Wolff, 2007. Feeding ecology of the mangrove crab Ucides cordatus (Ocypodidae): food choice, food quality and assimilation efficiency. Marine Biology 151: 1665–1681.CrossRefGoogle Scholar
  28. Nordhaus, I., T. Salewski & T. C. Jennerjahn, 2011. Food preferences of mangrove crabs related to leaf nitrogen compounds in the Segara Anakan Lagoon, Java, Indonesia. Journal of Sea Research 65: 414–426.CrossRefGoogle Scholar
  29. Quadros, A. F., M. Zimmer, P. B. Araujo & J. G. Kray, 2015. Litter traits and palatability to detritivores: a case study across biogeographical boundaries. Nauplius 22: 103–111.CrossRefGoogle Scholar
  30. Schellekens, J. & P. Buurman, 2011. n-Alkane distributions as paleoclimatic proxies in ombrotrophic peat: the role of decomposition and dominant vegetation. Geoderma 164: 112–121.CrossRefGoogle Scholar
  31. Schellekens, J., P. Buurman, I. Fraga & A. Martínez-Cortizas, 2011. Holocene vegetation and hydrologic changes inferred from molecular vegetation markers in peat, Penido Vello (Galicia, Spain). Palaeogeography, Palaeoclimatology, Palaeoecology 299: 56–69.CrossRefGoogle Scholar
  32. Schmidt, M. W. I., M. S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. A. Janssens, M. Kleber, I. Kögel-Knabner, J. Lehmann, D. A. C. Manning, P. Nannipieri, D. P. Rasse, S. Weiner & S. E. Trumbore, 2011. Persistence of soil organic matter as an ecosystem property. Nature 478: 49–56.CrossRefPubMedGoogle Scholar
  33. Spalding, M., M. Kainuma & L. Collins, 2010. World Atlas of Mangroves. London, Washington, Earthscan.Google Scholar
  34. Stewart, C. E., 2011. Evaluation of angiosperm and fern contributions to soil organic matter using two methods of pyrolysis-gas chromatography-mass spectrometry. Plant and Soil 16: 1–16.Google Scholar
  35. Stewart, C. E., J. C. Neff, K. L. Amatangelo & P. M. Vitousek, 2011. Vegetation effects on soil organic matter chemistry of aggregate fractions in a Hawaiian forest. Ecosystems 14: 382–397.CrossRefGoogle Scholar
  36. Tegelaar, E. W., J. W. Deleeuw & C. Saizjimenez, 1989. Possible origin of aliphatic moieties in humic substances. Science of the Total Environment 81: 1–17.CrossRefGoogle Scholar
  37. Thongprajukaew, K. & U. Kovitvadhi, 2013. Effects of sex on characteristics and expression levels of digestive enzymes in the adult guppy Poecilia reticulata. Zoological Studies 52.Google Scholar
  38. Tolu, J., L. Gerber, J.-F. Boily & R. Bindler, 2015. High-throughput characterization of sediment organic matter by pyrolysis–gas chromatography/mass spectrometry and multivariate curve resolution: a promising analytical tool in (paleo)limnology. Analytica Chimica Acta 880: 93–102.CrossRefPubMedGoogle Scholar
  39. Treplin, M. & M. Zimmer, 2012. Drowned or dry: a cross-habitat comparison of detrital breakdown processes. Ecosystems 15: 477–491.CrossRefGoogle Scholar
  40. Vancampenhout, K., B. De Vos, K. Wouters, H. Van Calster, R. Swennen, P. Buurman & J. Deckers, 2010. Determinants of soil organic matter chemistry in maritime temperate forest ecosystems. Soil Biology & Biochemistry 42: 220–233.CrossRefGoogle Scholar
  41. Vancampenhout, K., K. Wouters, B. De Vos, P. Buurman, R. Swennen & J. Deckers, 2009. Differences in chemical composition of soil organic matter in natural ecosystems from different climatic regions – A pyrolysis-GC/MS study. Soil Biology & Biochemistry 41: 568–579.CrossRefGoogle Scholar
  42. Viant, M. R. & U. Sommer, 2013. Mass spectrometry based environmental metabolomics: a primer and review. Metabolomics 9: S144–S158.CrossRefGoogle Scholar
  43. Weissburg, M. J., 1993. Sex and the single forager: gender-specific energy maximization strategies in fiddler crabs. Ecology 74: 279–291.CrossRefGoogle Scholar
  44. Zimmer, M., 1999. The fate and effects of ingested hydrolyzable tannins in Porcellio scaber. Journal of Chemical Ecology 25: 611–628.CrossRefGoogle Scholar
  45. Zimmer, M., S. C. Pennings, T. L. Buck & T. H. Carefoot, 2002. Species-specific patterns of litter processing by terrestrial isopods (Isopoda: Oniscidea) in high intertidal salt marshes and coastal forests. Functional Ecology 16: 596–607.CrossRefGoogle Scholar
  46. Zimmer, M., S. C. Pennings, T. L. Buck & T. H. Carefoot, 2004. Salt marsh litter and detritivores: a closer look at redundancy. Estuaries 27: 753–769.CrossRefGoogle Scholar
  47. Zimmer, M., R. Oliveira, E. Rodrigues & M. A. S. Graça, 2005. Degradation of leaf litter tannins by aquatic and terrestrial isopods. Journal of Chemical Ecology 31: 1933–1952.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Leibniz Centre for Tropical Marine Research, ZMT-GmbHBremenGermany
  2. 2.Universidade do AlgarveFaroPortugal
  3. 3.IUCN-SSC Mangrove Specialist Group

Personalised recommendations