Hydrobiologia

, Volume 805, Issue 1, pp 291–310 | Cite as

Riparian forest modifies fuelling sources for stream food webs but not food-chain length in lowland streams of Denmark

  • I. González-Bergonzoni
  • P. B. Kristensen
  • A. Baattrup-Pedersen
  • E. A. Kristensen
  • A. B. Alnoee
  • T. Riis
Primary Research Paper

Abstract

Several studies have shown that the origin of carbon fuelling food webs in streams depends on riparian cover type. In forested stream sites allochthonous resources fuel food webs, whereas autochthonous resources support biomass in grassland (open-canopy) stream sites. However, some studies suggest that autochthonous carbon (of highest quality) is preferentially assimilated regardless of riparian cover and that the food-chain length (FCL) may be larger in grassland than in forested sites. We used stable isotopes of carbon and nitrogen in adjacent grassland and forested reaches to compare the contribution of autochthonous vs. allochthonous resources to the biomass of the whole macroinvertebrate assemblage and to the most abundant taxa. Moreover, we compared the FCL between forested and grassland sites by estimating the trophic position of brown trout, Salmo trutta. Autochthonous support to macroinvertebrate biomass was higher in grassland than in forested sites, often changing from a dominantly autochthonous to an allochthonous-generated biomass from grassland to forested. This held true for the whole macroinvertebrate assemblage and for specific species. FCL remained similar between reach types. Our study suggests that autochthonous resources are assimilated to a higher extent when their availability increases with canopy openness but allochthonous carbon sustain macroinvertebrate biomass in forested reaches.

Keywords

Resource subsidy Allochthonous detritus Stable isotopes Bayesian mixing models Trophic position Carbon subsidies 

Supplementary material

10750_2017_3313_MOESM1_ESM.docx (57 kb)
Supplementary material 1 (DOCX 56 kb)

References

  1. Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.Google Scholar
  2. Austin, D. A. & J. H. Baker, 1988. Fate of bacteria ingested by larvae of the freshwater mayfly, Ephemera danica. Microbial Ecology 15: 323–332.CrossRefPubMedGoogle Scholar
  3. Bachmann, R. A., 1984. Foraging behavior of free-ranging wild and hatchery brown trout in a stream. Transactions of the American Fisheries Society 113: 1–32.CrossRefGoogle Scholar
  4. Belicka, L., E. Sokol, J. M. Hoch, R. Jaffé & J. Trexler, 2012. A molecular and stable isotopic approach to investigate algal and detrital energy pathways in a freshwater marsh. Wetlands 32: 531–542.CrossRefGoogle Scholar
  5. Brito, E. F., T. P. Moulton, M. L. De Souza & S. E. Bunn, 2006. Stable isotope analysis indicates microalgae as the predominant food source of fauna in a coastal forest stream, south-east Brazil. Austral Ecology 31: 623–633.CrossRefGoogle Scholar
  6. Brix, H. & H. H. Schierup, 2001. Limnologi, Analyseforeskrifter (in Danish). Aarhus University, Aarhus, Denmark.Google Scholar
  7. Broadmeadow, S. B., J. G. Jones, T. E. L. Langford, P. J. Shaw & T. R. Nisbet, 2011. The influence of riparian shade on lowland stream water temperatures in southern England and their viability for brown trout. River Research and Applications 27: 226–237.CrossRefGoogle Scholar
  8. Bunn, S. E., P. M. Davies & M. Winning, 2003. Sources of organic carbon supporting the food web of an arid zone floodplain river. Freshwater Biology 48: 619–635.CrossRefGoogle Scholar
  9. Bunn, S. E., C. Leigh & T. D. Jardine, 2013. Diet-tissue fractionation of δ15N by consumers from streams and rivers. Limnology and Oceanography 58: 765–773.CrossRefGoogle Scholar
  10. Burton, G. J., 1973. Feeding of Simulium hargreavesi gibbins larvae on Oedegonium algal filaments in Ghana. Journal of Medical Entomology 10(1): 101–106.CrossRefPubMedGoogle Scholar
  11. Cappelen, J., 2011. Hvordan var det nu det var vejret i 2010? Vejret 127: 1–19. (In Danish).Google Scholar
  12. Chen, J. M. & T. A. Black, 1992. Defining leaf area index for non-flat leaves. Plant, Cell and Environment 15: 421–429.CrossRefGoogle Scholar
  13. Collins, S. M., T. J. Kohler, S. A. Thomas, W. W. Fetzer & A. S. Flecker, 2016. The importance of terrestrial subsidies in stream food webs varies along a stream size gradient. Oikos 125(5): 674–685.CrossRefGoogle Scholar
  14. Cucherousset, J., J. C. Aymes, F. Santoul & R. Céréghino, 2007. Stable isotope evidence of trophic interactions between introduced brook trout Salvelinus fontinalis and native brown trout Salmo trutta in a mountain stream of south-west France. Journal of Fish Biology 71: 210–223.CrossRefGoogle Scholar
  15. Cummins, K. W., 1974. Structure and function of stream ecosystems. BioScience 24: 631–641.CrossRefGoogle Scholar
  16. Cummins, K. W. & M. J. Klug, 1979. Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics 10: 147–172.CrossRefGoogle Scholar
  17. Dekar, M. P., R. S. King, J. A. Back, D. F. Whigham & C. M. Walker, 2012. Allochthonous inputs from grass-dominated wetlands support juvenile salmonids in headwater streams: evidence from stable isotopes of carbon, hydrogen, and nitrogen. Freshwater Science 31: 121–132.CrossRefGoogle Scholar
  18. Dobson, M., S. Pawley, M. Fletcher & A. Powell, 2012. Guide to freshwater invertebrates. Freshwater Biological Association.Google Scholar
  19. Finlay, J. C., 2001. Stable-carbon-isotope ratios of river biota: implications for energy flow in lotic food webs. Ecology 82: 1052–1064.Google Scholar
  20. Friberg, N., A. Baattrup-Pedersen, M. Pedersen & J. Skriver, 2005. The new Danish stream monitoring programme (NOVANA) – preparing monitoring activities for the water framework directive era. Environmental Monitoring Assessment 111: 27–42.CrossRefPubMedGoogle Scholar
  21. Fry, B., 2006. Stable isotope ecology. Springer, New York, USA.CrossRefGoogle Scholar
  22. Fry, B., 2013. Alternative approaches for solving underdetermined isotope mixing problems. Marine Ecology Progress Series 472: 1–13.CrossRefGoogle Scholar
  23. Füreder, L., C. Welter & J. K. Jackson, 2003. Dietary and stable isotope (δ13C, δ15N) analyses in alpine stream insects. International Review of Hydrobiology 88: 314–331.CrossRefGoogle Scholar
  24. González-Bergonzoni, I., F. Landkildehus, M. Meerhoff, T. L. Lauridsen, K. Özkan, T. A. Davidson, N. Mazzeo & E. Jeppesen, 2014. Fish determine macroinvertebrate food webs and assemblage structure in Greenland subarctic streams. Freshwater Biology 59: 1830–1842.CrossRefGoogle Scholar
  25. Graça, M. A. S., L. Maltby & P. Calow, 1993. Importance of fungi in the diet of Gammarus pulex and Asellus aquaticus. Oecologia 96: 304–309.CrossRefPubMedGoogle Scholar
  26. Gregory, S. V., F. J. Swanson, W. A. McKee & K. W. Cummins, 1991. An ecosystem perspective of riparian zones. BioScience 41: 540–551.CrossRefGoogle Scholar
  27. Hart, E. A. & J. R. Lovvorn, 2003. Algal vs. macrophyte inputs to food webs of inland saline wetlands. Ecology 84: 3317–3326.CrossRefGoogle Scholar
  28. Hussey, N. E., M. A. MacNeil, B. C. McMeans, J. A. Olin, S. F. J. Dudley, G. Cliff, S. P. Wintner, S. T. Fennessy & A. T. Fisk, 2014. Rescaling the trophic structure of marine food webs. Ecology Letters 17(2): 239–250.CrossRefPubMedGoogle Scholar
  29. Iglesias, C., M. Meerhoff, L. Johansson, I. Gonzalez-Bergonzoni, N. Mazzeo, J. P. Pacheco, F. Teixeira de Mello, G. Goyenola, T. Lauridsen, M. Søndergaard, T. A. Davidson & E. Jeppesen, 2016. Stable isotope analysis confirms substantial differences between subtropical and temperate shallow lake food webs. Hydrobiologia 784(1): 111–123.CrossRefGoogle Scholar
  30. Jardine, T. D., W. L. Hadwen, S. K. Hamilton, S. Hladyz, S. M. Mitrovic, K. A. Kidd, W. Y. Tsoi, M. Spears, D. P. Westhorpe, V. M. Fry, F. Sheldon & S. E. Bunn, 2014. Understanding and overcoming baseline isotopic variability in running waters. River Research and Applications 30(2): 155–165.CrossRefGoogle Scholar
  31. Jardine, T. D., R. J. Hunt, S. J. Faggotter, D. Valdez, M. A. Burford & S. E. Bunn, 2013. Carbon from periphyton supports fish biomass in waterholes of a wet–dry tropical river. River Research and Applications 29: 560–573.CrossRefGoogle Scholar
  32. Jensen, J. L. & K. Frost, 1992. Fagdatacenter for hydrometriske data, hedeselskabet. Hydrometrisk feltarbejde 10: 52. (in Danish).Google Scholar
  33. Junker, J. R. & W. F. Cross, 2014. Seasonality in the trophic basis of a temperate stream invertebrate assemblage: importance of temperature and food quality. Limnology and Oceanography 59: 507–518.CrossRefGoogle Scholar
  34. Kovalenko, K. A., S. M. Thomas & D. M. Warfe, 2012. Habitat complexity: approaches and future directions. Hydrobiologia 685: 1–17.CrossRefGoogle Scholar
  35. Kristensen, P. B., E. A. Kristensen, T. Riis, A. J. Baisner, S. E. Larsen, P. F. M. Verdonschot & A. Baattrup-Pedersen, 2014. Riparian forest as a management tool for moderating future thermal conditions of lowland temperate streams. Inland Waters 5: 27–38.CrossRefGoogle Scholar
  36. Kristensen, P. B., T. Riis, P. B. Dylmer, E. A. Kristensen, M. Meerhoff, B. Olesen, F. Teixeira de Mello, A. Baattrup-Pedersen, G. Cavalli & E. Jeppesen, 2016. Baseline identification in stable-isotope studies of temperate lotic systems and implications for calculated trophic positions. Freshwater Science 35(3): 909–921.CrossRefGoogle Scholar
  37. Lau, D. C. P., K. M. Y. Leung & D. Dudgeon, 2009a. What does stable isotope analysis reveal about trophic relationships and the relative importance of allochthonous and autochthonous resources in tropical streams? A synthetic study from Hong Kong. Freshwater Biology 54: 127–141.CrossRefGoogle Scholar
  38. Lau, D. C. P., K. M. Y. Leung & D. Dudgeon, 2009b. Are autochthonous foods more important than allochthonous resources to benthic consumers in tropical headwater streams? Journal of the North American Benthological Society 28: 426–439.CrossRefGoogle Scholar
  39. Lau, D. P., K. Y. Leung & D. Dudgeon, 2009c. Evidence of rapid shifts in the trophic base of lotic predators using experimental dietary manipulations and assimilation-based analyses. Oecologia 159: 767–776.CrossRefPubMedGoogle Scholar
  40. Leberfinger, K., I. Bohman & J. A. N. Herrmann, 2011. The importance of terrestrial resource subsidies for shredders in open-canopy streams revealed by stable isotope analysis. Freshwater Biology 56: 470–480.CrossRefGoogle Scholar
  41. Levin, L. A. & C. Currin, 2012. Stable isotope protocols: sampling and sample procesing Scripps Institution of Oceanography Technical Report. eScholarship, University of California.Google Scholar
  42. Li, A. O. Y. & D. Dudgeon, 2008. Food resources of shredders and other benthic macroinvertebrates in relation to shading conditions in tropical Hong Kong streams. Freshwater Biology 53: 2011–2025.CrossRefGoogle Scholar
  43. López-Rodríguez, M. J., J. M. Tierno de Figueroa & J. Alba-Tercedor, 2009. Life history of two burrowing aquatic insects in southern Europe: leuctra geniculata (Insecta: Plecoptera) and Ephemera danica (Insecta: Ephemeroptera). Aquatic Insects 31: 99–110.CrossRefGoogle Scholar
  44. Marcarelli, A. M., C. V. Baxter, M. M. Mineau & R. O. Hall, 2011. Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. Ecology 92: 1215–1225.CrossRefPubMedGoogle Scholar
  45. McHugh, P. A., A. R. McIntosh & P. G. Jellyman, 2010. Dual influences of ecosystem size and disturbance on food chain length in streams. Ecology Letters 13: 881–890.CrossRefPubMedGoogle Scholar
  46. McNeely, C., S. M. Clinton & J. M. Erbe, 2006. Landscape variation in C sources of scraping primary consumers in streams. Journal of the North American Benthological Society 25: 787–799.CrossRefGoogle Scholar
  47. Mey, W., 1997. Nilsson, A. (ed), Aquatic Insects of North Europe. A taxonomic handbook. Vol. 1: Ephemeroptera. Plecoptera, Heteroptera, Megaloptera, Neuroptera, Coleoptera, Trichoptera and Lepidoptera. 1996. Hardbound, Apollo Books, Denmark.Google Scholar
  48. Minshall, G. W., 1967. Role of allochthonous detritus in the trophic structure of a woodland springbrook community. Ecology 48: 139–149.CrossRefGoogle Scholar
  49. Moldenke, A. R. & C. Ver Linden, 2007. Effects of clearcutting and riparian buffers on the yield of adult aquatic macroinvertebrates from headwater streams. Forest Science 53: 308–319.Google Scholar
  50. Monteith, J. L. & M. H. Unsworth, 1973. Principles of environmental physics, 2nd ed. Edward Arnold, London, UK.Google Scholar
  51. Moore, J. W., 1975. The role of algae in the diet of Asellus aquaticus L. and Gammarus pulex L. Journal of Animal Ecology 44: 719–730.CrossRefGoogle Scholar
  52. Moore, J. W., 1977. Some factors effecting algal consumption in subarctic ephemeroptera, plecoptera and simuliidae. Oecologia 27: 261–273.CrossRefPubMedGoogle Scholar
  53. Moulton, T. P., 2006. Why the world is green, the waters are blue and food webs in small streams in the Atlantic rainforest are predominantly driven by microalgae? Oecologia Australis 10: 78–89.Google Scholar
  54. Nakagawa, S. & H. Schielzeth, 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution 4(2): 133–142.CrossRefGoogle Scholar
  55. Newman, R. M., 1991. Herbivory and detritivory on freshwater macrophytes by invertebrates: a review. Journal of the North American Benthological Society 10: 89–114.CrossRefGoogle Scholar
  56. Noel, D., C. W. Martin & C. A. Federer, 1986. Effects of forest clearcutting in New England on stream macroinvertebrates and periphyton. Environmental Management 10: 661–670.CrossRefGoogle Scholar
  57. Ovidio, M., E. Baras, D. Goffaux, F. Giroux & J. C. Philippart, 2002. Seasonal variations of activity pattern of brown trout (Salmo trutta) in a small stream, as determined by radio-telemetry. Hydrobiologia 470(1): 195–202.CrossRefGoogle Scholar
  58. Palmer, M. A., H. L. Menninger & E. Bernhardt, 2009. River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshwater Biology 55(1): 1–18.Google Scholar
  59. Parnell, A., R. Inger & S. Bearhop, 2010. Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5(3): e9672.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Parnell, A., R. Inger, S. Bearhop & A. L. Jackson, 2013a. SIAR: Stable isotope analysis in R.Google Scholar
  61. Parnell, A. C., D. L. Phillips, S. Bearhop, B. X. Semmens, E. J. Ward, J. W. Moore, A. L. Jackson, J. Grey, D. J. Kelly & R. Inger, 2013b. Bayesian stable isotope mixing models. Environmetrics 24: 387–399.Google Scholar
  62. Pedersen, B., 2004. NOVANA, Teknisk anvisning for marin overvågning, 2.3 klorofyl a. I Tekniske anvisninger for marin overvågning. Miljøministeriet, Danmarks Miljøundersøgelser (In Danish).Google Scholar
  63. Phillips, D. L., 2012. Converting isotope values to diet composition: the use of mixing models. Journal of Mammalogy 93: 342–352.CrossRefGoogle Scholar
  64. Pimm, S. L. & R. L. Kitching, 1987. The determinants of food chain lengths. Oikos 50: 302–307.CrossRefGoogle Scholar
  65. Post, D. M., 2002. The long and short of food-chain length. Trends in Ecology & Evolution 17: 269–277.CrossRefGoogle Scholar
  66. Post, D. M., M. L. Pace & N. G. Hairston, 2000. Ecosystem size determines food-chain length in lakes. Nature 405: 1047–1049.CrossRefPubMedGoogle Scholar
  67. R Core Team (2014) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/.
  68. Riis, T., K. Dodds, P. B. Kristensen & A. J. Baisner, 2012. Nitrogen cycling and dynamics in a macrophyte-rich stream as determined by a 15N-NH+4 release. Freshwater Biology 57: 1579–1591.CrossRefGoogle Scholar
  69. Rounick, J. S., M. J. Winterbourn & G. L. Lyon, 1982. Differential utilization of allochthonous and autochthonous inputs by aquatic invertebrates in some New Zealand Streams: a stable carbon isotope study. Oikos 39: 191–198.CrossRefGoogle Scholar
  70. Sabo, J. L., J. C. Finlay, T. Kennedy & D. M. Post, 2010. The role of discharge Variation in scaling of drainage area and food chain length in rivers. Science 330(6006): 965–967.Google Scholar
  71. Sullivan, S. M. P., 2013. Stream foodweb δ13C and geomorphology are tightly coupled in mountain drainages of northern Idaho. Freshwater Science 32(2): 606–621.CrossRefGoogle Scholar
  72. Sullivan, S. M. P., K. Hossler & C. M. Cianfrani, 2015. Ecosystem structure emerges as a strong determinant of food-chain length in linked stream–riparian ecosystems. Ecosystems 18(8): 1356–1372.CrossRefGoogle Scholar
  73. Spencer, C. N., K. O. Gabel & F. R. Hauer, 2003. Wildfire effects on stream food webs and nutrient dynamics in Glacier National Park, USA. Forest Ecology and Management 178: 141–153.CrossRefGoogle Scholar
  74. Teixeira de Mello, F., M. Meerhoff, I. González-Bergonzoni, E. A. Kristensen, A. Baattrup-Pedersen & E. Jeppesen, 2016. Influence of riparian forests on fish assemblages in temperate. Environmental Biology of Fishes 99(1): 133–144.CrossRefGoogle Scholar
  75. Thompson, R. M. & C. R. Townsend, 2003. Impacts on stream food webs of native and exotic forest: an intercontinental comparison. Ecology 84: 145–161.CrossRefGoogle Scholar
  76. Thompson, R. M. & C. R. Townsend, 2005. Energy availability, spatial heterogeneity and ecosystem size predict food-web structure in streams. Oikos 108: 137–148.CrossRefGoogle Scholar
  77. Thompson, R. M., N. R. Phillips & C. R. Townsend, 2009. Biological consequences of clear-cut logging around streams – moderating effects of management. Forest Ecology and Management 257: 931–940.CrossRefGoogle Scholar
  78. Thorp, J. H. & M. D. Delong, 1994. The riverine productivity model: an heuristic view of carbon sources and organic processing in large river ecosystems, vol 70. Blackwell, Oxford, ROYAUME-UNI.Google Scholar
  79. Thorp, J. H. & M. D. Delong, 2002. Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers. Oikos 96: 543–550.CrossRefGoogle Scholar
  80. Vander Zanden, M. J., G. Cabana & J. B. Rasmussen, 1997. Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data. Canadian Journal of Fisheries and Aquatic Sciences 54: 1142–1158.CrossRefGoogle Scholar
  81. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.CrossRefGoogle Scholar
  82. Wallace, J. B. & R. W. Merritt, 1980. Filter-feeding ecology of aquatic insects. Annual Review of Entomology 25: 103–132.CrossRefGoogle Scholar
  83. Warfe, D. M., L. A. Barmuta & S. Wotherspoon, 2008. Quantifying habitat structure: surface convolution and living space for species in complex environments. Oikos 117: 1764–1773.CrossRefGoogle Scholar
  84. Warfe, D. M., T. D. Jardine, N. E. Pettit, S. K. Hamilton, B. J. Pusey, S. E. Bunn, P. M. Davies & M. M. Douglas, 2013. Productivity, disturbance and ecosystem size have no influence on food chain length in seasonally connected rivers. PLoS ONE 8(6): e66240.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Welles, J. M. & J. M. Norman, 1991. Instrument for indirect measurement of canopy architecture. Agronomy Journal 83(5): 818–825.Google Scholar
  86. Winemiller, K. O., A. S. Flecker & D. J. Hoeinghaus, 2010. Patch dynamics and environmental heterogeneity in lotic ecosystems. Journal of the North American Benthological Society 29(1): 84–99.CrossRefGoogle Scholar
  87. Whiting, D. P., M. R. Whiles & M. L. Stone, 2011. Patterns of macroinvertebrate production, trophic structure, and energy flow along a tallgrass prairie stream continuum. Limnology and Oceanography 56: 887–898.CrossRefGoogle Scholar
  88. Zuur, A. F., E. N. Ieno, N. J. Walker, G. M. Smith & A. A. Saveliev, 2009. Mixed effects models and extensions in ecology with R. Springer, New York.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • I. González-Bergonzoni
    • 1
    • 2
    • 3
  • P. B. Kristensen
    • 4
  • A. Baattrup-Pedersen
    • 1
  • E. A. Kristensen
    • 5
  • A. B. Alnoee
    • 1
    • 4
  • T. Riis
    • 4
  1. 1.Department of BioscienceAarhus UniversitySilkeborgDenmark
  2. 2.Laboratorio de Etología, Ecología y EvoluciónInstituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay
  3. 3.Departamento de Ecología y Evolución, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  4. 4.Department of BioscienceAarhus UniversityAarhusDenmark
  5. 5.EnviDanSilkeborgDenmark

Personalised recommendations