Advertisement

Hydrobiologia

, Volume 805, Issue 1, pp 259–271 | Cite as

Phytoplankton response to experimental thermocline deepening: a mesocosm experiment

  • Géza B. SelmeczyEmail author
  • Lothar Krienitz
  • Peter Casper
  • Judit Padisák
Primary Research Paper

Abstract

A number of modelling results suggested thermocline shifts as a consequence of global climate change in stratifying lakes. Abundance and composition of the phytoplankton assemblage is strongly affected by the stratification patterns, and therefore, change in the thermocline position might have a substantial effect on this community or even on the whole lake ecosystem. In this study, thermocline depths in large mesocosms installed in Lake Stechlin (Germany) were deepened by 2 meters and phytoplankton changes were analysed by comparing changes to untreated mesocosms. Higher amounts of SRP were registered in the hypolimnion of treatment mesocosms than in the controls, and there were no differences in the epilimnion. Small but significant changes were observed on the phytoplankton community composition related to the effect of deepening the thermocline; however, it was weaker than the yearly successional changes. The most remarkable differences were caused by Planktothrix rubescens and by chlorophytes. P. rubescens became strongly dominant at the end of the experiment in the mesocosms, and in the open lake as well. The results of the experiment cannot clearly support the proliferation of cyanobacteria in general; however, the deepened thermocline can modify the behaviour of some species, as was observed in case of P. rubescens.

Keywords

Lake Stechlin Altered stratification Mesocosm experiment Phytoplankton community Planktothrix rubescens Climate change 

Notes

Acknowledgement

We are grateful to the entire team of the TemBi project for the planning, preparation and conduction of the experiment: U. Beyer, C. Engelhardt, A. Fuchs, M. O. Gessner, H.-P. Grossart, T. Hornick, J. Hüpeden, E. Huth, C. Kasprzak, P. Kasprzak, G. Kirillin, M. Lentz, E. Mach, U. Mallok, G. Mohr, M. Monaghan, M. Papke, R. Rossberg, M. Sachtleben, J. Sareyka, M. Soeter, C. Wurzbacher and E. Zwirnmann. We thank Andrea Fuchs for her ideas related to statistical analyses. Furthermore, we thank the anonymous reviewers who helped to improve the manuscript. The project “TemBi - Climate driven changes in biodiversity of microbiota” is granted by the Leibniz society (SAW-2011-IGB-2). Partial support was provided by the Hungarian National Research, Development and Innovation Office (NKFIH K-120595).

References

  1. APHA-American Public Health Association, 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. United Book Press Inc, Baltimore.Google Scholar
  2. Arvola, L., G. George, D. M. Livingstone, M. Järvinen, T. Blenckner, M. T. Dokulil, E. Jennings, C. N. Aonghusa, P. Nõges, T. Nõges & G. A. Weyhenmeyer, 2010. The impact of the changing climate on the thermal characteristics of lakes. In George, G. (ed.), The Impact of Climate Change on European Lakes. Aquatic Ecology Series, Vol. 4. Springer, Netherlands: 85–101.Google Scholar
  3. Bauchrowitz, M., 2012. The LakeLab – A new experimental platform to study impacts of global climate change on lakes. SIL News 60: 10–12.Google Scholar
  4. Behrenfeld, M. J., R. T. O’Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. Feldman, A. J. Milligan, P. G. Falkowski, R. M. Letelier & E. S. Boss, 2006. Climate-driven trends in contemporary ocean productivity. Nature 444: 752–755.CrossRefPubMedGoogle Scholar
  5. Bicudo, C Ed M, C. Ferragut & M. R. Massagardi, 2009. Cryptophyceae population dynamics in an oligo-mesotrophic reservoir (Ninféias pond) in São Paulo, southeast Brazil. Hoehnea 36: 99–111.CrossRefGoogle Scholar
  6. Camacho, A., 2006. On the occurrence and ecological features of deep chlorophyll maxima (DCM) in Spanish stratified lakes. Limnetica 25: 453–478.Google Scholar
  7. Cantin, A., B. E. Beisner, J. M. Gunn, Y. T. Prairie & J. G. Winter, 2011. Effects of thermocline deepening on lake plankton communities. Canadian Journal of Fisheries and Aquatic Sciences 68: 260–276.CrossRefGoogle Scholar
  8. Carey, C. C., B. W. Ibelings, E. P. Hoffmann, D. P. Hamilton & J. D. Brookes, 2012. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Research 46: 1394–1407.CrossRefPubMedGoogle Scholar
  9. Casper, S. J., 1985. Lake Stechlin. A Temperate Oligotrophic Lake. Dr. W. Junk Publishers, Dordrecht.Google Scholar
  10. Coats, R., J. Perez-Losada, G. Schladow, R. Richards & C. Goldman, 2006. The warming of lake Tahoe. Climatic Change 76: 121–148.CrossRefGoogle Scholar
  11. Dadheech, P. K., G. B. Selmeczy, G. Vasas, J. Padisák, W. Arp, K. Tapolczai, P. Casper & L. Krienitz, 2014. Presence of potential toxin-producing cyanobacteria in an oligo-mesotrophic lake in Baltic Lake District, Germany: an ecological, genetic and toxicological survey. Toxins 6: 2912–2931.CrossRefPubMedPubMedCentralGoogle Scholar
  12. De Senerpont Domis, L. N., J. J. Elser, A. S. Gsell, V. L. M. Huszar, B. W. Ibelings, E. Jeppesen, S. Kosten, W. M. Mooij, F. Roland, U. Sommer, E. Van Donk, M. Winder & M. Lürling, 2013. Plankton dynamics under different climatic conditions in space and time. Freshwater Biology 58: 463–482.CrossRefGoogle Scholar
  13. DeStasio, B. T., D. K. Hill, J. M. Kleinhans, N. P. Nibbelink & J. J. Magnuson, 1996. Potential effects of global climate change on small north-temperate lakes: Physics, fish, and plankton. Limnology and Oceanography 41: 1136–1149.CrossRefGoogle Scholar
  14. Dufrene, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.Google Scholar
  15. Ehling-Schulz, M. & S. Scherer, 1999. UV protection in cyanobacteria. European Journal of Phycology 34: 329–338.CrossRefGoogle Scholar
  16. Elo, A.-R., T. Huttula, A. Peltonen & J. Virta, 1998. The effects of climate change on the temperature conditions of lakes. Boreal Environment Research 3: 137–150.Google Scholar
  17. Fee, E. J., R. E. Hecky, S. E. M. Kasian & D. R. Cruikshank, 1996. Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnology and Oceanography 41: 912–920.CrossRefGoogle Scholar
  18. Findlay, D. L., S. E. M. Kasian, M. P. Stainton, K. Beaty & M. Lyng, 2001. Climatic influences on algal populations of boreal forest lakes in the experimental lakes area. Limnology and Oceanography 46: 1784–1793.CrossRefGoogle Scholar
  19. Fuchs, A., J. Klier, F. Pinto, G. B. Selmeczy, B. Szabó, J. Padisák, K. Jürgens & P. Casper, 2017. Effects of artificial thermocline deepening on sedimentation rates and microbial processes in the sediment. Hydrobiologia. doi: 10.1007/s10750-017-3202-7.Google Scholar
  20. Gerten, D. & R. Adrian, 2002. Responses of lake temperatures to diverse North Atlantic Oscillation indices. In Wetzel, R. G. (ed.), International Association of Theoretical and Applied Limnology Proceedings. E Schweizerbart’sche Verlagsbuchhandlung, Stuttgart: 1593–1596.Google Scholar
  21. Gervais, F., 1997. Diel vertical migration of Cryptomonas and Chromatium in the deep chlorophyll maximum of a eutrophic lake. Journal of Plankton Research 19: 533–550.CrossRefGoogle Scholar
  22. Hillebrand, H., C.-D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.CrossRefGoogle Scholar
  23. Huisman, J., J. Sharples, J. M. Stroom, P. M. Visser, W. E. A. Kardinaal, J. M. H. Verspagen & B. Sommeijer, 2004. Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85: 2960–2970.CrossRefGoogle Scholar
  24. IPCC, 2007. Summary for policymakers. In Pachauri, R. K. & A. Reisinger (eds), Climate Change 2007: Synthesis Report. Switzerland, Geneva.Google Scholar
  25. IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker, T. F., et al. (eds). Cambridge University Press, Cambrigde.Google Scholar
  26. King, J. R., B. J. Shuter & A. P. Zimmerman, 1997. The response of the thermal stratification of South Bay (Lake Huron) to climatic variability. Canadian Journal of Fisheries and Aquatic Sciences 54: 1873–1882.CrossRefGoogle Scholar
  27. Krieger, W., 1927. Die Gattung Centronella Voigt. Berichte der Deutschen Botanischen Gesellschaft 45: 281–290.Google Scholar
  28. Livingstone, D. M., 2003. Impact of secular climate change on the thermal structure of a large temperate central European lake. Climatic Change 57: 205–225.CrossRefGoogle Scholar
  29. Lund, J. W. G., 1950. Studies on Asterionella formosa Hass: II. Nutrient depletion and the spring maximum. Journal of Ecology 38: 15–35.CrossRefGoogle Scholar
  30. Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.CrossRefGoogle Scholar
  31. Medeiros, L. D., A. Mattos, M. Lurling & V. Becker, 2015. Is the future blue-green or brown? The effects of extreme events on phytoplankton dynamics in a semi-arid man-made lake. Aquatic Ecology 49: 293–307.CrossRefGoogle Scholar
  32. Micheletti, S., F. Schanz & A. E. Walsby, 1998. The daily integral of photosynthesis by Planktothrix rubescens during summer stratification and autumnal mixing in Lake Zürich. New Phytologist 139: 233–246.CrossRefGoogle Scholar
  33. Padisák, J., O. L. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.CrossRefGoogle Scholar
  34. Padisák, J., É. Hajnal, L. Krienitz, J. Lakner & V. Üveges, 2010. Rarity, ecological memory, rate of floral change in phytoplankton – and the mystery of the Red Cock. Hydrobiologia 653: 45–64.CrossRefGoogle Scholar
  35. Padisák, J., W. Scheffler, P. Kasprzak, R. Koschel & L. Krienitz, 2003. Interannual variability in the phytoplankton composition of Lake Stechlin (1994–2000). Archiv für Hydrobiologie, Special Issues, Advances in Limnology 58: 101–133.Google Scholar
  36. Ptacnik, R., S. Diehl & S. Berger, 2003. Performance of sinking and nonsinking phytoplankton taxa in a gradient of mixing depths. Limnology and Oceanography 48: 1903–1912.CrossRefGoogle Scholar
  37. R Core Team, 2015. A language and environment for statistical computing. http://www.R-project.org/.
  38. Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge.Google Scholar
  39. Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  40. Reynolds, C. S. & J. B. Reynolds, 1985. The atypical seasonality of phytoplankton in Crose Mere, 1972: an independent test of the hypothesis that variability in the physical environment regulates community dynamics and structure. British Phycological Journal 20: 227–242.CrossRefGoogle Scholar
  41. Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.CrossRefGoogle Scholar
  42. Roberts, D. W., 2012. labdsv: ordination and multivariate analysis for ecology. http://CRAN.R-project.org/package=labdsv.
  43. Robertson, D. M. & R. A. Ragotzkie, 1990. Changes in the thermal structure of moderate to large sized lakes in response to changes in air temperature. Aquatic Sciences 52: 360–380.CrossRefGoogle Scholar
  44. Salmaso, N., A. Boscaini, C. Capelli, L. Cerasino, M. Milan, S. Putelli & M. Tolotti, 2015. Historical colonization patterns of Dolichospermum lemmermannii (Cyanobacteria) in a deep lake south of the Alps. Advances in Oceanography and Limnology 6: 35–45.CrossRefGoogle Scholar
  45. Schindler, D. W., S. E. Bayley, B. R. Parker, K. G. Beaty, D. R. Cruikshank, E. J. Fee, E. U. Schindler & M. P. Stainton, 1996. The effects of climatic warming on the properties of boreal lakes and streams at the Experimental Lakes Area, northwestern Ontario. Limnology and Oceanography 41: 1004–1017.CrossRefGoogle Scholar
  46. Selmeczy, G. B., K. Tapolczai, P. Casper, L. Krienitz & J. Padisák, 2016. Spatial- and niche segregation of DCM-forming cyanobacteria in Lake Stechlin (Germany). Hydrobiologia 764: 229–240.CrossRefGoogle Scholar
  47. Sommer, U., 1988. Growth and survival strategies of planktonic diatoms. In Sandgren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambrigde University Press, Cambridge: 227–260.Google Scholar
  48. Straile, D., K. D. Jöhnk & H. Rossknecht, 2003. Complex effects of winter warming on the physicochemical characteristics of a deep lake. Limnology and Oceanography 48: 1432–1438.CrossRefGoogle Scholar
  49. Sukenik, A., A. Quesada & N. Salmaso, 2015. Global expansion of toxic and non-toxic cyanobacteria: effect on ecosystem functioning. Biodiversity and Conservation 24: 889–908.CrossRefGoogle Scholar
  50. Turner, J. S., 1979. Buoyancy effetcs in fluids. Cambridge University Press, Cambridge.Google Scholar
  51. Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der internationalen Vereinigung für theoretische und angewandte Limnologie 9: 1–38.Google Scholar
  52. Üveges, V., K. Tapolczai, L. Krienitz & J. Padisák, 2012. Photosynthetic characteristics and physiological plasticity of an Aphanizomenon flos-aquae (Cyanobacteria, Nostocaceae) winter bloom in a deep oligo-mesotrophic lake (Lake Stechlin, Germany). Hydrobiologia 698: 263–272.CrossRefGoogle Scholar
  53. Vaccari, D. A., P. F. Strom & J. E. Alleman, 2006. Environmental Biology for Engineers and Scientists. Wiley, Hoboken.Google Scholar
  54. Vincent, W. F., 2009. Effects of climate change on lakes. In Likens, G. F. (ed.), Biogeochemistry of inland waters. Elsevier, Quebec City: 611–616.Google Scholar
  55. Visser, P. M., L. Massaut, J. Huisman & L. R. Mur, 1996. Sedimentation losses of Scenedesmus in relation to mixing depth. Archiv für Hydrobiologie 136: 276–277.Google Scholar
  56. Winder, M., J. E. Reuter & S. G. Schladow, 2009. Lake warming favours small-sized planktonic diatom species. Proceedings of the Royal Society B 276: 427–435.CrossRefPubMedGoogle Scholar
  57. Winder, M. & U. Sommer, 2012. Phytoplankton response to a changing climate. Hydrobiologia 698: 5–16.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Géza B. Selmeczy
    • 1
    Email author
  • Lothar Krienitz
    • 2
  • Peter Casper
    • 2
  • Judit Padisák
    • 1
    • 3
  1. 1.Department of LimnologyUniversity of PannoniaVeszprémHungary
  2. 2.Department of Experimental LimnologyLeibniz-Institute of Freshwater Ecology and Inland FisheriesStechlinGermany
  3. 3.MTA-PE Limnoecology Research GroupVeszprémHungary

Personalised recommendations