Advertisement

Hydrobiologia

, Volume 805, Issue 1, pp 231–243 | Cite as

Effects of water velocity and substrate composition on foraging efficiency of an endangered benthic cyprinid, Nooksack dace (Rhinichthys cataractae subsp. cataractae)

  • J. Michael Champion
  • Jordan S. Rosenfeld
  • Robert Shadwick
Primary Research Paper
  • 138 Downloads

Abstract

To identify the mechanisms whereby substrate embeddedness and water velocity influence Nooksack dace (Rhinichthys cataractae subsp. cataractae) prey capture efficiency, we stocked dace in foraging arenas with varying substrate types over a range of velocities (0, 25, 35 cm s−1) and measured their efficiency of prey capture. We stocked a known number of mayfly (Ephemeroptera), black fly (Simuliidae), and chironomid (Chironomidae) larvae in each foraging arena and measured the number of invertebrates remaining after 12 h. Foraging efficiency for mayflies was significantly reduced over unembedded substrate, and capture efficiency for all taxa decreased at higher velocities in all substrate treatments. Decreased foraging efficiency indicates that higher velocities may degrade the accuracy of prey strikes, that dace may alter their foraging behavior to reduce energy expenditures at higher velocities, that there is less available foraging habitat within their velocity tolerances, or that invertebrates become more interstitial at higher velocities. Although it is difficult to unambiguously discriminate among these mechanisms with our experimental design, our results suggest that dace are adapted to foraging in low-velocity micro-habitats within the boundary layer, and that their foraging efficiency may be sensitive to both the refuging ability of their prey and velocity and turbulence at their focal point.

Keywords

Benthic fish Embeddedness Boundary layer Capture success Foraging habitat 

Notes

Acknowledgements

This work was funded by the British Columbia Ministry of Environment, Fisheries and Oceans Canada, and a Natural Sciences and Engineering Research Council of Canada discovery grant. We would also like to thank the reviewers for their careful review and comments on this manuscript.

References

  1. Anderson, P. G., B. R. Taylor & G. C. Balch, 1996. Quantifying the effects of sediment release on fish and their habitats. Canadian Manuscript Reports of Fisheries and Aquatic Sciences 2346: 110 p + Append.Google Scholar
  2. Avery-Gomm, S., 2013. Determining the impacts of hydrological drought on endangered Nooksack dace (Rhinichthys cataractae) at the population and individual level: Implications for minimum environmental flow requirements. M.Sc. Thesis, Department of Zoology, The University of British Columbia.Google Scholar
  3. Avery-Gomm, S., J. S. Rosenfeld, J. S. Richardson & M. Pearson, 2014. Hydrological drought and the role of refugia in an endangered riffle-dwelling fish, Nooksack dace (Rhinichthys cataractae ssp.). Canadian Journal of Fisheries and Aquatic Sciences 71: 1625–1634.CrossRefGoogle Scholar
  4. Beers, C. B. & J. M. Culp, 1990. Plasticity in foraging behaviour of a lotic minnow (Rhinichthys cataractae) in response to different light intensities. Canadian Journal of Zoology 68: 101–105.CrossRefGoogle Scholar
  5. Berkman, H. E. & C. F. Rabeni, 1987. Effects of siltation on stream fish communities. Environmental Biology of Fishes 18: 285–294.CrossRefGoogle Scholar
  6. Bo, T., S. Fenoglio, G. Malacarne, M. Pessino & F. Sagriboldi, 2007. Effects of clogging on stream macroinvertebrates: an experimental approach. Limnologica 37: 186–192.CrossRefGoogle Scholar
  7. Brusven, M. A. & S. T. Rose, 1981. Influence of substrate composition and suspended sediment on insect predation by the Torrent Sculpin, Cottus rhotheus. Canadian Journal of Fisheries and Aquatic Sciences 38: 1444–1448.CrossRefGoogle Scholar
  8. Carlson, R. L. & G. V. Lauder, 2011. Escaping the flow: boundary layer use by the darter Etheostoma tetrazonum (Percidae) during benthic station holding. The Journal of Experimental Biology 214: 1181–1193.CrossRefPubMedGoogle Scholar
  9. Champion, J. M., 2016. Determining the effects of sediment deposition on the growth, survival, and foraging efficiency of the endangered Nooksack dace (Rhinichthys cataractae sp. cataractae), and on the abundance, distribution, and community structure of their invertebrate prey. M.Sc. Thesis. Department of Zoology, The University of British Columbia.Google Scholar
  10. Charnov, E. L., 1974. Optimal foraging, the marginal value theorem. Theoretical Population Biology 9: 129–136.CrossRefGoogle Scholar
  11. COSEWIC, 2007. COSEWIC assessment and update status report on the Nooksack Dace Rhinichthys cataractae ssp. In Canada, Committee on the Status of Endangered Wildlife in Canada. Ottawa. Vii + 27 pp. (www.sararegistry.gc.ca/status/status_e.cfm).
  12. Culp, J. M., 1989. Nocturnally constrained foraging of a lotic minnow (Rhinichthys cataractae). Canadian Journal of Zoology 67: 2008–2012.CrossRefGoogle Scholar
  13. Culp, J. M., S. J. Walde & R. W. Davies, 1983. Relative Importance of Substrate particle size and detritus to stream benthic macroinvertebrate microdistribution. Canadian Journal of Fisheries and Aquatic Sciences 40: 1568–1574.CrossRefGoogle Scholar
  14. Culp, J. M., N. E. Glozier & G. J. Scrimgeour, 1991. Reduction of predation risk under the cover of darkness: avoidance responses of mayfly larvae to a benthic fish. Oecologia 86: 163–169.CrossRefPubMedGoogle Scholar
  15. Davis, J. A., 1986. In Limnology in Australia. De Deckker, P. & W. D. Williams (eds). Academic Publishers, Hingham: 263–276.Google Scholar
  16. Diehl, S., 1992. Fish predation and benthic community structure: the role of omnivory and habitat complexity. Ecology 73: 1646–1661.CrossRefGoogle Scholar
  17. Eaton, B. C. & J. S. Rosenfeld, 2016. Mechanisms of flow and sediment transport in fluvial ecosystems: physical and ecological consequences. In Johnson, E. A. & Y. E. Martin (eds.), A Biogeoscience Approach to Ecosystems. Cambridge University Press, Cambridge: 347–382.CrossRefGoogle Scholar
  18. Enders, E. C., D. Boisclair & A. G. Roy, 2003. The effect of turbulence on the cost of swimming for juvenile Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 1160: 1149–1160.CrossRefGoogle Scholar
  19. Evans, E. & A. C. Wilcox, 2013. Fines sediment infiltration dynamics in a gravel-bed river following a sediment pulse. River Research and Applications 30: 372–384.CrossRefGoogle Scholar
  20. Facey, D. E. & G. D. Grossman, 1990. The metabolic cost of maintaining position for four North American stream fishes: effects of season and velocity. Physiological Zoology 63: 757–776.CrossRefGoogle Scholar
  21. Finstad, A. G., S. Einum, T. Forseth & O. Ugedal, 2007. Shelter availability affects behaviour, size-dependent and mean growth of juvenile atlantic salmon. Freshwater Biology 52: 170–1718.CrossRefGoogle Scholar
  22. Flecker, A. S. & J. D. Allan, 1984. The importance of predation, substrate and spatial refugia in determining lotic insect distributions. Oecologia 64: 306–313.CrossRefPubMedGoogle Scholar
  23. Fonseca, D. M. & D. D. Hart, 2001. Colonization history masks habitat preferences in local distributions of stream insects. Ecology 82: 2897–2910.CrossRefGoogle Scholar
  24. Gee, J. H. & T. G. Northcote, 1963. Comparative ecology of two sympatric species of dace (Rhinichthys) in the Fraser River system, British Columbia. Journal of the Fisheries Research Board of Canada 20: 105–118.CrossRefGoogle Scholar
  25. Gibbons, J. R. H. & J. H. Gee, 1972. Ecological segregation between Longnose and Blacknose dace (Genus Rhinichthys) in the Mink River, Manitoba. Journal of the Fisheries Research Board of Canada 29: 1245–1252.CrossRefGoogle Scholar
  26. Gilchrist, G. H. & A. J. Gaston, 1997. Effects of murre nest site characteristics and wind conditions on predation by glaucous gulls. Canadian Journal of Zoology 75: 518–524.CrossRefGoogle Scholar
  27. Gordon, N. D., T. A. McMahon & B. A. Finlayson, 1992. Stream Hydrology: and Introduction for Ecologists. Wiley, New York: 526.Google Scholar
  28. Gotceitas, V. & P. Colgan, 1989. Predator forage success and habitat complexity: quantitative test of the threshold hypothesis. Oecologia 80: 158–166.CrossRefPubMedGoogle Scholar
  29. Grossman, G. D., 2014. Not all drift feeders are trout: a short review of fitness-based habitat selection models for fishes. Environmental Biology of Fishes 97: 465–473.CrossRefGoogle Scholar
  30. Grossman, G. D., P. A. Rincon, M. D. Farr & R. E. Ratajaczak Jr., 2002. A new optimal foraging model predicts habitat use by drift-feeding stream minnows. Ecology of Freshwater Fish 11: 2–10.CrossRefGoogle Scholar
  31. Hansen, M. J., S. P. Gloss & B. L. Peckarsky, 1986. Predator species richness and prey population variability: effects on diets of benthic stream fishes. American Midland Naturalist 115: 63–72.CrossRefGoogle Scholar
  32. Harvey, B. C. & A. J. Stewart, 1991. Fish size and habitat depth relationships in headwater streams. Oecologia 87: 336–342.CrossRefPubMedGoogle Scholar
  33. Hershey, A. E., 1987. Tubes and foraging behavior in larval Chironomidae: implications for predator avoidance. Oecologia 73: 236–241.CrossRefPubMedGoogle Scholar
  34. Higham, T. E., W. J. Stewart & P. C. Wainwright, 2015. Turbulence, temperature, and turbidity: the ecomechanics of predator–prey interactions in fishes. Integrative and Comparative Biology 55: 6–20.CrossRefPubMedGoogle Scholar
  35. Hill, J. & G. D. Grossman, 1987. Home range estimates for three North American stream fishes. Copeia 2:376–380.Google Scholar
  36. Hill, J. & G. D. Grossman, 1993. An energetic model of microhabitat use for rainbow trout and rosyside dace. Ecology 74: 685–698.CrossRefGoogle Scholar
  37. Hodges, S. W. & D. D. Magoulick, 2011. Refuge habitats for fishes during seasonal drying in an intermittent stream: movement, survival and abundance of three minnow species. Aquatic Sciences 73: 513–522.CrossRefGoogle Scholar
  38. Hurlbert, A. H., 2004. Species-energy relationships and habitat complexity in bird communities. Ecology Letters 7: 714–720.CrossRefGoogle Scholar
  39. Inglis, S. D., S. M. Pollard & M. L. Rosenau, 1997. Distribution and habitat of Nooksack dace (Rhinichthys sp.) in Canada. Fish and Wildlife Management, B.C. Ministry of Environment, Lands and Parks, Surrey, B.C. Reg. Fish. Report 237.Google Scholar
  40. Iwata, T., S. Nakano & M. Inoue, 2003. Impacts of past riparian deforestation on stream communities in tropical rain forest in Borneo. Ecological Applications 13: 461–473.CrossRefGoogle Scholar
  41. Jean-Guy, G. J. & R. W. Rangeley, 1989. Living in the fast lane: effects of cost of locomotion on foraging behaviour in juvenile Atlantic salmon. Animal Behaviour 37: 943–954.CrossRefGoogle Scholar
  42. Jones, J. I., J. F. Murphy, A. L. Collins, D. A. Sear, P. S. Naden & P. D. Armitage, 2012. The impact of fine sediment on macro-invertebrates. River Research Applications 28: 1055–1071.CrossRefGoogle Scholar
  43. Kaufmann, P. R., D. Larsen & J. M. Faustini, 2009. Bed stability and sedimentation associated with human disturbance in Pacific Northwest streams. Journal of the American Water Resources Association 45: 434–459.CrossRefGoogle Scholar
  44. Kemp, P., D. Sear, A. Collins, P. Naden & i Jones, 2011. The impacts of fine sediment on riverine fish. Hydrological Processes 25: 1800–1821.CrossRefGoogle Scholar
  45. Lancaster, J., 1990. Predation and drift of lotic macroinvertebrates during colonization. Oecologia 85(1): 48–56.CrossRefPubMedGoogle Scholar
  46. Malmqvist, B. & G. Sackmann, 1996. Changing risk of predation for a filter-feeding insect along a current velocity gradient. Oecologia 108: 450–458.CrossRefPubMedGoogle Scholar
  47. McPhail, J. D., 1996. Status of the Nooksack Dace, Rhinichthys sp., in Canada. Report to the Committee on the Status of Endangered Wildlife in Canada (COSEWIC). Canadian Wildlife Service, Ottawa.Google Scholar
  48. Mullen, D. M. & T. M. Burton, 1995. Size-related habitat use by longnose dace (Rhinichthys cataractae). American Midland Naturalist 133: 177–183.CrossRefGoogle Scholar
  49. Mullen, D. M. & T. M. Burton, 1998. Experimental tests of intraspecific competition in stream riffles between juvenile and adult longnose dace (Rhinichthys cataractae). Canadian Journal of Zoology 76: 855–862.CrossRefGoogle Scholar
  50. Nachman, G., 2006. A functional response model of a predator population foraging in a patchy habitat. Journal of Animal Ecology 75: 948–958.CrossRefPubMedGoogle Scholar
  51. Negishi, J. N. & J. S. Richardson, 2003. Response of organic matter and macroinvertebrates to placements of boulder clusters in a small stream of southwestern British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 60: 247–258.CrossRefGoogle Scholar
  52. Nerbonne, B. A. & B. Vondracek, 2001. Effects of local land use on physical habitat, benthic macroinvertebrates, and fish in the Whitewater River, Minnesota, USA. Environmental Management 28: 87–99.CrossRefPubMedGoogle Scholar
  53. Owens, P. N., R. J. Batalla, A. J. Collins, B. Gomez, D. M. Hicks, A. J. Horowitz, G. M. Kondolf, M. Marden, M. J. Page, D. H. Peacock, E. L. Petticrew, W. Salomons & D. H. Trustrum, 2005. Fine-grained sediment in river systems: environmental significance and management issues. River Resource Applications 21: 693–717.CrossRefGoogle Scholar
  54. Pearson, M. P., 1999. The biology and management of the Salish sucker and Nooksack dace. In Proceedings of a Conference on the Biology and Management of Species and Habitats at Risk, Kamloops, B.C. 15–19 February 1999.Google Scholar
  55. Pearson, M. P., 2004. The ecology, status and recovery prospects of Nooksack dace (Rhinichthys cataractae ssp.) and salish sucker (Catostomus Sp.) in Canada. PhD. Thesis, Institute for Resources, Environment, and Sustainability, The University of British Columbia.Google Scholar
  56. Pearson, M. P., T. Hatfield, J. D. McPhail, J. S. Richardson, J. S. Rosenfeld, H. Schreier, D. Schluter, D. J. Sneep, M. Stejpovic, E. B. Taylor & P. M. Wood, 2008. Recovery Strategy for the Nooksack Dace (Rhinichthys cataractae) in Canada. Species at Risk Act Recovery Strategy Series, Fisheries and Oceans Canada, Vancouver vi + 29 pp.Google Scholar
  57. Petty, T. J. & G. D. Grossman, 2010. Giving-up densities and ideal pre-emptive patch use in a predatory benthic stream fish. Freshwater Biology 55: 780–793.CrossRefGoogle Scholar
  58. Piccolo, J. J., N. F. Hughes & M. D. Bryant, 2008. Water velocity influences prey detection and capture by drift-feeding juvenile coho salmon (Oncorhynchus kisutch) and steelhead (Oncorhynchus mykiss irideus). Canadian Journal of Fisheries and Aquatic Sciences 65: 266–275.CrossRefGoogle Scholar
  59. R Development Core Team, 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  60. Ryan, P. A., 1991. Environmental effects of sediment on New Zealand streams: a review. New Zealand Journal of Marine and Freshwater Research 25: 207–221.CrossRefGoogle Scholar
  61. Schneider, K. N. & K. O. Winemiller, 2008. Structural complexity of woody debris patches influence fish and macroinvertebrate species richness in a temperate floodplain-river system. Hydrobiologia 610: 235–244.CrossRefGoogle Scholar
  62. Smith, G. H. S. & A. P. Nichols, 2005. Effect on flow structure of sand deposition on a gravel bed: results from a two-dimensional flume experiment. Water Resources Research 41: 1–12.Google Scholar
  63. Suttle, K. B., M. E. Power, J. M. Levine & C. McNeely, 2004. How fine sediments in riverbeds impairs growth and survival of juvenile Salmonids. Ecological Applications 14: 969–974.CrossRefGoogle Scholar
  64. Thompson, A. J., T. J. Petty & G. D. Grossman, 2001. Multi-scale effects of resource Patchiness on foraging behaviour and habitat use by longnose dace, Rhinichthys cataractae. Freshwater Biology 46: 145–160.CrossRefGoogle Scholar
  65. Tyler, J. A., 1993. Effects of water velocity, group size, and prey availability on the stream-drift capture efficiency of blacknose dace, Rhinichthys atratulus. Canadian Journal of Fisheries and Aquatic Sciences 50: 1055–1061.CrossRefGoogle Scholar
  66. Warfe, D. M. & L. A. Barmuta, 2004. Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 114: 171–178.CrossRefGoogle Scholar
  67. Wilcox, A. C., B. L. Peckarsky, B. W. Taylor & A. C. Encalada, 2008. Hydraulic and geomorphic effects on mayfly drift in high-gradient streams at moderate discharges. Ecohydrol 1: 176–186.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • J. Michael Champion
    • 1
  • Jordan S. Rosenfeld
    • 2
  • Robert Shadwick
    • 1
  1. 1.Department of ZoologyThe University of British ColumbiaVancouverCanada
  2. 2.Conservation Sciences SectionUniversity of British ColumbiaVancouverCanada

Personalised recommendations