, Volume 805, Issue 1, pp 189–201 | Cite as

Crude oil at concentrations considered safe promotes rapid stress-response in Lake Baikal endemic amphipods

  • Ekaterina P. Shchapova
  • Denis V. Axenov-Gribanov
  • Yulia A. Lubyaga
  • Zhanna M. Shatilina
  • Kseniya P. Vereshchagina
  • Ekaterina V. Madyarova
  • Eugeniy S. Protasov
  • Maxim A. TimofeyevEmail author
Primary Research Paper


The current study evaluated the possible toxic effects of the water-soluble fraction of crude oil on the general cellular stress-response mechanisms of two dominant representatives of Lake Baikal’s littoral community, the endemic amphipod species Eulimnogammarus verrucosus and E. cyaneus. The acute toxicity effects on the cellular stress-response mechanisms of amphipods were studied in the laboratory by exposing amphipods in water from Lake Baikal to addition of a water-soluble fraction of crude oil at concentrations considered safe for the aquatic environment. The present study found that even short-term exposure to a water-soluble fraction of crude oil at concentration of 50 µg/L, established as the threshold limit for fishery and aquaculture water reservoirs in the Russian Federation, directly affected the general stress-response markers HSP70 and lipid peroxidation and significantly changed the activity of antioxidant enzymes in both studied species. This result confirms the high sensitivity of Baikal endemics to crude oil. Thus, it also indicates that established standards and threshold limit values of oil concentrations estimated for ecological monitoring of general water reservoirs cannot be applied directly to the unique Lake Baikal ecosystem.


Lake Baikal Amphipoda Eulimnogammarus verrucosus E. cyaneus Oil toxicity Stress response HSP70 Lipid peroxidation Antioxidant enzymes 



Phenylmethylsulfonyl fluoride


Sodium dodecyl sulfate


United Nations Educational, Scientific and Cultural Organization


Eastern Siberia–Pacific Ocean pipeline


Heat shock proteins


Ethylenediaminetetraacetic acid


Polyvinylidene fluoride


5-Bromo-4-chloro-3′-indolyl phosphate


Nitro blue tetrazolium




Lethal dose



This study was primarily supported by Russian Science Foundation grant no. 14-14-00400; additional experiments were supported by RSF project no. 17-14-01063 (in 2017). Also, field research was supported by the Russian Foundation for Basic Research (15-29-01003, 16-34-60060, 16-34-00687, 15-04-06685), Ministry of Education and Science of the Russian Federation (6.1387.2017/4.6), and Lake Baikal Foundation. This support is gratefully acknowledged.

Supplementary material

10750_2017_3303_MOESM1_ESM.docx (1.1 mb)
Figure S1 Littoral amphipod species employed in the study. Eulimnogammarus cyaneus (upper) is an amphipod species endemic to Lake Baikal with size up to 15 mm from telson to rostrum. Its typical color is blue with red antennae. This species is omnivorous and inhabits rocky shores. It is a representative species of the upper-littoral zone. Approximately 90% of E. cyaneus individuals are found in the upper-littoral zone (less then 0.5 m), which is the environment with most fluctuating conditions in the lake. Eulimnogammarus verrucosus (lower) is an amphipod species endemic to Lake Baikal with size up to 45 mm from telson to rostrum. Its common color is green with black stripes across the body segments and antennae. The eyes are very slender, and the segments of the meta- and urosome are armored by thorns. This species is omnivorous and inhabits rocky substrata close to shore down to 10–15 m water depth. Both species are typical representatives of littoral community along Lake Baikal shoreline (DOCX 1164 kb)


  1. Aebi, H., 1984. Oxygen radicals in biological systems. Catalase in vitro. Methods in Enzymology 105: 121–126.CrossRefPubMedGoogle Scholar
  2. Almeda, R., Z. Wambaugh, Z. Wang, C. Hyatt, Z. Liu & E. J. Buskey, 2013. Interactions between zooplankton and crude oil: toxic effects and bioaccumulation of polycyclic aromatic hydrocarbons. PLoS ONE 8: 0067212.CrossRefGoogle Scholar
  3. Anderson J. W., & R. F. Lee, 2006. Use of biomarkers in oil spill risk assessment in the marine environment. Human and Ecological Risk Assessment 12(6): 1192–1222.CrossRefGoogle Scholar
  4. Axenov-Gribanov, D. V., D. S. Bedulina, Z. M. Shatilina, Y. A. Lubyaga, K. P. Vereshchagina & M. A. Timofeyev, 2014. A cellular and metabolic assessment of the thermal stress responses in the endemic gastropod Benedictia limnaeoides ongurensis from Lake Baikal. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 167: 16–22.CrossRefGoogle Scholar
  5. Axenov-Gribanov, D. V., D. S. Bedulina, Z. M. Shatilina, L. Jakob, K. P. Vereshchagina, Y. A. Lubyaga, A. Gurkov, E. Shchapova, T. Luckenbach, M. Lucassen, F. Sartoris, H. Pörtner & M. A. Timofeyev, 2016. Thermal preference ranges correlate with stable signals of universal stress markers in Lake Baikal endemic and Holarctic amphipods. PLoS ONE 11: e0164226.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barabanova T. L., N. E. Akopova, E. I. Maksakova, et al., 2003. The determination of mass concentration of chemical compounds by luminescence assays in environment. MUK 4.1.1262-03. Control methods. Chemical factors. Measurement of the mass concentration of petroleum products by the fluorimetric method in samples of drinking water and water from surface and groundwater sources.Google Scholar
  7. Bechmann, R. K., B. K. Larsen, I. C. Taban, L. I. Hellgren, P. Møller & S. Sanni, 2010. Chronic exposure of adults and embryos of Pandalus borealis to oil causes PAH accumulation, initiation of biomarker responses and an increase in larval mortality. Marine Pollution Bulletin 60: 2087–2098.CrossRefPubMedGoogle Scholar
  8. Bedulina, D. S., M. A. Timofeyev, M. Zimmer, E. Zwirnmann, R. Menzel & C. E. W. Steinberg, 2010. Different natural organic matter isolates cause similar stress response patterns in the freshwater amphipod, Gammarus pulex. Environmental Science and Pollution Research 17: 261–269.CrossRefPubMedGoogle Scholar
  9. Bedulina, D. S., M. B. Evgenev, M. A. Timofeyev, M. V. Protopopova, D. G. Garbuz, V. V. Pavlichenko, T. Luckenbach, Z. M. Shatilina, D. V. Axenov-Gribanov, A. N. Gurkov, I. M. Sokolova & O. G. Zatsepina, 2013. Expression patterns and organization of the hsp70 genes correlate with thermotolerance in two congener endemic amphipod species (Eulimnogammarus cyaneus and E. verrucosus) from Lake Baikal. Molecular Ecology 22: 1416–1430.CrossRefPubMedGoogle Scholar
  10. Bellas, J., L. Saco-Alvarez, Ó. Nieto, J. M. Bayona, J. Albaigés & R. Beiras, 2013. Evaluation of artificially-weathered standard fuel oil toxicity by marine invertebrate embryogenesis bioassays. Chemosphere 90: 1103–1108.CrossRefPubMedGoogle Scholar
  11. Bergmeyer, H.-U., 1985. Methods of Enzymatic Analysis. VCH, Weinheim.Google Scholar
  12. Borges, J. C. S., P. C. Branco, L. N. Pressinotti, D. Severino & J. R. M. C. da Silva, 2010. Intranuclear crystalloids of Antarctic sea urchins as a biomarker for oil contamination. Polar Biology 33: 843–849.CrossRefGoogle Scholar
  13. Botton, M. L., M. Pogorzelska, L. Smoral, A. Shehata & M. G. Hamilton, 2006. Thermal biology of horseshoe crab embryos and larvae: a role for heat shock proteins. Journal of Experimental Marine Biology and Ecology 336: 65–73.CrossRefGoogle Scholar
  14. Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.CrossRefPubMedGoogle Scholar
  15. Brussaard, C. P. D., L. Peperzak, S. Beggah, L. Y. Wick, B. Wuerz, J. Weber, S. Arey, B. Burg, A. Jonas, J. Huisman & J. Roelof van der Meer, 2016. Immediate ecotoxicological effects of short-lived oil spills on marine biota. Nature Communications 7: 1–11.CrossRefGoogle Scholar
  16. Bulatov, E. V., A. S. Rogotnev & V. A. Rogotnev, 2007. State standard samples of the composition and properties of oil and petroleum products. Standard Samples 1: 34–42. In Russian.Google Scholar
  17. Carls, M. G., G. D. Marty & J. E. Hose, 2002. Synthesis of the toxicological impacts of the Exxon Valdez oil spill on Pacific herring (Clupea pallasi) in Prince William Sound, Alaska, USA. Canadian Journal of Fisheries and Aquatic Sciences 59: 153–172.CrossRefGoogle Scholar
  18. Cottin, D., N. Foucreau, F. Hervant & C. Piscart, 2015. Differential regulation of hsp70 genes in the freshwater key species Gammarus pulex (Crustacea, Amphipoda) exposed to thermal stress: effects of latitude and ontogeny. Journal of Comparative Physiology B 185(3): 303–313.CrossRefGoogle Scholar
  19. Couceiro, S. R. M., N. Hamada, R. L. M. Ferreira, B. R. Forsberg & J. O. Da Silva, 2007. Domestic sewage and oil spills in streams: effects on edaphic invertebrates in flooded forest, Manaus, Amazonas, Brazil. Water, Air, & Soil Pollution 180: 249–259.CrossRefGoogle Scholar
  20. D’souza, N. A., A. Subramaniam, A. R. Juhl, M. Hafez, A. Chekalyuk, S. Phan, B. Yan, R. MacDonald, S. C. Weber & J. P. Montoya, 2016. Elevated surface chlorophyll associated with natural oil seeps in the Gulf of Mexico. Nature Geoscience 1: 4.Google Scholar
  21. De Hoop, L., A. M. Schipper, R. S. E. W. Leuven, M. A. J. Huijbregts, G. H. Olsen, M. G. D. Smit & A. J. Hendriks, 2011. Sensitivity of polar and temperate marine organisms to oil components. Environmental Science & Technology 45: 9017–9023.CrossRefGoogle Scholar
  22. Decree of the Federal Agency for Fisheries No. 20 at January 18, 2010  “On the approval of water quality standards for water bodies of fishery importance, including standards for maximum permissible concentrations of harmful substances in the waters of water bodies of fishery importance”.Google Scholar
  23. Downs, C. A., J. E. Fauth & Ch. M. Woodley, 2001. Assessing the health of grass shrimp (Palaeomonetes pugio) exposed to natural and anthropogenic stressors: a molecular biomarker system. Marine Biotechnology 3: 380–397.CrossRefPubMedGoogle Scholar
  24. Drotar, A., P. Phelps & R. Fall, 1985. Evidence for glutathione peroxidase activities in cultured plant cells. Plant Science 42: 35–40.CrossRefGoogle Scholar
  25. Elder, L. E. 2013. Metabolism, hypoxia tolerance and heat shock response of amphipods, emphasizing the hyperiid amphipod Phronima sedentaria.Google Scholar
  26. Eriyamremu, G. E., V. E. Osagie, S. E. Omoregie & C. O. Omofoma, 2008. Alterations in glutathione reductase, superoxide dismutase, and lipid peroxidation of tadpoles (Xenopus laevis) exposed to Bonny Light crude oil and its fractions. Ecotoxicology and Environmental Safety 71: 284–290.CrossRefPubMedGoogle Scholar
  27. Ernst, S. R., J. Morvan, E. Geslin, A. Le Bihan & F. J. Jorissen, 2006. Benthic foraminiferal response to experimentally induced Erika oil pollution. Marine Micropaleontology 61: 76–93.CrossRefGoogle Scholar
  28. Fukuyama, A. K., G. Shigenaka & D. A. Coats, 2014. Status of intertidal infaunal communities following the Exxon Valdez oil spill in Prince William Sound, Alaska. Marine Pollution Bulletin 84: 56–69.CrossRefPubMedGoogle Scholar
  29. Gorshkov, A. G., I. I. Marinayte, T. I. Zemskaya & T. V. Khodzher, 2010. Modern level of oil products in water of Lake Baikal and its tributaries. Chemistry for Sustainable Development 18: 711–718. in Russian.Google Scholar
  30. Habig, W. H., M. J. Pabst & W. B. Jakoby, 1974. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry 249: 7130–7139.PubMedGoogle Scholar
  31. Hannam, M. L., S. D. Bamber, A. Moody, T. S. Galloway & M. B. Jones, 2010. Immunotoxicity and oxidative stress in the Arctic scallop Chlamys islandica: effects of acute oil exposure. Ecotoxicology and Environmental Safety 73: 1440–1448.CrossRefPubMedGoogle Scholar
  32. Hatlen, K., L. Camus, J. Berge, G. H. Olsen & T. Baussant, 2009. Biological effects of water soluble fraction of crude oil on the Arctic sea ice amphipod Gammarus wilkitzkii. Chemistry and Ecology 25: 151–162.CrossRefGoogle Scholar
  33. Hishikuev, B. S., N. A. Hishikueva & V. N. Ivanov, 1996. Methods of determination of lipid peroxidation products in condensate of expired air and their clinical significance [In Russian]. Klinical Lab Diagnostika 3: 13–15.Google Scholar
  34. Hochachka, P. W. & G. N. Somero, 2002. Biochemical Adaptation: Mechanism and Process in Physiological Evolution, 1st ed. Oxford University Press, New York.Google Scholar
  35. Hylland, K., 2006. Polycyclic aromatic hydrocarbon (PAH) ecotoxicology in marine ecosystems. Journal of Toxicology and Environmental Health A 69: 109–123.CrossRefGoogle Scholar
  36. Incardona, J. P., L. D. Gardner, T. L. Linbo, T. L. Brown, A. J. Esbaugh, E. M. Mager, J. D. Stieglitzc, B. Frencha, J. Labeniaa, C. Laetza, V. Tagala, C. Sloana, A. Elizurd, D. Benettic, M. Grosellc, B. Block & N. Scholza, 2014. Deepwater Horizon crude oil impacts the developing hearts of large predatory pelagic fish. Proceedings of the National Academy of Sciences United States of America 111: E1510–E1518.CrossRefGoogle Scholar
  37. Ivanina, A. V., I. M. Sokolova & A. A. Sukhotin, 2008. Oxidative stress and expression of chaperones in aging mollusks. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 150(1): 53–61.CrossRefGoogle Scholar
  38. Kang, C.-K., Y.-C. Chen, C.-H. Chang, S.-C. Tsai & T.-H. Lee, 2015. Seawater-acclimation abates cold effects on Na+, K+-ATPase activity in gills of the juvenile milkfish, Chanos chanos. Aquaculture 446: 67–73.CrossRefGoogle Scholar
  39. Kontorovich, A. E., V. A. Kashirtsev, V. I. Moskvin, L. M. Burshtein, T. I. Zemskaya, E. A. Kostyreva, G. V. Kalmychkov & O. M. Khlystov, 2007. Petroleum potential of Baikal deposits. Russian Geology and Geophysics 48: 1046–1053.CrossRefGoogle Scholar
  40. Kozhov, M., 1963. Lake Baikal and Its Life. Monographiae Biologicae. W. Junk, The Hague.CrossRefGoogle Scholar
  41. Kozhova, O. M. & L. R. Izmest’eva, 1998. Lake Baikal—Evolution and Biodiversity. Backhuys, Leiden.Google Scholar
  42. Laemmli, U. K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.CrossRefPubMedGoogle Scholar
  43. Laramore, S., W. Krebs & A. Garr, 2014. Effects of Macondo Canyon 252 Oil (naturally and chemically dispersed) on larval Crassostrea virginica (Gmelin, 1791). Journal of Shellfish Research 33: 709–718.CrossRefGoogle Scholar
  44. Laramore, S., W. Krebs & A. Garr, 2016. Effects of exposure of pink shrimp, Farfantepenaeus duorarum, larvae to Macondo Canyon 252 Crude Oil and the Corexit Dispersant. Journal of Marine Science and Engineering 4: 24.CrossRefGoogle Scholar
  45. Lavarias, S., H. Heras, N. Pedrini, H. Tournier & M. Ansaldo, 2011. Antioxidant response and oxidative stress levels in Macrobrachium borellii (Crustacea: Palaemonidae) exposed to the water-soluble fraction of petroleum. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 153: 415–421.Google Scholar
  46. Lejeusne, C., T. Pérez, V. Sarrazin & P. Chevaldonné, 2006. Baseline expression of heat-shock proteins (HSPs) of a “thermotolerant” Mediterranean marine species largely influenced by natural temperature fluctuations. Canadian Journal of Fisheries and Aquatic Sciences 63: 2028–2037.CrossRefGoogle Scholar
  47. Lewis, C., C. Pook & T. Galloway, 2008. Reproductive toxicity of the water accommodated fraction (WAF) of crude oil in the polychaetes Arenicola marina (L.) and Nereis virens (Sars). Aquatic Toxicology 90: 73–81.CrossRefPubMedGoogle Scholar
  48. Lowry, O. H., N. J. Rosebrough, L. A. Farr & J. R. Randall, 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193: 265–275.PubMedGoogle Scholar
  49. Methods of petroleum products determination in water [available online  July 20, 2017 at].
  50. Nie, H., T. Cheng, X. Huang, M. Zhou, Y. Zhang, F. Dai, K. Mita, Q. Xia & C. Liu, 2015. Functional loss of Bmsei causes thermosensitive epilepsy in contractile mutant silkworm Bombyx mori. Scientific Reports 5: 12308.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Pratt, W. B., Y. Morishima, H. M. Peng & Y. Osawa, 2010. Proposal for a role of the Hsp90/Hsp70-based chaperone machinery in making triage decisions when proteins undergo oxidative and toxic damage. Experimental Biology and Medicine 235(3): 278–289.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Reddy, C. M., J. S. Arey, J. S. Seewald, S. P. Sylva, K. L. Lemkau, R. K. Nelson, C. Carmichael, C. McIntyre, J. Fenwick, G. T. Venturad, B. Van Mooya & R. Camilli, 2012. Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences United States of America 109: 20229–20234.CrossRefGoogle Scholar
  53. Rozas, L. P., T. J. Minello & M. S. Miles, 2014. Effect of Deepwater Horizon oil on growth rates of juvenile penaeid shrimps. Estuaries and Coasts 37: 1403–1414.CrossRefGoogle Scholar
  54. Rusinek, O. T., V. V. Tahteev & T. V. Khodzher, 2012a. Baicalogy, Vol. 1. Nauka, Novosibirsk. In Russian.Google Scholar
  55. Rusinek, O. T., V. V. Tahteev & T. V. Khodzher, 2012b. Baicalogy, Vol. 2. Nauka, Novosibirsk. In Russian.Google Scholar
  56. Saco-Alvarez, L., J. Bellas, O. Nieto, J. M. Bayona, J. Albaiges & R. Beiras, 2008. Toxicity and phototoxicity of water-accommodated fraction obtained from Prestige fuel oil and Marine fuel oil evaluated by marine bioassays. Science of the Total Environment 394: 275–282.CrossRefPubMedGoogle Scholar
  57. Sakata, R., R. Kabutomori, K. Okano, H. Mitsui, A. Takemura, T. Miwa, H. Yamamoto & T. Okano, 2015. Rhodopsin in the dark hot sea: molecular analysis of rhodopsin in a snailfish, Careproctus rhodomelas, living near the deep-sea hydrothermal vent. PLoS ONE 10: e0135888.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sanitary Rules and Norms SanPiN 2000. Hygienic requirements for protection surface water.Google Scholar
  59. Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch & J. Y. Tinevez, 2012. Fiji: an open-source platform for biological-image analysis. Nature Methods 9: 676–682.CrossRefPubMedGoogle Scholar
  60. Shinya, R., H. Morisaka, Y. Takeuchi, M. Ueda & K. Futai, 2010. Comparison of the surface coat proteins of the pine wood nematode appeared during host pine infection and in vitro culture by a proteomic approach. Phytopathology 100: 1289–1297.CrossRefPubMedGoogle Scholar
  61. Sundt, R. C., A. Ruus, H. Jonsson, H. Skarphéðinsdóttir, S. Meier, M. Grung, J. Beyer & D. Pampanin, 2012. Biomarker responses in Atlantic cod (Gadus morhua) exposed to produced water from a North Sea oil field: laboratory and field assessments. Marine Pollution Bulletin 64: 144–152.CrossRefPubMedGoogle Scholar
  62. Thomas, R. & M. H. Kim, 2008. HIF-1a: a key survival factor for serum-deprived prostate cancer cells. The Prostate 68: 1405–1415.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Timofeyev, M., 2010. Ecological and physiological aspects of adaptation to abiotic environmental factors in endemic Baikal and Palearctic amphipods. Dissertation thesis. Tomsk State University, Tomsk.Google Scholar
  64. Timofeyev, M. A. & C. E. W. Steinberg, 2006. Antioxidant response to natural organic matter (NOM) exposure in three Baikalean amphipod species from contrasting habitats. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 145: 197–203.CrossRefGoogle Scholar
  65. Timofeyev, M. A., Z. M. Shatilina, D. S. Bedulina, M. V. Protopopova, V. V. Pavlichenko, O. I. Grabelnych & A. V. Kolesnichenko, 2008. Evaluation of biochemical responses in Palearctic and Lake Baikal endemic amphipod species exposed to CdCl2. Ecotoxicology and Environmental Safety 70: 99–105.CrossRefPubMedGoogle Scholar
  66. Timofeyev, M. A., Z. M. Shatilina, M. V. Protopopova, D. S. Bedulina, V. V. Pavlichenko, A. V. Kolesnichenko & C. E. W. Steinberg, 2009. Thermal stress defense in freshwater amphipods from contrasting habitats with emphasis on small heat shock proteins (sHSPs). Journal of Thermal Biology 34: 281–285.CrossRefGoogle Scholar
  67. Timoshkin, O. A., T. Y. Sitnikova, O. T. Rusinek, N. M. Pronin, V. I. Proviz & N. G. Melnik, 2001. Index of Animal Species Inhabiting Lake Baikal and Its Catchment Area, Vol. 1. Nauka, Novosibirsk.Google Scholar
  68. Towbin, H., T. Staehelin & J. Gordon, 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences United States of America 76: 4350–4354.CrossRefGoogle Scholar
  69. Vanzella, T. P., C. B. R. Martinez & I. M. S. Cólus, 2007. Genotoxic and mutagenic effects of diesel oil water soluble fraction on a neotropical fish species. Mutation Research 631: 36–43.CrossRefPubMedGoogle Scholar
  70. Weber, L., L. Carvalho, N. Sá, V. Silva, N. Beraldini, V. Souza & M. Conceição, 2013. Genotoxic effects of the water-soluble fraction of heavy oil in the brackish/freshwater amphipod Quadrivisio aff. lutzi (Gammaridea) as assessed using the comet assay. Ecotoxicology 22: 642–655.CrossRefPubMedGoogle Scholar
  71. Wiegand, C., S. Pflugmacher, A. Oberemm, N. Meems, K. A. Beattie, C. E. W. Steinberg & G. Codd, 1999. Uptake and effects of microcystin-LR on detoxication enzymes of early life stages of the zebra fish (Danio rerio). Environmental Toxicology 14: 89–95.CrossRefGoogle Scholar
  72. Yotsu-Yamashita, M., H. Yamaki, N. Okoshi & N. Araki, 2010. Distribution of homologous proteins to puffer fish saxitoxin and tetrodotoxin binding protein in the plasma of puffer fish and among the tissues of Fugu pardalis examined by Western blot analysis. Toxicon 55: 1119–1124.CrossRefPubMedGoogle Scholar
  73. Zakharenko, A. & N. Pimenov, 2015. Detection of methane in the water column at gas and oil seep sites in central and southern Lake Baikal. Microbiology 84: 90–97.CrossRefGoogle Scholar
  74. Zhang, J. F., X. R. Wang, H. Y. Guo, J. C. Wu & Y. Q. Xue, 2004. Effects of water-soluble fractions of diesel oil on the antioxidant defenses of the goldfish, Carassius auratus. Ecotoxicology and Environmental Safety 58: 110–116.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ekaterina P. Shchapova
    • 1
  • Denis V. Axenov-Gribanov
    • 1
    • 2
  • Yulia A. Lubyaga
    • 1
    • 2
  • Zhanna M. Shatilina
    • 1
    • 2
  • Kseniya P. Vereshchagina
    • 1
    • 2
  • Ekaterina V. Madyarova
    • 1
  • Eugeniy S. Protasov
    • 1
  • Maxim A. Timofeyev
    • 1
    Email author
  1. 1.Institute of BiologyIrkutsk State UniversityIrkutskRussia
  2. 2.Baikal Research CentreIrkutskRussia

Personalised recommendations