Skip to main content

Advertisement

Log in

Modeling trophic flows in the wettest mangroves of the world: the case of Bahía Málaga in the Colombian Pacific coast

  • MANGROVES IN CHANGING ENVIRONMENTS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The structurally most developed Neotropical mangrove forests are found along the southern and central macrotidal Colombian Pacific coast. This extremely rainy area (>7,000 mm year−1) is sparsely populated and sustains a relatively small artisanal fishery. In this article, we present an ecosystem (trophic) model, built using Ecopath with Ecosim, containing 18 functional groups of a representative mangrove area of this coast. Similar to other mangrove ecosystem models, mangroves contribute most (96%) to total system biomass, providing the primary food source for other important compartments (e.g., crabs). However, most of the mangrove litterfall is constantly washed away by tidal currents, a possible reason for the very low mean transfer efficiencies to higher trophic levels and low biomass of epifauna and nekton found, compared with other Neotropical mangroves. Fish biomass is dominated by zoobenthivores (snappers, catfishes) and detritivores (mullets) which represent, together with mangrove cockles, the target resources of a low trophic level-based fishery. Very low salinities throughout the year may contribute to an impoverished community of primary and secondary consumers that is able to withstand but not flourish under these conditions. This mangrove ecosystem may be highly vulnerable to overexploitation according to the low energy reserve (overhead) of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alory, G., C. Maes, T. Delcroix, N. Reul & S. Illing, 2012. Seasonal dynamics of sea surface salinity off Panama: The far Eastern Pacific Fresh Pool. Journal of Geophysical Research 117: C04028.

    Article  Google Scholar 

  • Benstead, J. P., J. G. March, C. M. Pringle, K. C. Ewel & J. W. Short, 2009. Biodiversity and ecosystem function in species-poor communities: community structure and leaf litter breakdown in a Pacific island stream. Journal of the North American Benthological Society 28(2): 454–465.

    Article  Google Scholar 

  • Cantera, K. J., B. A. Thomassin & P. M. Arnaud, 1999. Faunal zonation and assemblages in the Pacific Colombian mangroves. Hydrobiologia 413: 17–33.

    Article  Google Scholar 

  • Castañeda-Moya, E., R. R. Twilley & V. H. Rivera-Monroy, 2013. Allocation of biomass and net primary productivity of mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. Forest Ecology and Management 307: 226–241.

    Article  Google Scholar 

  • Castellanos-Galindo, G. A. & U. Krumme, 2013. Tidal, diel and seasonal effects on intertidal mangrove fish in a high-rainfall area of the Tropical Eastern Pacific. Marine Ecology Progress Series 494: 249–265.

    Article  Google Scholar 

  • Castellanos-Galindo, G. A. & U. Krumme, 2015. Tides, salinity and biogeography affect fish assemblage structure and function in macrotidal mangroves of the Neotropics. Ecosystems 18: 1165–1178.

    Article  CAS  Google Scholar 

  • Castellanos-Galindo, G. A., J. R. Cantera, U. Saint-Paul & D. Ferrol-Schulte, 2015. Threats to mangrove social-ecological systems in the most luxuriant coastal forests of the Neotropics. Biodiversity and Conservation 24: 701–704.

    Article  Google Scholar 

  • Christensen, V., 1995. Ecosystem maturity – towards quantification. Ecological Modelling 77: 3–32.

    Article  Google Scholar 

  • Christensen, V. & D. Pauly, 1992. ECOPATH II – a software for balancing steady- state ecosystem models and calculating network characteristics. Ecological Modelling 61: 169–185.

    Article  Google Scholar 

  • Christensen, V. & C. J. Walters, 2004. Ecopath with Ecosim: methods, capabilities and limitations. Ecological Modelling 172: 109–139.

    Article  Google Scholar 

  • Christensen, V., C. Walters, D. Pauly & D. Forrest, 2008. Ecopath with Ecosim: A User’s guide. Fisheries Centre, University of British Columbia, Vancouver: 154 pp.

  • Christensen, V., M. Coll, C. Piroddi, J. Steenbeek, J. Buszowski & D. Pauly, 2014. A century of fish biomass decline in the ocean. Marine Ecology Progress Series 512: 155–166.

    Article  Google Scholar 

  • Duke, N. C., M. C. Ball & J. C. Ellison, 1998. Factors influencing biodiversity and distributional gradients in mangroves. Global Ecology and Biogeography Letters 7: 27–47.

    Article  Google Scholar 

  • Etter, A., C. McAlpine, K. Wilson, S. Phinn & H. Possingham, 2006. Regional patterns of agricultural land use and deforestation in Colombia. Agriculture, Ecosystems & Environment 114: 369–386.

    Article  Google Scholar 

  • Fiedler, P. C. & L. D. Talley, 2006. Hydrography of the eastern tropical Pacific: a review. Progress in Oceanography 69: 143–180.

    Article  Google Scholar 

  • Finn, J. T., 1976. Measures of ecosystem structure and function derived from analysis of flows. Journal of Theoretical Biology 56: 363–380.

    Article  CAS  PubMed  Google Scholar 

  • Froese, R. & D. Pauly. Editors., 2016. FishBase. World Wide Web electronic publication. www.fishbase.org, version (10/2016).

  • Hamilton, S. E. & D. Casey, 2016. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Global Ecology and Biogeography 25: 729–738.

    Article  Google Scholar 

  • Heymans, J. J., M. Coll, S. Libralato, L. Morissette & V. Christensen, 2014. Global patterns in ecological indicators of marine food webs: a modelling approach. PLoS ONE 9: e95845.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koch, V., 1995. Zur Populationsbiologie und ökologischen Rolle der Mangrovenschnecke Thais kioskiformis im Golf von Nicoya, Costa Rica. Master’s Thesis, University of Bremen: 60 pp.

  • Koch, V., 1999. Epibenthic Production and Energy Flow in the Caeté Mangrove Estuary, North Brazil. Ph.D. Thesis at the University of Bremen, Germany. ZMT contribution No. 6.

  • Kolding, J., A. Bundy, P. A. M. van Zwieten & M. J. Plank, 2015. Fisheries, the inverted food pyramid. ICES Journal of Marine Science. doi:10.1093/icesjms/fsv225.

    Google Scholar 

  • Libralato, S., V. Christensen & D. Pauly, 2006. A method for identifying keystone species in food web models. Ecological Modelling 195: 153–171.

    Article  Google Scholar 

  • Lucero, C., J. Cantera & R. Neira, 2012. Pesqueria y crecimiento de la piangua (Arcoida:Arcidae) Anadara tuberculosa en la Bahía de Málaga del Pacífico colombiano, 2005–2007. Revista de Biologia Tropical 60: 203–217.

    PubMed  Google Scholar 

  • Manickchand-Heileman, S., F. Arreguín-Sánchez, A. Lara-Domínguez & L. A. Soto, 1998. Energy flow and network analysis of Terminos Lagoon, SW Gulf of Mexico. Journal of Fish Biology 53: 179–197.

    Article  Google Scholar 

  • Maunder, M. N. & A. E. Punt, 2013. A review of integrated analysis in fisheries stock assessments. Fisheries Research 142: 61–74.

    Article  Google Scholar 

  • Monsalve, A., D. Herrera & J. Bolívar, 2015. Caracterización de la estructura y contenido de carbono de diez parcelas permanentes establecidas en el área de jurisdicción del consejo comunitario La Plata, Bahía Málaga, Valle del Cauca. Technical Report. Centro de Investigación en Ecosistemas y Cambio Global, Medellin: 58 pp.

  • Morales-Zuñiga, G., 1998. Flujo energético y disponibilidad de hábitats de forrajeo para la aves marinas y playeras del Pacfico colombiano. Unpublished Master Thesis, Universidad del Valle, Cali, Colombia.

  • Odum, E. P., 1969. The strategy of ecosystem development. Science 164: 262–270.

    Article  CAS  PubMed  Google Scholar 

  • Peña-Salamanca, E., 2008. Dinamica espacial y temporal de la biomasa algal asociada a las raices de mangle en la Bahía de Buenaventura. Boletin de Investigaciones Marinas y Costeras 37: 55–70.

    Google Scholar 

  • Rademaker, V., 1998. Ernährungsökologie, Habitatbeschreibung und Populationsstruktur der Mangrovenkrabbe Ucides cordatus (Linnaeus, 1763) im Caeté-Mangrovenästuar, Nordbrasilien. M.Sc. Thesis, Bremen University, Germany: 94 pp.

  • Ramírez, D. G., A. Giraldo & J. Tovar, 2006. Producción primaria, biomasa y composición taxonómica del fitoplancton costero y oceánico en el Pacífico colombiano (septiembre-octubre 2004). Investigaciones Marinas, Valparaíso 34: 211–216.

    Google Scholar 

  • Ramirez-Martínez, G. A., G. A. Castellanos-Galindo & U. Krumme, 2016. Tidal and diel patterns in abundance and feeding of a marine-estuarine-dependent fish from macrotidal mangrove creeks in the tropical Eastern Pacific (Colombia). Estuaries and Coasts 39: 1249–1261.

    Article  Google Scholar 

  • Saint-Béat, B., D. Baird, H. Asmus, R. Asmus, C. Bacher, S. R. Pacella, G. A. Johnson, V. David, A. F. Vézina & N. Niquil, 2015. Trophic networks: how do theories link ecosystem structure and functioning to stability properties? A review. Ecological Indicators 52: 458–471.

    Article  Google Scholar 

  • Scharler, U., 2011. Whole food-web studies: mangroves. In Wolanski, E. & D. S. McLusky (eds), Treatise on Estuarine Coastal Science. Academic Press, Waltham: 271–286.

    Chapter  Google Scholar 

  • Ulanowicz, R. E., 1986. Growth and development: ecosystems phenomenology. Springer, New York.

    Book  Google Scholar 

  • Ulanowicz, R. E., 1995. Ecosystem trophic foundations: Lindeman exonerata. In Patten, B. C. & S. E. Jørgensen (eds), Complex Ecology: The Part–Whole Relation in Ecosystems. Prentice-Hall, Englewood Cliffs: 549–560.

    Google Scholar 

  • Villasante, S., F. Arreguín-Sánchez, J. J. Heymans, S. Libralato, C. Piroddi, V. Christensen & M. Coll, 2016. Modelling marine ecosystems using the Ecopath with Ecosim food web approach: new insights to address complex dynamics after 30 years of developments. Ecological Modelling 331: 1–4.

    Article  Google Scholar 

  • Wolff, M., H. J. Hartmann & V. Koch, 1996. A pilot trophic model for Golfo Dulce, a fjord-like tropical embayment, Costa Rica. Revista de Biologìa Tropical 44: 215–231.

    Google Scholar 

  • Wolff, M., J. B. Chavarria, V. Koch & J. A. Vargas, 1998. A trophic flow model of the Golfo de Nicoya, Costa Rica. Revista de Biología Tropical 46: 63–79.

    Google Scholar 

  • Wolff, M., V. Koch & V. Isaac, 2000. A trophic flow model of the Caeté mangrove estuary (North Brazil) with considerations for the sustainable use of its resources. Estuarine, Coastal and Shelf Science 50: 789–803.

    Article  Google Scholar 

  • Winberg, G. G., 1956. Rate of Metabolism and Food Requirements of Fishes. Fisheries Research Board of Canada Translation Series 194, Ottawa: 1–253.

  • Zetina-Rejón, M. J., F. Arreguín-Sánchez & E. A. Chávez, 2003. Trophic structure and flows of energy in the Huizache-Caimanero lagoon complex on the Pacific coast of Mexico. Estuarine, Coastal and Shelf Science 57: 803–815.

    Article  Google Scholar 

Download references

Acknowledgements

Data collection has been made possible by numerous projects funded by COLCIENCIAS and the Universidad del Valle in Cali, Colombia to the research group Ecomanglares, particularly by the project “Analysis of the trophic dynamics in two mangroves of the Colombian Pacific through the integrated use of stable isotopes and ecosystem modelling: Importance for the fishery production of the system” executed by the Universidad del Valle (CI 71008) and funded by COLCIENCIAS (Code 1106-659-44115) of the call 659 of 2014. GC-G is sponsored by the Alexander von Humboldt Foundation. The authors thank all the students that have participated in data gathering in Bahía Málaga during the recent years. The authors also thank Katherine Ewel for sharing her thoughts on the productivity of mangroves in Micronesia. Comments by two anonymous reviewers greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo A. Castellanos-Galindo.

Additional information

Guest editors: K. W. Krauss, I. C. Feller, D. A. Friess, R. R. Lewis III / Causes and Consequences of Mangrove Ecosystem Responses to an Ever-Changing Climate

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1 (DOCX 654 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castellanos-Galindo, G.A., Cantera, J., Valencia, N. et al. Modeling trophic flows in the wettest mangroves of the world: the case of Bahía Málaga in the Colombian Pacific coast. Hydrobiologia 803, 13–27 (2017). https://doi.org/10.1007/s10750-017-3300-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3300-6

Keywords

Navigation