Advertisement

Hydrobiologia

, Volume 805, Issue 1, pp 163–175 | Cite as

Environmental DNA as an efficient tool for detecting invasive crayfishes in freshwater ponds

  • Quentin Mauvisseau
  • Aurore Coignet
  • Carine Delaunay
  • François Pinet
  • Didier Bouchon
  • Catherine Souty-GrossetEmail author
Primary Research Paper

Abstract

Environmental DNA (eDNA) is a powerful method for assessing the presence and distribution of invasive aquatic species. We used this tool to detect and monitor several invasive crayfishes Procambarus clarkii, Orconectes limosus and Pacifastacus leniusculus present in, or likely to invade, the ponds of the Brenne Regional Natural Park. A previous study showed that the eDNA method was not very efficient in detecting P. clarkii. In the present study, we explored new improvements in the detection of invasive crayfish. We designed specific primers for each crayfish species, and set up an experimental mesocosm approach to confirm the specificity of the primers and the sampling protocol. We analysed samples taken from ponds in 2014 and 2015. We compared two qPCR protocols involving either SybrGreen or TaqMan assays. Using these same primers, we were able to detect crayfish eDNA with both assays during the mesocosm experiment. However, crayfish from field samples could only be detected by performing qPCR with a SybrGreen assay. We successfully monitored the presence of three invasive species of crayfish using eDNA. This method is a powerful tool for establishing the presence or absence of invasive species in various freshwater environments.

Keywords

Biological invasions Procambarus clarkii Orconectes limosus Pacifastacus leniusculus Ponds France eDNA detection 

Notes

Acknowledgements

This study has been partially funded through the following 2015–2020 programs: the State-Region Planning Contracts (CPER) and the European Regional Development Fund (FEDER). We thank the staff of the Brenne Regional Natural Park for their help with the sampling by obtaining permission from pond owners. We also thank the Brigade Ecrevisse for collecting the data about the distribution of invasive species of crayfish obtained by trapping. Thanks are also due to Dr Julian Reynolds for revising the English in the manuscript.

Author contributions

Conceived and designed the experiments: Quentin Mauvisseau (QM) and Catherine Souty-Grosset (CSG); assisted with water sampling: Aurore Coignet (AC) and François Pinet (FP). Performed the molecular biology: QM and Carine Delaunay (CD). Analysed the data: QM and Didier Bouchon (DB). Wrote the paper: QM, CSG and DB.

References

  1. Biggs, J., N. Ewald, A. Valentini, C. Gaboriaud, T. Dejean, R. A. Griffiths, J. Foster, J. W. Wilkinson, A. Arnell, P. Brotherton, P. Williams & F. Dunn, 2014. Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus). Biological Conservation. doi: 10.1016/j.biocon.2014.11.029.Google Scholar
  2. Blanchet, S., 2012. The use of molecular tools in invasion biology: an emphasis on freshwater ecosystems: using molecular tools in biological invasions. Fisheries Management and Ecology 19: 120–132.CrossRefGoogle Scholar
  3. Coignet A., C. Souty-Grosset & F. Pinet, 2012. Estimating population size of the red swamp crayfish (Procambarus clarkii) in fish-ponds (Brenne, Central France). Knowledge and Management of Aquatic Ecosystems 406: 11 pp.Google Scholar
  4. Comtet, T., A. Sandionigi, F. Viard & M. Casiraghi, 2015. DNA (meta)barcoding of biological invasions: a powerful tool to elucidate invasion processes and help managing aliens. Biological Invasions 17: 905–922.CrossRefGoogle Scholar
  5. Darling, J. A. & A. R. Mahon, 2011. From molecules to management: Adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environmental Research 111: 978–988.CrossRefPubMedGoogle Scholar
  6. Davy, C. M., A. G. Kidd & C. C. Wilson, 2015. Development and validation of environmental DNA (eDNA) markers for detection of freshwater turtles. PLoS ONE 10: e0130965.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Deiner, K. & F. Altermatt, 2014. Transport distance of invertebrate environmental DNA in a natural river. PLoS ONE 9: e88786.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Deiner, K., J.-C. Walser, E. Mächler & F. Altermatt, 2015. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biological Conservation 183: 53–63.CrossRefGoogle Scholar
  9. Dejean, T., A. Valentini, A. Duparc, S. Pellier-Cuit, F. Pompanon, P. Taberlet & C. Miaud, 2011. Persistence of environmental DNA in freshwater ecosystems. PLoS ONE 6: e23398.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dejean, T., A. Valentini, C. Miquel, et al., 2012. Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus: Alien invasive species detection using eDNA. Journal of Applied Ecology 49: 953–959.CrossRefGoogle Scholar
  11. Doi, H., T. Takahara, T. Minamoto, S. Matsuhashi, K. Uchii & H. Yamanaka, 2015a. Droplet digital polymerase chain reaction (PCR) outperforms real-time PCR in the detection of environmental DNA from an invasive fish species. Environmental Science & Technology 49: 5601–5608.CrossRefGoogle Scholar
  12. Doi, H., K. Uchii, T. Takahara, S. Matsuhashi, H. Yamanaka & T. Minamoto, 2015b. Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys. PLOS ONE 10: e0122763.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dougherty, M. M., E. R. Larson, M. A. Renshaw, et al., 2016. Environmental DNA (eDNA) detects the invasive rusty crayfish Orconectes rusticus at low abundances. Journal of Applied Ecology 53: 722–732.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Eichmiller, J. J., L. M. Miller & P. W. Sorensen, 2016. Optimizing techniques to capture and extract environmental DNA for detection and quantification of fish. Molecular Ecology Resources 16: 56–68.CrossRefPubMedGoogle Scholar
  15. Epp, L. S., G. Gussarova, S. Boessenkool, J. Olsen, J. Haile, A. Schrøder-Nielsen, A. Ludikova, K. Hassel, H. K. Stenøien, S. Funder, E. Willerslev, K. Kjær & C. Brochmann, 2015. Lake sediment multi-taxon DNA from North Greenland records early post-glacial appearance of vascular plants and accurately tracks environmental changes. Quaternary Science Reviews 117: 152–163. doi: 10.1016/j.quascirev.2015.03.027 CrossRefGoogle Scholar
  16. Evans, N. T., B. P. Olds, M. A. Renshaw, C. R. Turner, Y. Li, C. L. Jerde, A. R. Mahon, M. E. Pfrender, G. A. Lamberti & D. M. Lodge, 2015. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Molecular Ecology Resources. doi: 10.1111/1755-0998.12433.PubMedPubMedCentralGoogle Scholar
  17. Ficetola, G. F., C. Miaud, F. Pompanon & P. Taberlet, 2008. Species detection using environmental DNA from water samples. Biology Letters 4: 423–425.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Figiel, C. R. & S. Bohn, 2015. Laboratory experiments for the detection of environmental DNA of crayfish: examining the potential. Freshwater Crayfish 21(1): 159–163.Google Scholar
  19. Fleiss, J. L., J. Cohen & B. S. Everitt, 1969. Large sample standard errors of kappa and weighted kappa. Psychological Bulletin 72: 323–327.CrossRefGoogle Scholar
  20. Foote, A. D., P. F. Thomsen, S. Sveegaard, M. Wahlberg, J. Kielgast, L. A. Kyhn, A. B. Salling, A. Galatius, L. Orlando & M. T. P. Gilbert, 2012. Investigating the potential use of environmental DNA (eDNA) for genetic monitoring of marine mammals. PLoS ONE 7: e41781.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fukumoto, S., A. Ushimaru & T. Minamoto, 2015. A basin-scale application of environmental DNA assessment for rare endemic species and closely related exotic species in rivers: a case study of giant salamanders in Japan. Journal of Applied Ecology 52: 358–365.CrossRefGoogle Scholar
  22. Fujiwara, A., S. Matsuhashi, H. Doi, S. Yamamoto & T. Minamoto, 2016. Use of environmental DNA to survey the distribution of an invasive submerged plant in ponds. Freshwater Science 35: 748–754.CrossRefGoogle Scholar
  23. Gherardi, F. & V. E. Panov, 2009. Alien species fact sheets: Procambarus clarkii (Girard, 1852), red swamp crayfish/crawfish (Cambaridae, Crustacea). In: Hulme, P., W. Netwig, P. Pysek & M. Vila (eds) Handbook of alien species in Europe. Springer, Dordrecht: 316 pp.Google Scholar
  24. Gherardi, F., A. Coignet, C. Souty-Grosset, D. Spigoli & L. Aquiloni, 2013. Global warming and the agonistic behaviour of invasive crayfishes in Europe. Freshwater Biology 58: 1958–1967.CrossRefGoogle Scholar
  25. Goldberg, C. S., D. S. Pilliod, R. S. Arkle & L. P. Waits, 2011. Molecular detection of vertebrates in stream water: A demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders. PLoS ONE 6: e22746.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Goldberg, C. S., A. Sepulveda, A. Ray, J. Baumgardt & L. P. Waits, 2013. Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum). Freshwater Science 32: 792–800.CrossRefGoogle Scholar
  27. Goldberg, C. S., K. M. Strickler & D. S. Pilliod, 2014. Moving environmental DNA methods from concept to practice for monitoring aquatic macroorganisms. Biological Conservation. doi: 10.1016/j.biocon.2014.11.040.Google Scholar
  28. Hall, T. A., 1999. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symposium Series: 95–98.Google Scholar
  29. Herder, J. E, A. Valentini, E. Bellemain, T. Dejean, J. J. C. W. van Delft, P. F. Thomsen, P. Taberlet, 2014. Environmental DNA – A Review of the Possible Applications for the Detection of (Invasive) Species (No. Report 2013-104). Stichting RAVON, Nijmegen.Google Scholar
  30. Holdich, D. M., J. D. Reynolds, C. Souty-Grosset & P. J. Sibley, 2009. A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowledge and Management of Aquatic Ecosystems. doi: 10.1051/kmae/2009025.Google Scholar
  31. Hunter, M. E., S. J. Oyler-McCance, R. M. Dorazio, J. A. Fike, B. J. Smith, C. T. Hunter, R. N. Reed & K. M. Hart, 2015. Environmental DNA (eDNA) sampling improves occurrence and detection estimates of invasive Burmese pythons. PLoS ONE 10: e0121655.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ikeda, K., H. Doi, K. Tanaka, et al., 2016. Using environmental DNA to detect an endangered crayfish Cambaroides japonicus in streams. Conservation Genetics Resources 8: 231–234.CrossRefGoogle Scholar
  33. Janosik, A. M. & C. E. Johnston, 2015. Environmental DNA as an effective tool for detection of imperiled fishes. Environmental Biology of Fishes 98: 1889–1893.CrossRefGoogle Scholar
  34. Jerde, C. L. & A. R. Mahon, 2015. Improving confidence in environmental DNA species detection. Molecular Ecology Resources 15: 461–463.CrossRefPubMedGoogle Scholar
  35. Jerde, C. L., A. R. Mahon, W. L. Chadderton & D. M. Lodge, 2011. “Sight-unseen” detection of rare aquatic species using environmental DNA: eDNA surveillance of rare aquatic species. Conservation Letters 4: 150–157.CrossRefGoogle Scholar
  36. Jerde, C. L., W. L. Chadderton, A. R. Mahon, M. A. Renshaw, J. Corush, M. L. Budny, S. Mysorekar & D. M. Lodge, 2013. Detection of Asian carp DNA as part of a Great Lakes basin-wide surveillance program. Canadian Journal of Fisheries and Aquatic Sciences 70: 522–526.CrossRefGoogle Scholar
  37. Koressaar, T. & M. Remm, 2007. Enhancements and modifications of primer design program Primer3. Bioinformatics 23: 1289–1291.CrossRefPubMedGoogle Scholar
  38. Laramie, M.B., 2013. Distribution of Chinook Salmon (Oncorhynchus tshawytscha) in Upper-Columbia River Sub-basins from Environmental DNA Analysis. Boise State University, Boise.Google Scholar
  39. Libert, X., C. Chasseur, A. Packeu, et al., 2016. A molecular approach for the rapid, selective and sensitive detection of Exophiala jeanselmei in environmental samples: development and performance assessment of a real-time PCR assay. Applied Microbiology and Biotechnology 100: 1377–1392.CrossRefPubMedGoogle Scholar
  40. Lodge, D. M., C. R. Turner, C. L. Jerde, M. A. Barnes, L. Chadderton, S. P. Egan, J. L. Feder, A. R. Mahon & M. E. Pfrender, 2012. Conservation in a cup of water: estimating biodiversity and population abundance from environmental DNA. Molecular Ecology 21: 2555–2558.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Loureiro, T. G., P. M. S. G. Anastácio, P. B. Araujo, C. Souty-Grosset & M. P. Almerão, 2015. Red swamp crayfish: biology, ecology and invasion – an overview. Nauplius 23(1): 1–19.CrossRefGoogle Scholar
  42. Mächler, E., K. Deiner, F. Spahn & F. Altermatt, 2015. Fishing in the water: Effect of sampled water volume on environmental DNA-based detection of macroinvertebrates. Environmental Science & Technology. doi: 10.1021/acs.est.5b04188.Google Scholar
  43. Mauvisseau, Q., M. Parrondo, M. P. Fernández, et al., 2017. On the way for detecting and quantifying elusive species in the sea: The Octopus vulgaris case study. Fisheries Research 191: 41–48.CrossRefGoogle Scholar
  44. Maruyama, A., K. Nakamura, H. Yamanaka, et al., 2014. The release rate of environmental DNA from juvenile and adult fish. PLoS ONE 9: e114639.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Nathan, L. M., M. Simmons, B. J. Wegleitner, C. L. Jerde & A. R. Mahon, 2014. Quantifying environmental DNA signals for aquatic invasive species across multiple detection platforms. Environmental Science & Technology 48: 12800–12806.CrossRefGoogle Scholar
  46. Olson, Z. H., J. T. Briggler & R. N. Williams, 2013. An eDNA approach to detect eastern hellbenders (Cryptobranchus a. alleganiensis) using samples of water. Wildlife Research 39: 629.CrossRefGoogle Scholar
  47. Piaggio, A. J., R. M. Engeman, M. W. Hopken, J. S. Humphrey, K. L. Keacher, W. E. Bruce & M. L. Avery, 2014. Detecting an elusive invasive species: a diagnostic PCR to detect Burmese python in Florida waters and an assessment of persistence of environmental DNA. Molecular Ecology Resources 14: 374–380.CrossRefPubMedGoogle Scholar
  48. Pilliod, D. S., C. S. Goldberg, M. B. Laramie & L. P. Waits, 2013. Application of environmental DNA for inventory and monitoring of aquatic species. US Department of the Interior, US Geological Survey.Google Scholar
  49. R Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
  50. Rees, H. C., K. Bishop, D. J. Middleditch, J. R. M. Patmore, B. C. Maddison & K. C. Gough, 2014. The application of eDNA for monitoring of the Great Crested Newt in the UK. Ecology and Evolution 4: 4023–4032.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Rees, H. C., K. C. Gough, D. J. Middleditch, J. R. M. Patmore & B. C. Maddison, 2015. Applications and limitations of measuring environmental DNA as indicators of the presence of aquatic animals. Journal of Applied Ecology 52: 827–831.CrossRefGoogle Scholar
  52. Reynolds, C. S. & A. E. Walsby, 1975. Water-blooms. Biological reviews 50: 437–481.CrossRefGoogle Scholar
  53. Reynolds, J. & C. Souty-Grosset, 2012. Management of Freshwater Biodiversity: Crayfish as Bioindicators. Cambridge University Press, Cambridge: 374.Google Scholar
  54. Roussel, J.-M., J.-M. Paillisson, A. Tréguier & E. Petit, 2015. The downside of eDNA as a survey tool in water bodies. Journal of Applied Ecology 52: 823–826.CrossRefGoogle Scholar
  55. Sambrook, J., E. F. Fritsch & T. Maniatis, 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Laboratory, New York.Google Scholar
  56. Scriver, M., A. Marinich, C. Wilson & J. Freeland, 2015. Development of species-specific environmental DNA (eDNA) markers for invasive aquatic plants. Aquatic Botany 122: 27–31.CrossRefGoogle Scholar
  57. Servan, J. & J. J. Roy, 2004. Notes on the reproduction of Emys orbicularis in Brenne (Central France). Biologia, Bratislava 59: 139–142.Google Scholar
  58. Sigsgaard, E. E., H. Carl, P. R. Møller & P. F. Thomsen, 2015. Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples. Biological Conservation 183: 46–52.CrossRefGoogle Scholar
  59. Simmons, M., A. Tucker, W. L. Chadderton, C. L. Jerde & A. R. Mahon, 2015. Active and passive environmental DNA surveillance of aquatic invasive species. Canadian Journal of Fisheries and Aquatic Sciences. doi: 10.1139/cjfas-2015-0262.Google Scholar
  60. Smart, A. S., R. Tingley, A. R. Weeks, A. R. van Rooyen & M. A. McCarthy, 2015. Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader. Ecological Applications 25: 1944–1952.CrossRefPubMedGoogle Scholar
  61. Smith, C. J. & A. M. Osborn, 2009. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology: application of Q-PCR in microbial ecology. FEMS Microbiology Ecology 67: 6–20.CrossRefPubMedGoogle Scholar
  62. Souty-Grosset, C., D. M. Holdich, P. Y. Noël, J. D. Reynolds & P. Haffner, 2006. Atlas of Crayfish in Europe. Muséum national d’Histoire naturelle, Paris: 187p.Google Scholar
  63. Souty-Grosset, C., J. Reynolds, F. Gherardi, L. Aquiloni, A. Coignet, F. Pinet & M. D. M. Mancha Cisneros, 2014. Burrowing activity of the invasive red swamp crayfish, Procambarus clarkii, in ponds of La Brenne (France). Ethology Ecology & Evolution 26: 263–276.CrossRefGoogle Scholar
  64. Souty-Grosset, C., P. Anastacio, L. Aquiloni, F. Banha, J. Choquer, C. Chucholl & E. Tricarico, 2016. The red swamp crayfish Procambarus clarkii in Europe: impacts on aquatic ecosystems and human well-being. Limnologica 58: 78–96.CrossRefGoogle Scholar
  65. Spear, S. F., J. D. Groves, L. A. Williams & L. P. Waits, 2015. Using environmental DNA methods to improve detectability in a hellbender (Cryptobranchus alleganiensis) monitoring program. Biological Conservation 183: 38–45.CrossRefGoogle Scholar
  66. Strickler, K. M., A. K. Fremier & C. S. Goldberg, 2015. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biological Conservation 183: 85–92.CrossRefGoogle Scholar
  67. Taberlet, P., E. Coissac, M. Hajibabaei & L. H. Rieseberg, 2012. Environmental DNA. Molecular Ecology 21: 1789–1793.CrossRefPubMedGoogle Scholar
  68. Takahara, T., T. Minamoto & H. Doi, 2015. Effects of sample processing on the detection rate of environmental DNA from the Common Carp (Cyprinus carpio). Biological Conservation 183: 64–69.CrossRefGoogle Scholar
  69. Tamura, K., G. Stecher, D. Peterson, A. Filipski & S. Kumar, 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Thomsen, P. F., J. Kielgast, L. L. Iversen, P. R. Møller, M. Rasmussen & E. Willerslev, 2012a. Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS ONE 7: e41732.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Thomsen, P. F., J. Kielgast, L. L. Iversen, C. Wiuf, M. Rasmussen, M. T. P. Gilbert, L. Orlando & E. Willerslev, 2012b. Monitoring endangered freshwater biodiversity using environmental DNA: species monitoring by environmental DNA. Molecular Ecology 21: 2565–2573.CrossRefPubMedGoogle Scholar
  72. Thomsen, P. F. & E. Willerslev, 2015. Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation. doi: 10.1016/j.biocon.2014.11.019.Google Scholar
  73. Tréguier, A., J.-M. Paillisson, T. Dejean, A. Valentini, M. A. Schlaepfer & J.-M. Roussel, 2014. Environmental DNA surveillance for invertebrate species: advantages and technical limitations to detect invasive crayfish Procambarus clarkii in freshwater ponds. Journal of Applied Ecology 51: 871–879.CrossRefGoogle Scholar
  74. Untergasser, A., I. Cutcutache, T. Koressaar, J. Ye, B. C. Faircloth, M. Remm & S. G. Rozen, 2012. Primer3 – new capabilities and interfaces. Nucleic Acids Research 40: e115–e115.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Wilcox, T. M., K. S. McKelvey, M. K. Young, S. F. Jane, W. H. Lowe, A. R. Whiteley & M. K. Schwartz, 2013. Robust detection of rare species using environmental DNA: the importance of primer specificity. PLoS ONE 8: e59520.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Wilcox, T. M., K. J. Carim, K. S. McKelvey, M. K. Young & M. K. Schwartz, 2015. The dual challenges of generality and specificity when developing environmental DNA markers for species and subspecies of Oncorhynchus. PLoS ONE 10: e0142008.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Wilson, C. & E. Wright, 2014. Using Environmental DNA (eDNA) as a Tool in Risk-Based Decision-Making. Ontario Ministry of Natural Resources, Goulais River.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Quentin Mauvisseau
    • 1
  • Aurore Coignet
    • 2
  • Carine Delaunay
    • 1
  • François Pinet
    • 2
  • Didier Bouchon
    • 1
  • Catherine Souty-Grosset
    • 1
    Email author
  1. 1.Laboratoire Ecologie et Biologie des Interactions, Equipe “Ecologie, Evolution, Symbiose”Université de Poitiers, UMR CNRS 7267PoitiersFrance
  2. 2.Parc naturel régional de la BrenneMaison du ParcRosnayFrance

Personalised recommendations