, Volume 800, Issue 1, pp 99–113 | Cite as

The structuring role of fish in Greenland lakes: an overview based on contemporary and paleoecological studies of 87 lakes from the low and the high Arctic

  • Erik Jeppesen
  • Torben L. Lauridsen
  • Kirsten S. Christoffersen
  • Frank Landkildehus
  • Peter Geertz-Hansen
  • Susanne Lildal Amsinck
  • Martin Søndergaard
  • Thomas A. Davidson
  • Frank Rigét


Lakes in Greenland are species-poor ecosystems and many are fishless. We studied the structuring role of fish in lakes in high- and low-Arctic Greenland. Major differences were observed in the trophic structure of the 87 lakes studied. Pelagic zooplankton biomass was on average 3–4-fold higher in the fishless lakes and dominated by large-bodied taxa such as Daphnia, the phyllopod Branchinecta and the tadpole shrimp Lepidurus. In contrast, small-bodied crustaceans dominated the lakes with fish. Analysis of microcrustacean remains in the surface sediment and contemporary benthic invertebrates also showed a marked influence of fish on community structure and the size of the taxa present. The cascading effect of fish on the microbial communities was modest, and no differences were observed for chlorophyll a. The cascading effect of fish on invertebrates depended, however, on the species present, being largest between fishless lakes and lakes hosting only sticklebacks (Gasterosteus aculeatus), while lakes with both Arctic charr (Salvelinus arcticus) and stickleback revealed a more modest response, indicating that presence of charr modulates the predation effect of sticklebacks. It is predicted that more lakes in Greenland will be colonised by fish in a future warmer climate, and this will substantially alter these vulnerable ecosystems.


Arctic lakes Trophic structure Fish Zooplankton Phytoplankton Ciliates Heterotrophic nanoflagellates Picoalgae Bacterioplankton 



We are grateful to Henrik Skovgaard, Rie Stoor and Iben Hansen for assistance in the field. We thank Anne Mette Poulsen, Kathe Møgelvang and Tinna Christensen for manuscript assistance and layout and the technical staff at Aarhus University and University of Copenhagen for valuable support. We wish to thank the Danish Polar Centre for valuable logistic support during our stay at Zackenberg. The work was supported by the “Global Climate Change Programme” (No. 9700195), the Commission for Scientific Research in Greenland, The North Atlantic Research Programme 1998–2000, the Arctic Programme, 1998–2002, the Nordic Council of Ministers and the Danish National Science Research Council (Research Project “Consequences of weather and climate changes for marine and freshwater ecosystems. Conceptual and operational forecasting of the aquatic environment”), the MARS project (Managing Aquatic ecosystems and water Resources under multiple Stress) funded under the 7th EU Framework Programme, Theme 6 (Environment including Climate Change), Contract No.: 603378 ( and CRES, and during the writing phase by the The North Water Project (NOW) funded by the Velux Foundations and the Carlsberg Foundation.


  1. Anderson, R. S., 1971. Crustacean plankton of 146 alpine and subalpine lakes and ponds in western Canada. Journal of the Fish Research Board Canada 28: 311–321.CrossRefGoogle Scholar
  2. Anderson, R. S., 1982. Zooplankton composition and change in an alpine lake. Verhandlungen der Internationalen Vereinigung der Limnologie 18: 264–268.Google Scholar
  3. Bennike, O., M. Sørensen, B. Fredskild, B. Holm Jacobsen, J. Böcher, S. L. Amsinck, E. Jeppesen, C. Andreasen, H. H. Christiansen & O. Humlum, 2008. Late quaternary environmental and cultural changes in the Wollaston Forland region, North East Greenland. Advances in Ecological Research 40, Elsevier, Oxford: 45–79.Google Scholar
  4. Berg, S., E. Jeppesen, M. Søndergaard & E. Mortensen, 1994. Environmental effects of introducing whitefish Coregonus lavaretus (L.) in Lake Ring. Hydrobiologia 275(276): 71–79.CrossRefGoogle Scholar
  5. Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Illbrich-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.Google Scholar
  6. Bradford, D. F., S. D. Cooper, T. M. Jenkins, K. Kratz, O. Sarnelle & A. D. Brown, 1998. Influences of natural acidity and introduced fish on faunal assemblages in California alpine lakes. Canadian Journal of Fishery and Aquatic Sciences 55: 2478–2491.CrossRefGoogle Scholar
  7. Brett, M. T. & C. R. Goldman, 1996. A meta-analysis of the freshwater trophic cascade. Proceedings of the National Academy of Sciences of the United States of America 93: 7723–7726.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Carlisle, D. M. & C. P. Hawkins, 1998. Relationships between invertebrate assemblage structure, 2 trout species, and habitat structure in Utah mountain lakes. Journal of the North American Benthological Society 17: 286–300.CrossRefGoogle Scholar
  9. Christiansen, J. & J. D. Reist, 2013. Fishes. In Arctic Biodiversity Assessment. Status and Trends in Arctic Biodiversity, Akureyri, Iceland, Conservation of Arctic Flora and Fauna (CAFF).Google Scholar
  10. Christoffersen, K. S., E. Jeppesen, D. L. Moorhead & L. J. Tranvik, 2008a. Food-web relationships and community structures in high-latitude lakes. In Vincent, W. F. & J. Laybourn-Parry (eds), Polar Lakes and Rivers. Oxford University Press, New York: 269–289.CrossRefGoogle Scholar
  11. Christoffersen, K. S., S. L. Amsinck, F. Landkildehus, T. L. Lauridsen & E. Jeppesen, 2008b. Lake flora and fauna in relation to ice-melt, water temperature and chemistry at Zackenberg. Advances in Ecological Research 40: 371–389.CrossRefGoogle Scholar
  12. Dahl-Hansen, G. A. P., 1995. Long-term changes in crustacean zooplankton – the effects of a mass removal of Arctic charr, Salvelinus alpinus (L.), from an oligotrophic lake. Journal of Plankton Research 17: 1819–1833.CrossRefGoogle Scholar
  13. Dahl-Hansen, G. A. P., S. H. Rubach & A. Klemetsen, 1994. Selective predation by pelagic Arctic charr on crustacean plankton in Takvatn, northern Norway, before and after mass removal of Arctic charr. Transactions of the American Fisheries Society 123: 385–394.CrossRefGoogle Scholar
  14. Davidson, T. A., T. L. Lauridsen, S. L. Amsinck, F. Landkildehus, K. S. Christoffersen, O. Bennike & E. Jeppesen, 2011. Inferring a single variable from assemblages with multiple control: getting into deep water with cladoceran lake-depth transfer functions. Hydrobiologia 676: 129–142.CrossRefGoogle Scholar
  15. Dumont, H. J., I. Van de Velde & S. Dumont, 1975. The dry weight estimate on a selection of Cladocera, Copepoda and rotifers from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.CrossRefPubMedGoogle Scholar
  16. Eloranta, A. P., H. L. Mariash, M. Rautio & M. Power, 2013. Lipid-rich zooplankton subsidise the winter diet of benthivorous Arctic charr (Salvelinus alpinus) in a subarctic lake. Freshwater Biology 58: 2541–2554.CrossRefGoogle Scholar
  17. Frey, D. G., 1959. The taxonomic and phylogenetic significance of the head pores of the Chydoridae (Cladocera). Internationale Revue der Gesamten Hydrobiologie 44: 27–50.CrossRefGoogle Scholar
  18. Gliwicz, Z. M., A. Slusarczyk & M. Slusarczyk, 2001. Life-history synchronization in a long-lifespan single-cohort Daphnia population of an alpine lake free of fish. Oecologia 128: 368–378.CrossRefPubMedGoogle Scholar
  19. Halvorsen, G. & N. Gullestad, 1976. Freshwater Crustacea in some areas of Svalbard. Archiv für Hydrobiologie 78: 383–395.Google Scholar
  20. Hammar, J., 1989. Freshwater ecosystems of polar regions: vulnerable resources. Ambio 1: 6–22.Google Scholar
  21. Haney, F. F. & C. Buchanan, 1987. Distribution and biogeography of Daphnia in the Arctic. In Peters, P. H. & R. de Bernard (eds), Daphnia. Memorie dell’Istituto italiano di idrobiologia 45: 77–105.Google Scholar
  22. Hann, B. J., 1990. Cladocera. In Warner, B. G. (ed.), Methods in Quaternary Ecology. Geoscience Canada Reprint Series 5: 81–91.Google Scholar
  23. Hobbie, J. E., 1984. Polar limnology. In Taub, E. B. (ed.), Ecosystems of the World 23 – Lakes and Reservoirs. Elsevier, Amsterdam.Google Scholar
  24. Hobson, K. A. & H. E. Welch, 1995. Cannibalism and trophic structure in a high Arctic lake: insights from stable-isotope analysis. Canadian Journal of Fisheries and Aquatic Sciences 52: 1195–1201.CrossRefGoogle Scholar
  25. Husmann, S., H. U. Jacobi, M. P. D. Meijering & B. Reise, 1978. Distribution and ecology of Svalbard Cladocera. Verhandlungen der internationalen Vereinigung der Limnologie 20: 2452–2456.Google Scholar
  26. Jakobsen, T. S., P. Borch Hansen, M. Søndergaard & E. Jeppesen, 2004. Cascading effect of three-spined stickleback (Gasterosteus aculeatus) on the community composition, size, biomass and diversity of phytoplankton in shallow, eutrophic brackish lagoons. Marine Ecology Progress Series 279: 305–309.CrossRefGoogle Scholar
  27. Jakobsen, T. S., P. B. Hansen, E. Jeppesen, P. Grønkjær & M. Søndergaard, 2003. Impact of three-spined stickleback Gasterosteus aculeatus on zooplankton and chl a in shallow, eutrophic, brackish lakes. Marine Ecology Progress Series 262: 277–284.CrossRefGoogle Scholar
  28. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. L. Lauridsen, L. J. Pedersen & L. Jensen, 1997a. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342(343): 151–164.CrossRefGoogle Scholar
  29. Jeppesen, E., T. L. Lauridsen, S. F. Mitchell & C. W. Burns, 1997b. Do planktivorous fish structure the zooplankton communities in New Zealand lakes? New Zealand Journal of Freshwater Research 31: 163–173.CrossRefGoogle Scholar
  30. Jeppesen, E., T. L. Lauridsen, S. F. Mitchell, K. Christoffersen & C. W. Burns, 2000. Trophic structure in the pelagial of 25 shallow New Zealand lakes: changes along nutrient and fish gradients. Journal of Plankton Research 22: 951–968.CrossRefGoogle Scholar
  31. Jeppesen, E., K. Christoffersen, H. Malmquist, B. Faafeng & L.-A. Hansson, 2002. Ecology of five Faroese Lakes: summary and synthesis. Annales Societatis Scientiarum Færoensis Supplementum 36: 126–139.Google Scholar
  32. Jeppesen, E., J. P. Jensen, C. Jensen, B. Faafeng, P. Brettum, D. Hessen, M. Søndergaard, T. Lauridsen & K. Christoffersen, 2003. The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: study of 466 lakes from the temperate zone to the Arctic. Ecosystems 6: 313–325.CrossRefGoogle Scholar
  33. Jespersen, A.-M. & K. Christoffersen, 1987. Measurements of chlorophyll a from phytoplankton using ethanol as extraction solvent. Archiv für Hydrobiologie 109: 445–454.Google Scholar
  34. Jürgens, K. & E. Jeppesen, 2000. The impact of metazooplankton on the structure of the microbial food web in a shallow, hypertrophic lake. Journal of Plankton Research 22: 1047–1070.CrossRefGoogle Scholar
  35. Jørgensen, L. & A. Klemetsen, 1995. Food resource partitioning of Arctic charr Salvelinus alpinus (L.) and the three-spined stickleback, Gasterosteus aculeatus L., in the littoral zone of Lake Takvatn in northern Norway. Ecology of Freshwater Fishes 4: 77–84.CrossRefGoogle Scholar
  36. Klemetsen, A., P.-A. Amundsen, P. E. Grotnes, R. Knudsen, R. Kristoffersen & M.-A. Svenning, 2002. Takvatn through 20 years: long-term effects of an experimental mass removal of Arctic charr, Salvelinus alpinus, from a subarctic lake. Environmental Biology of Fishes 64: 39–47.CrossRefGoogle Scholar
  37. Knapp, R. A., K. R. Matthews & O. Sarnelle, 2001. Resistance and resilience of alpine lake fauna to fish introductions. Ecological Monographs 71: 401–421.CrossRefGoogle Scholar
  38. Koroleff, F., 1970. Determination of total phosphorus in natural waters by means of the persulphate oxidation. An Interlab. report No 3, Cons. Int. pour l´explor de la Mer.Google Scholar
  39. L’Abée-Lund, J. H., A. Langeland & H. Sægrov, 1992. Piscivory by Brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.) in Norwegian lakes. Journal of Fish Biology 41: 91–101.CrossRefGoogle Scholar
  40. Langeland, A., 1982. Interactions between zooplankton and fish in a fertilized lake. Holarctic Ecology 5: 273–310.Google Scholar
  41. Leibold, M. A., 1989. Resource edibility and the effects of predators and productivity on the outcome of trophic interactions. American Naturalist 134: 922–949.CrossRefGoogle Scholar
  42. Loeblich, A. R. & H. Tappan, 1988. Foraminiferal Genera and ter Braak C. J. F. & P Smilauer, 1998. Canoco reference manual their Classification. Van Nostrand Reinhold Company Inc., 869 and user’s guide to Canoco for Windows: Software for canonipp.Google Scholar
  43. McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in freshwater pelagic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 43: 1571–1581.CrossRefGoogle Scholar
  44. Margaritora, F., 1985. Cladocera. Fauna D’Italia. Calderini, Bologna.Google Scholar
  45. Murphy, J. & J. R. Riley, 1972. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 21–26.Google Scholar
  46. Nilsson N.-A. & B. Pejler, 1973. On the Relation Between Fish Fauna and Zooplankton Composition in North Swedish Lakes. Report Institute of Freshwater Research Drottningholm 53: 51–77.Google Scholar
  47. Nielsen, A. B., L. Hamerlik & K. S. Christoffersen, 2011. Three-spined sticklebacks (Gasterosteus aculeatus L.) recorded for the first time at Zackenberg – short description and comparative analysis with Arctic char food biology. In Jensen, L. M. & M. R. Rasch (eds), Zackenberg Ecological Research Operations, 16th Annual Report, 2010. Aarhus University, DCE – Danish Centre for Environment and Energy: 92–95.Google Scholar
  48. O’Brien, W. J., 1975. Some aspects of the limnology of the ponds and lakes of the Noatak drainage basin, Alaska. Verhandlungen der Internationalen Vereinigung der Limnologie 19: 472–479.Google Scholar
  49. Pace, M., J. J. Cole, S. R. Carpenter & J. F. Kitchell, 1999. Trophic cascades revealed in diverse ecosystems. Trends in Ecology Evolution 14: 483–488.CrossRefPubMedGoogle Scholar
  50. Paul, A. J., P. R. Leavitt, D. W. Schindler & A. K. Hardie, 1995. Direct and indirect effects of predation by a calanoid copepod (subgenus: Hesperodiaptomus) and of nutrients in a fishless alpine lake. Canadian Journal of Fisheries and Aquatic Sciences 52: 2628–2638.CrossRefGoogle Scholar
  51. Polis, G. A. & R. D. Holt, 1992. Intraguild predation: The dynamics of complex trophic interactions. Trends in Ecology & Evolution 7: 151–154.CrossRefGoogle Scholar
  52. Pont, D., A. J. Crivelli & F. Guillot, 1991. The impact of three-spined sticklebacks on the zooplankton of a previously fish-free pool. Freshwater Biology 26: 149–163.CrossRefGoogle Scholar
  53. Popadin, K., 2002. Body size of Holopedium gibberum under the influence of fish predation in small subarctic lakes. Verhandlungen der Internationalen Vereinigung der Limnologie 28: 204–209.Google Scholar
  54. Rautio, M. & W. F. Vincent, 2006. Benthic and pelagic food resources for zooplankton in shallow high-latitude lakes and ponds. Freshwater Biology 51: 1038–1052.CrossRefGoogle Scholar
  55. Rautio, M., F. Dufresne, I. Laurion, S. Bonilla, S. V. Warwick & K. S. Christoffersen, 2011a. Shallow freshwater ecosystems of the circumpolar Arctic. EcoScience 18: 204–222.CrossRefGoogle Scholar
  56. Rautio, M., H. L. Mariash & L. Forsström, 2011b. Seasonal shifts between autochthonous and allochthonous carbon contributions to zooplankton diets in a Subarctic lake. Limnology and Oceanography 56: 1513–1524.CrossRefGoogle Scholar
  57. Riget, F., E. Jeppesen, F. Landkildehus, T. L. Lauridsen, P. Geertz-Hansen, K. Christoffersen & H. Sparholt, 2000. Landlocked Arctic charr (Salvelinus alpinus) population structure and morphometry in Greenland – is there a connection? Polar Biology 23: 550–558.CrossRefGoogle Scholar
  58. Rigler, F. H., 1978. Limnology in the High Arctic: a case study of Char Lake. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 20: 127–140.Google Scholar
  59. Røen, U. I., 1995. Danmarks Fauna Bd. 85, Krebsdyr V, Gællefødder (Branchiopoda) og Karpelus (Branchiura). Dansk Naturhistorisk Forening, Viderup Bogtrykkeri A/S.Google Scholar
  60. Sarnelle, O., 1992. Nutrient enrichment and grazer effects of phytoplankton in lakes. Ecology 73: 551–560.CrossRefGoogle Scholar
  61. Solórzano, L. & J. H. Sharp, 1980. Determination of total dissolved nitrogen in natural waters. Limnology and Oceanography 25: 751–754.CrossRefGoogle Scholar
  62. Stross, R. G., M. C. Miller & R. J. Daley, 1980. Zooplankton: communities, life cycles and production. In Hobbie, J. E. (ed.), Limnology of Tundra Ponds. US/IBP Synthesis Series 13. Dowden, Hutchinson and Ross Inc., Strousburg: 251–296.Google Scholar
  63. Svenning, M.-A., M. Aas & R. Borgstrøm, 2015. First records of three-spined stickleback Gasterosteus aculeatus in Svalbard freshwaters: An effect of climate change? Polar Biology. doi: 10.1007/s00300-015-1752-6.Google Scholar
  64. Sægrov, H., A. Hobæk & H. H. Lábe-Lund, 1996. Vulnerability of melanic Daphnia to brown trout predation. Journal of Plankton Research 18: 2113–2118.CrossRefGoogle Scholar
  65. Vadeboncoeur, Y., E. Jeppesen, M. J. Vander Zanden, H.-H. Schierup, K. Christoffersen & D. Lodge, 2003. From Greenland to green lakes: Cultural eutrophication and the loss of benthic pathways. Limnology & Oceanography 48: 1408–1418.CrossRefGoogle Scholar
  66. Wiederholm, T., 1980. Use of benthos in lake monitoring. Journal of the Water Pollution Control Federation 52: 537–547.Google Scholar
  67. Williams, D. D. & J. C. Delbeek, 1989. Biology of the three-spined stickleback, Gasterosteus aculeatus, and the blackspotted stickleback, Gasterosteus wheatlandi, during their marine pelagic phase in the Bay of Fundy, Canada. Environmental Biology of Fishes 24: 33–41.CrossRefGoogle Scholar
  68. Wotton, R. J., 1984. A Functional Biology of Sticklebacks. Croom Helm, London.CrossRefGoogle Scholar
  69. Wrona, F. J., T. D. Prowse, J. D. Reist, R. Beamish, J. J. Gibson, J. Hobbie, E. Jeppesen, J. King, G. Koeck, A. Korhola, L. Levêsque, R. Macdonald, M. Power, V. Skvortsov, W. Vincent, R. Clark, B. Dempson, D. Lean, H. Lehtonen, S. Perin, R. Pienitz, M. Rautio, J. Smol, R. Tallman & A. Zhulidov, 2005. Freshwater ecosystems and fisheries. ACIA : Arctic Climate Impact Assessment. Cambridge University Press, New York: 354–452.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Erik Jeppesen
    • 1
    • 2
    • 3
  • Torben L. Lauridsen
    • 1
    • 2
    • 3
  • Kirsten S. Christoffersen
    • 4
    • 7
  • Frank Landkildehus
    • 1
  • Peter Geertz-Hansen
    • 5
  • Susanne Lildal Amsinck
    • 1
  • Martin Søndergaard
    • 1
    • 3
  • Thomas A. Davidson
    • 1
  • Frank Rigét
    • 6
    • 8
  1. 1.Department of BioscienceAarhus UniversitySilkeborgDenmark
  2. 2.Arctic Research CentreAarhus UniversityAarhusDenmark
  3. 3.Sino-Danish Centre for Education and ResearchBeijingChina
  4. 4.Department of BiologyUniversity of CopenhagenCopenhagenDenmark
  5. 5.Department of Inland FisheriesDTU-AQUASilkeborgDenmark
  6. 6.Department of BioscienceAarhus UniversityRoskildeDenmark
  7. 7.Department of Arctic BiologyUniversity Center in SvalbardLongyearbyenNorway
  8. 8.Greenland Institute of Natural ResourcesNuukGreenland

Personalised recommendations