, Volume 802, Issue 1, pp 255–267 | Cite as

Thermal ecology of Galaxias platei (Pisces, Galaxiidae) in South Patagonia: perspectives under a climate change scenario

  • María Eugenia Barrantes
  • María Eugenia LattucaEmail author
  • Fabián Alberto Vanella
  • Daniel Alfredo Fernández
Primary Research Paper


The native freshwater fish Galaxias platei shows a wide latitudinal distribution in Patagonia, being found on both sides of the Andes. Currently, climate change poses one of the main threats to native fish, and its effects are appearing faster in high southern latitudes. The aim of this work was to analyse the possible effects of climate change in G. platei through its thermal responses. We hypothesized that juveniles of this species would be affected by indirect rather than by direct consequences of climate change. We determined the thermal tolerance polygon using Critical Thermal Methodology and preferred temperatures using a thermal gradient. Additionally, we evaluated routine metabolic rate using stop-flow respirometry. Results showed an intermediate to large polygon, with a non-negligible portion acquired through acclimation. Preferred temperatures and routine metabolic rates were positively related to acclimation temperature. Results suggest that G. platei thermal tolerance is dependent on its prior thermal history, have a eurythermal nature but maintain high levels of cold tolerance. Moreover, G. platei would be better suited at maintaining homeostasis at highest temperatures where more energy could be available for growth. This is the first time that thermal ecology data are registered for this species at its southernmost distribution.


Acclimation Metabolic rate Q10 Thermal tolerance Thermal preference 



This work was partially supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) through the PIP 0321 and PIP 0440. Thanks to Daniel Aureliano and Marcelo Gutiérrez for technical assistance and Frank Sola for his assistance with the English language of the manuscript. We also acknowledge financial support in terms of post-doctoral grant from the CONICET (M.E. Barrantes).


  1. Aigo, J., M. E. Lattuca & V. Cussac, 2014. Susceptibility of native perca (Percichthys trucha) and exotic rainbow trout (Oncorhynchus mykiss) to high temperature in Patagonia: Different physiological traits and distinctive responses. Hydrobiologia 736: 73–82.CrossRefGoogle Scholar
  2. Becker, C. D. & R. G. Genoway, 1979. Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish. Environmental Biology of Fishes 4: 245–256.CrossRefGoogle Scholar
  3. Beitinger, T. L. & W. A. Bennett, 2000. Quantification of the role of acclimation temperature in temperature tolerance of fishes. Environmental Biology of Fishes 58: 277–288.CrossRefGoogle Scholar
  4. Beitinger, T. L. & R. W. McCauley, 1990. Whole-animal physiological processes for the assessment of stress in fishes. Journal of Great Lakes Research Elsevier 16: 542–575.CrossRefGoogle Scholar
  5. Beitinger, T. L., W. A. Bennet & R. W. McCauley, 2000. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environmental Biology of Fishes 58: 237–275.CrossRefGoogle Scholar
  6. Beitinger, T. L. & W. I. Lutterschmidt, 2011. Measures of thermal tolerance. In Farrell, A. P. (ed), Encyclopedia of fish physiology: from genome to environment. Elsevier Inc, San Diego: 1695–1702.CrossRefGoogle Scholar
  7. Bennett, W. A. & T. L. Beitinger, 1997. Temperature tolerance of the sheepshead minnow, Cyprinodon variegatus. Copeia 1997: 77–87.CrossRefGoogle Scholar
  8. Bettoli, P., W. Neill & S. Kelsch, 1985. Temperature preference and heat resistance of grass carp, Ctenopharyngodon idella (Valenciennes), bighead carp, Hypophthalmichthys nobilis (Gray), and their F1. Journal of fish biology 27: 239–247.CrossRefGoogle Scholar
  9. Boy, C. C., A. F. Pérez, M. Tagliaferro, M. E. Lattuca, M. Gutiérrez & F. A. Vanella, 2017. Exploring bioenergetics of diadromous Galaxias maculatus in the southernmost extreme of its distribution: Summer is not always the better season. Journal of Experimental Marine Biology and Ecology 488: 102–110.CrossRefGoogle Scholar
  10. Brett, J. R., 1956. Some principles in the thermal requirements of fishes. The Quarterly Review of Biology 31: 75–87.CrossRefGoogle Scholar
  11. Campos, H., 1970. Introducción de especies exóticas y su relación con los peces de agua dulce de Chile. Mensual del Museo Nacional de Historia Natural 14: 6–9.Google Scholar
  12. Chaui-Berlinck, J. G., L. H. A. Monteiro, C. A. Navas & J. E. P. W. Bicudo, 2002. Temperature effects on energy metabolism: a dynamic system analysis. Proceedings Biological Sciences/The Royal Society 269: 15–19.CrossRefGoogle Scholar
  13. Clavero, M. & E. García-Berthou, 2005. Invasive species are a leading cause of animal extinctions. Trends in Ecology Evolution 20: 110.CrossRefPubMedGoogle Scholar
  14. Correa, C. & A. P. Hendry, 2012. Invasive salmonids and lake order interact in the decline of puye grande Galaxias platei in western Patagonia lakes. Ecological Applications 22: 828–842.CrossRefPubMedGoogle Scholar
  15. Cox, D. K., 1974. Effects of three heating rates on the critical thermal maximum of bluegill In Gibbons, J. W., & R. R. Sharitz (eds), Thermal Ecology. National Technical Information Service, CONF-730505, Springfield, VA.Google Scholar
  16. Crawley, N. E., 2013. The global impacts of climate change of fish. PhD Thesis 265.Google Scholar
  17. Currie, R. J., W. A. Bennett & T. L. Beitinger, 1998. Critical thermal minima and maxima of three freshwater game-fish species acclimated to constant temperatures. Environmental Biology of Fishes 51: 187–200.CrossRefGoogle Scholar
  18. Cussac, V. E., S. Ortubay, G. Iglesias, D. Milano, M. E. Lattuca, J. P. Barriga, M. A. Battini & M. Gross, 2004. The distribution of South American galaxiid fishes: the role of biological traits and post-glacial history. Journal of Biogeography 31: 103–121.CrossRefGoogle Scholar
  19. Dabruzzi, T., W. A. Bennett, J. L. Rummer & N. A. Fangue, 2012. Thermal ecology of juvenile ribbontail stingray, Taeniura lymma (Forsskål, 1775), from a Mangal Nursery in the Banda Sea. Hydrobiologia 701: 37–49.CrossRefGoogle Scholar
  20. Dalvi, R. S., A. K. Pal, L. R. Tiwari, T. Das & K. Baruah, 2009. Thermal tolerance and oxygen consumption rates of the catfish Horabagrus brachysoma (Günther) acclimated to different temperatures. Aquaculture 295: 116–119.CrossRefGoogle Scholar
  21. Das, T., A. K. Pal, S. K. Chakraborty, S. M. Manush, N. Chatterjee & S. C. Mukherjee, 2004. Thermal tolerance and oxygen consumption of Indian Major Carps acclimated to four temperatures. Journal of Thermal Biology 2004: 157–163.CrossRefGoogle Scholar
  22. Davenport, J., 2012. Animal life at low temperature. Springer Science & Business Media, Berlin.Google Scholar
  23. Díaz, F., A. D. Re, R. A. González, L. N. Sánchez, G. Leyva & F. Valenzuela, 2007. Temperature preference and oxygen consumption of the largemouth bass Micropterus salmoides (Lacépède) acclimated to different temperatures. Aquaculture Research 38: 1387–1394.CrossRefGoogle Scholar
  24. Di Santo, V. & W. A. Bennett, 2011. Is post‐feeding thermotaxis advantageous in elasmobranch fishes? Journal of Fish Biology 78: 195–207.CrossRefPubMedGoogle Scholar
  25. DiRienzo, J. A., F. Casanoves, M. G. Balzarini, L. Gonzalez, M. Tablada, & C. W. Robledo, 2011. Grupo InfoStat, Universidad Nacional de Córdoba, Córdoba, Argentina. URL
  26. Elliot, A., 2010. A comparison of thermal polygons for British freshwater teleosts. Freshwater Forum 5: 178–184.Google Scholar
  27. Elliot, J. M., 1981. Some aspects of thermal stress on freshwater teleosts. In Pickering, A. D. (ed), Stress and fish. Academic Press, New York: 209–245.Google Scholar
  28. Eme, J. & W. A. Bennett, 2009a. Critical thermal tolerance polygons of tropical marine fishes from Sulawesi, Indonesia. Journal of Thermal Biology 34: 220–225.CrossRefGoogle Scholar
  29. Eme, J. & W. A. Bennett, 2009b. Acute temperature quotient responses of fishes reflect their divergent thermal habitats in the Banda Sea, Sulawesi, Indonesia. Australian Journal of Zoology 57: 357–362.CrossRefGoogle Scholar
  30. Fangue, N. A. & W. A. Bennett, 2003. Thermal tolerance responses of laboratory acclimated and seasonally acclimatized Atlantic stingray, Dasyatis sabina. Copeia 2003: 315–325.CrossRefGoogle Scholar
  31. Feldmeth, R. C., E. A. Stone & J. H. Brown, 1974. An increased scope for thermal tolerance upon acclimating pupfish (Cyprinodon) to cycling temperatures. Journal of Comparative Physiology 89: 39–44.CrossRefGoogle Scholar
  32. Fernández, D. A., J. Ciancio, S. G. Ceballos, C. Riva-Rossi & M. A. Pascual, 2010. Chinook salmon (Oncorhynchus tshawytscha, Walbaum 1792) in the Beagle Channel, Tierra del Fuego: The onset of an invasion. Biological Invasions 12: 2991–2997.CrossRefGoogle Scholar
  33. Ficke, A., C. Myrick & L. Hansen, 2007. Potential impacts of global climate change on freshwater fisheries. Reviews in Fish Biology and Fisheries 17: 581–613.CrossRefGoogle Scholar
  34. Fry, F. E. J., 1971. The effect of environmental factors on the physiology of fish. Fish Physiology 6: 1–98.CrossRefGoogle Scholar
  35. Gille, S. T., 2002. Warming of the Southern Scean since the 1950s. Science. doi: 10.1126/science.1065863.PubMedGoogle Scholar
  36. Golovanov, V. K., 2006. The ecological and evolutionary aspects of thermoregulation behavior on fish. Journal of Ichthyology 46: 180–187.CrossRefGoogle Scholar
  37. Haak, A. L., J. E. Williams, H. M. Neville, D. C. Dauwalter & W. T. Colyer, 2010. Conserving peripheral trout populations: the values and risk of life on the edge. Fisheries 35: 530–549.CrossRefGoogle Scholar
  38. Hardewig, I., P. L. Van Dijk & H. O. Pörtner, 1998. High-energy turnover at low temperatures: Recovery from exhaustive exercise in Antarctic and temperate eelpouts. The American Journal of Physiology 274: R1789–R1796.PubMedGoogle Scholar
  39. Hazel, J. R. & C. L. Prosser, 1974. Molecular mechanisms of temperature compensation in poikilotherms. Physiological Reviews 54: 620–677.PubMedGoogle Scholar
  40. Heller, N. E. & E. S. Zavaleta, 2009. Biodiversity management in the face of climate change: A review of 22 years of recommendations. Biological Conservation 142: 14–32.CrossRefGoogle Scholar
  41. Hochachka, P. W. & G. N. Somero, 1971. Biochemical Adaptation to the Environment. In Hoar, W. S. & D. J. Randall (eds), Fish physiology. Academic Press, New York and London: 100–148.Google Scholar
  42. Hundt, M., M. Schiffer, M. Weiss, B. Schreiber & C. M. Kreiss, 2015. Effect of temperature on growth, survival and respiratory rate of larval allis shad Alosa alosa. Knowledge and Management of Aquatic Ecosystems 416: 27.CrossRefGoogle Scholar
  43. Jobling, M., 1981. Temperature tolerance and the final preferendum-rapid methods for the assessment of optimum growth temperatures. Journal of Fish Biology 19: 439–455.CrossRefGoogle Scholar
  44. Jobling, M., 1994. Fish Bioenergetics - Fish and Fisheries Series 13. Chapman & Hall, London.Google Scholar
  45. Jobling, M., 1996. Environmental biology of fishes. Fish and Fisheries Series 16. Chapman & Hall, London.Google Scholar
  46. Johnson, J. A. & S. W. Kelsch, 1998. Effects of evolutionary thermal environment on temperature-preference relationships in fishes. Environmental Biology of Fishes 4: 447–458.CrossRefGoogle Scholar
  47. Kita, J., S. Tsuchida & T. Setoguma, 1996. Temperature preference and tolerance, and oxygen consumption of the marbled rockfish, Sebastiscus marmoratus. Marine Biology 125: 467–471.Google Scholar
  48. Krogh, A., 1916. The respiratory exchange of animals and man. Longmans, London.CrossRefGoogle Scholar
  49. Lesica, P. & F. W. Allendorf, 1995. When are peripheral valuable populations for conservation? Conservation Biology 9: 753–760.CrossRefGoogle Scholar
  50. Magnuson, J. J., L. B. Crowder & P. A. Medvick, 1979. Temperature as an ecological resource. Integrative and Comparative Biology 19: 331–343.Google Scholar
  51. McDowall, R. M., 1971. The galaxiid fishes of South America. Zoological Journal of the Linnean Society 50: 33–73.CrossRefGoogle Scholar
  52. Milano, D., 2003. Biología de Galaxias platei (Pisces, Galaxidae): Especializaciones relativas a su distribución. PhD Thesis, Universidad Nacional del Comahue.Google Scholar
  53. Milano, D., D. E. Ruzzante, V. E. Cussac, P. J. Macchi, R. A. Ferriz, J. C. Macchi, M. E. Lattuca & S. J. Walde, 2006. Latitudinal and ecological correlates of morphological variation in Galaxias platei (Pisces, Galaxiidae) in Patagonia. Biological Journal of the Linnean Society 87: 69–82.CrossRefGoogle Scholar
  54. Mundahl, N., 1990. Heat death of fish in shrinking stream pools: Mechanisms for survival. American Midland Naturalist 123: 40–46.CrossRefGoogle Scholar
  55. Pascual, M. & J. E. Ciancio, 2007. Introduced anadromous salmonids in patagonia: risks, uses and a conservation paradox. In Bert, T. M. (ed.), Ecological and genetic implications of aquaculture activities. Springer, Berlin.Google Scholar
  56. Pascual, M., V. Cussac, B. Dyer, D. Soto, P. Vigliano, S. Ortubay & P. Macchi, 2007. Freshwater fishes of Patagonia in the 21st Century after a hundred years of human settlement, species introductions, and environmental change. Aquatic Ecosystem Health & Management 10: 212–227.CrossRefGoogle Scholar
  57. Pörtner, H. O., 2010. Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. Journal of Experimental Biology 213: 881–893.CrossRefPubMedGoogle Scholar
  58. Pörtner, H. O. & M. A. Peck, 2010. Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. Journal of Fish Biology 77: 1745–1779.CrossRefPubMedGoogle Scholar
  59. Prosser, C. L., 1986. Molecular mechanisms of temperature adaptation. American Association for the Advancement of Science, Washington, DC.Google Scholar
  60. Richardson, J., J. A. T. Boubée & D. W. West, 1994. Thermal tolerance and preference of some native New Zealand freshwater fish. New Zealand Journal of Marine and Freshwater Research 28: 399–407.CrossRefGoogle Scholar
  61. Saad, J. F., M. R. Schiaffino, A. Vinocur, I. O’Farrell, G. Tell & I. Izaguirre, 2013. Microbial planktonic communities of freshwater environments from Tierra del Fuego: Dominant trophic strategies in lakes with contrasting features. Journal of Plankton Research 35: 1220–1233.CrossRefGoogle Scholar
  62. Sagarin, R. D. & S. D. Gaines, 2002. The “abundant centre” distribution: to what extent is it a biogeographical rule? Ecology Letters 5: 137–147.CrossRefGoogle Scholar
  63. Shultz, A. D., Z. C. Zuckerman & C. D. Suski, 2016. Thermal tolerance of nearshore fishes across seasons: implications for coastal fish communities in a changing climate. Marine Biology 163: 83. doi: 10.1007/s00227-016-2858-2.CrossRefGoogle Scholar
  64. Shuter, B. J. & J. R. Post, 1990. Climate, population viability, and the zoogeography of temperate fishes. Transactions of the American Fisheries Society 119: 314–336.CrossRefGoogle Scholar
  65. Sogard, S. M. & M. L. Spencer, 2004. Energy allocation in juvenile sablefish: Effects of temperature, ration and body size. Journal of Fish Biology 64: 726–738.CrossRefGoogle Scholar
  66. Sollid, J., R. E. Weber & G. E. Nilsson, 2005. Temperature alters the respiratory surface area of crucian carp Carassius carassius and goldfish Carassius auratus. The Journal of experimental biology 208: 1109–1116.CrossRefPubMedGoogle Scholar
  67. Svendsen, M. B. S., P. G. Bushnell & J. F. Steffensen, 2016. Design and setup of intermittent-flow respirometry system for aquatic organisms. Journal of Fish Biology 88: 26–50.CrossRefPubMedGoogle Scholar
  68. Vanella, F. A. & J. Calvo, 2005. Influence of temperature, habitat and body mass on routine metabolic rates of Subantarctic teleosts. Scientia Marina 69: 317–323.CrossRefGoogle Scholar
  69. Wallman, H. L. & W. A. Bennett, 2006. Effects of parturition and feeding on thermal preference of Atlantic stingray, Dasyatis sabina (Lesueur). Environmental Biology of Fishes 75: 259–267.CrossRefGoogle Scholar
  70. Zar, J. H., 2010. Biostatistical Analysis. Prentice Hall - Pearson, London.Google Scholar
  71. Zemlak, T. S., E. M. Habit, S. J. Walde, M. A. Battini, E. D. M. Adams & D. E. Ruzzante, 2008. Across the southern Andes on fin: glacial refugia, drainage reversals and a secondary contact zone revealed by the phylogeographical signal of Galaxias platei in Patagonia. Molecular Ecology 17: 5049–5061.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • María Eugenia Barrantes
    • 1
  • María Eugenia Lattuca
    • 1
    • 2
    Email author
  • Fabián Alberto Vanella
    • 1
    • 2
  • Daniel Alfredo Fernández
    • 1
    • 3
  1. 1.Laboratorio de Ecología, Fisiología y Evolución de Organismos Acuáticos (LEFyE)Centro Austral de Investigaciones Científicas (CADIC-CONICET)UshuaiaArgentina
  2. 2.Universidad Tecnológica Nacional (UTN)UshuaiaArgentina
  3. 3.Instituto de Ciencias PolaresAmbiente y Recursos Naturales (ICPA) de la Universidad Nacional de Tierra del Fuego (UNTDF)UshuaiaArgentina

Personalised recommendations