, Volume 802, Issue 1, pp 245–253 | Cite as

Environmental filters predict the trait composition of fish communities in reservoir cascades

  • Natália Carneiro Lacerda dos SantosEmail author
  • Herick Soares de Santana
  • Jean Carlo Gonçalves Ortega
  • Rosa Maria Dias
  • Lis Fernandes Stegmann
  • Isabela Maria da Silva Araújo
  • William Severi
  • Luis Mauricio Bini
  • Luiz Carlos Gomes
  • Angelo Antonio Agostinho
Primary Research Paper


Dam construction alters flow regimes and can change the composition of aquatic communities. Using data from three Brazilian hydrographic basins, we tested the hypothesis that reservoir cascades act as environmental filters for fish traits. This dataset included information on different environmental variables and fish traits (diet, migration, fecundation, parental care, position in the water column, and body size), and we used multivariate analysis (partial RLQ) to quantify the relationships between environmental variables, species abundance and traits. We found that the abundance of migratory species declined towards downstream reservoirs, which tend to be smaller and less turbid with a shorter water residence time than upstream reservoirs. We also found evidence of an association between reservoir age and the domination of fish communities by small-sized species with parental care, external fecundation, and benthic habits. Our findings suggest that particular fish traits are selected for across reservoir cascades.


Trait–environment relationship Partial RLQ Impact of dams Strategies Hydrologic alteration Freshwater fish 



We thank Taise Miranda Lopes for contributing to the manuscript and Eduardo Ribeiro da Cunha, Geovani Moresco, and Matheus Baumgartner for preparing the schematic design. We also thank Stéphane Dray for kindly assisting with the fourth-corner analysis and the reviewers whose comments improved the final version of this manuscript. We express our appreciation to the Hydroelectric Company of São Francisco (CHESF), the Apollonius Salles Foundation for Educational Development (FADURPE), and PRONEX-MCT/CNPq for financial support, and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the graduate student fellowship. AAA, LCG, and LMB receive productivity grants from CNPq.

Supplementary material

10750_2017_3274_MOESM1_ESM.docx (118 kb)
Supplementary material 1 (DOCX 118 kb)


  1. Agostinho, A. A. & H. F. Júlio Jr., 1999. Peixes da bacia do alto rio Paraná. In Lowe-McConnell, R. H. (ed.), Estudos ecológicos de comunidades de peixes tropicais. EDUSP, São Paulo.Google Scholar
  2. Agostinho, A. A., L. E. Miranda, L. M. Bini, L. C. Gomes, S. M. Thomaz & H. I. Suzuki, 1999. Patterns of colonization in neotropical reservoirs, and prognoses on aging. In Tundisi, J. G. & M. Straskraba (eds), Theoretical reservoir ecology and its applications. International Institute of Ecology (IIE), Leiden, Netherlands.Google Scholar
  3. Agostinho, A. A., L. C. Gomes, S. Veríssimo & E. K. Okada, 2004. Flood regime, dam regulation and fish in the Upper Paraná river: effects on assemblage attributes, reproduction and recruitment. Reviews in Fish Biology and Fisheries 14: 11–19.CrossRefGoogle Scholar
  4. Agostinho, A. A., L. C. Gomes & F. M. Pelicice, 2007a. Ecologia e manejo de recursos pesqueiros em reservatórios do Brasil. Eduem, Maringá.Google Scholar
  5. Agostinho, A. A., E. E. Marques, C. S. Agostinho, D. A. Almeida, R. J. Oliveira & J. B. M. Rodrigues, 2007b. Fish ladder of Lajeado Dam: migration on one way routes? Neotropical Ichthyology 5: 121–130.CrossRefGoogle Scholar
  6. Agostinho, A. A., L. C. Gomes, N. C. L. Santos, J. C. G. Ortega & F. M. Pelicice, 2016. Fish assemblages in Neotropical reservoirs: colonization patterns, impacts and management. Fisheries Research 173: 26–36.CrossRefGoogle Scholar
  7. ANEEL, Agência Nacional de Energia Elétrica (Brasil), 2002. Atlas de energia elétrica do Brasil/Agência Nacional de Energia Elétrica. ANEEL, Brasília.Google Scholar
  8. Barbosa, F. A. R., J. Padisák, E. L. G. Espindola, G. Borics & O. Rocha, 1999. The cascading Reservoir Continuum Concept (CRCC) and its application to the River Tietê basin, São Paulo State, Brazil. In Tundisi, J. G. & M. Straskaba (eds), Theoretical reservoir ecology and its applications. International Institute of Ecology, Brazilian Academy of Sciences and Backhuys Publishers, São Carlos.Google Scholar
  9. Brind’Amour, A., D. Boisclair, S. Dray & P. Legendre, 2011. Relationships between species feeding traits and environmental conditions in fish communities: a three-matrix approach. Ecological Applications 21: 363–377.CrossRefPubMedGoogle Scholar
  10. Britski, H. A., Y. Sato, A. B. S. Rosa, 1984. Manual de identificação de peixes da região de Três Marias (com chaves de identificação para os peixes da bacia do São Francisco), Brasília, câmara dos deputados/CODEVASF.Google Scholar
  11. Castello, L. & M. N. Macedo, 2015. Large-scale degradation of Amazonian freshwater ecosystems. Global Change Biology 22: 990–1007.CrossRefPubMedGoogle Scholar
  12. Castro, R. M. C., L. Casatti, H. F. Santos, K. M. Ferreira, A. C. Ribeiro, R. C. Benine, M. Carvalho, A. C. Ribeiro, T. X. Abreu, F. A. Bockmann, G. Z. Pelição, R. Stopiglia & F. Langeani, 2003. Estrutura e composição da ictiofauna de riachos do rioParanapanema, Sudeste e Sul do Brasil. Biota Neotropica 3: 1–6.CrossRefGoogle Scholar
  13. Cheng, F., W. Li, L. Castello, B. R. Murphy & S. Xie, 2015. Potential effects of dam cascade on fish: lessons from the Yangtze River. Reviews in Fish Biology and Fisheries 25: 569–585.CrossRefGoogle Scholar
  14. Coleman, B. D., M. A. Mares, M. R. Willig & Y. H. Hsieh, 1982. Randomness, area, and species richness. Ecology 63: 1121–1133.CrossRefGoogle Scholar
  15. Dala-Corte, R. B., X. Giam, J. D. Olden, F. G. Becker, T. F. Guimarães & A. S. Melo, 2016. Revealing the pathways by which agricultural land-use affects stream fish communities in South Brazilian grasslands. Freshwater Biology 61: 1921–1934.CrossRefGoogle Scholar
  16. Dolédec, S., D. Chessel, C. J. F. Ter Braak & S. Champely, 1996. Matching species traits to environmental variables: a new three-table ordination method. Environmental and Ecological Statistics 3: 143–166.CrossRefGoogle Scholar
  17. Dray, S. & A. B. Dufour, 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22: 1–20.CrossRefGoogle Scholar
  18. Froese, R. & D. Pauly,2014. FISHBASE 2014. World Wide Web electronic publication. [available on [Acessed February 2015].
  19. Hill, M. O. & A. J. E. Smith, 1976. Principal component analysis of taxonomic data with multi-state discrete characters. Taxon 25: 249–255.CrossRefGoogle Scholar
  20. Hoeinghaus, D. J., A. A. Agostinho, L. C. Gomes, F. M. Pelicice, E. K. Okada, J. D. Latini, E. A. L. Kashiwaqui & K. O. Winemiller, 2009. Effects of river impoundment on ecosystem services of large tropical rivers: embodied energy and market value of artisanal fisheries. Conservation Biology 23: 1222–1231.CrossRefPubMedGoogle Scholar
  21. Hyslop, E. P., 1980. Stomach contents analysis – A review of methods and their application. Journal of Fish Biology, Malden 17: 411–429.CrossRefGoogle Scholar
  22. Jung, V., C. Violle, C. Mondy, L. Hoffmann & S. Muller, 2010. Intraspecific variability and trait-based community Assembly. Journal of Ecology 98: 1134–1140.CrossRefGoogle Scholar
  23. Laughlin, D. C., 2014. Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecology Letters 17: 771–784.CrossRefPubMedGoogle Scholar
  24. Legendre, P. & L. Legendre, 2012. Numerical ecology. Elsevier, Amsterdam.Google Scholar
  25. Lenhardt, M., G. Markovic & Z. Gacic, 2009. Decline in the index of biotic integrity of the fish assemblage as a response to reservoir aging. Water Resources Management 23: 1713–1723.CrossRefGoogle Scholar
  26. Lees, A. C., C. A. Peres, P. M. Fearnside, M. Schneider & J. A. S. Zuanon, 2016. Hydropower and the future of Amazonian biodiversity. Biodiversity and Conservation 25: 451–466.CrossRefGoogle Scholar
  27. Liermann, C. R., C. Nilsson, J. Robertson & R. Y. Ng, 2012. Implications of dam obstruction for global freshwater fish diversity. BioScience 62: 539–548.CrossRefGoogle Scholar
  28. Maack, R., 2002. Geografia física do Estado do Paraná. 3rd ed. Imprensa Oficial. Curitiba.Google Scholar
  29. McGill, B. J., B. Enquist, E. Weiher & M. Westoby, 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21: 178–185.CrossRefGoogle Scholar
  30. Merritt, R. W. & K. W. Cummins, 1996. An introduction to the aquatic insects of North America. Kendall/Hunt Publishing Company, Iowa: 548p.Google Scholar
  31. Miranda, L. E., M. Habrat & S. Miyazono, 2008. Longitudinal gradients along a reservoir cascade. Transactions of the American Fisheries Society 137: 1851–1865.CrossRefGoogle Scholar
  32. Miranda, L. E. & D. J. Dembkowski, 2015. Evidence for serial discontinuity in the fish community of a heavily impounded river. River Research and Applications 32: 1187–1195.CrossRefGoogle Scholar
  33. Ney, J. J., 1996. Oligotrophication and its discontents: effects of reduced nutrient loading on reservoir fisheries. In Miranda, L. E. & D. R. Devries (eds) Multidimensional approaches to reservoir fisheries management. American Fisheries Society Symposium, Bethesda.Google Scholar
  34. Pease, A. A., A. A. González-Díaz, R. Rodiles-Hernández & K. O. Winemiller, 2012. Functional diversity and trait-environment relationships of stream fish assemblages in a large tropical catchment. Freshwater Biology 57(5): 1060–1075.CrossRefGoogle Scholar
  35. Pease, A. A., J. M. Taylor, K. O. Winemiller & R. S. King, 2015. Ecoregional, catchment, and reach-scale environmental factors shape functional-trait structure of stream fish assemblages. Hydrobiologia 753: 265–283.CrossRefGoogle Scholar
  36. Pelicice, F. M., P. S. Pompeu & A. A. Agostinho, 2015. Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish and Fisheries 16: 697–715.CrossRefGoogle Scholar
  37. Petts, G., 1980. Long-term consequences of upsetram impoundment. Environmental Conservation 7: 325–332.CrossRefGoogle Scholar
  38. R Core Team, 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  39. Ribeiro, M. D., F. B. Teresa & L. Casatti, 2016. Use of functional traits to assess changes in stream fish assemblages across a habitat gradient. Neotropical Ichthyology 14(1): e140185.CrossRefGoogle Scholar
  40. Rodríguez, M. A. & W. M. Lewis, 1997. Structure of fish assemblages along environmental gradients in floodplain lakes of the Orinoco River. Ecological Monographs 67: 109–128.CrossRefGoogle Scholar
  41. Sampaio, T., 1944. Relatório dos rios Itapetininga e Paranapanema. Revista do Instituto Geológico 2: 222–271.Google Scholar
  42. Santos, N. C. L., H. S. Santana, R. M. Dias, H. L. F. Borges, V. F. Melo, W. Severi, L. C. Gomes & A. A. Agostinho, 2016. Distribution of benthic macroinvertebrates in a tropical reservoir cascade. Hydrobiologia 765: 265–275.CrossRefGoogle Scholar
  43. Stein, A., K. Gerstner & H. Kreft, 2014. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters 17: 866–880.CrossRefPubMedGoogle Scholar
  44. Tejerina-Garro, F. L., R. Fortin & M. A. Rodríguez, 1998. Fish community structure in relation to environmental variation in floodplain lakes of the Araguaia River, Amazon Basin. Environmental Biology of Fishes 51: 399–410.CrossRefGoogle Scholar
  45. Ward, J. V. & J. A. Stanford, 1983. The serial discontinuity concept of lotic ecosystems. In Fontaine, T. D. & S. M. Bartell (eds), Dynamics of lotic ecosytems. Ann Arbor Sciences, Ann Arbor: 29–42.Google Scholar
  46. Ward, J. V. & J. A. Stanford, 1995. The serial discontinuity concept of lotic ecosystems: extending the model to floodplain rivers. Regulated Rivers 10: 159–168.CrossRefGoogle Scholar
  47. Webb, C. T., J. A. Hoeting, G. M. Ames, M. I. Pyne & N. LeRoy Poff, 2010. A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecology Letters 13: 267–283.CrossRefPubMedGoogle Scholar
  48. Wesuls, D., J. Oldeland & S. Dray, 2012. Disentangling plant trait responses to livestock grazing from spatio-temporal variation: the partial RLQ approach. Journal of Vegetation Science 23: 98–113.CrossRefGoogle Scholar
  49. Winemiller, K. O., 1989. Patterns of variation in life history among South American fishes in seasonal environments. Oecologia 81: 225–241.CrossRefPubMedGoogle Scholar
  50. Winemiller, K. O., P. B. McIntyre, L. Castello, E. Fluet-Chouinard, T. Giarrizzo, S. Nam, I. G. Baird, W. Darwall, N. K. Lujan, I. Harrison, M. L. J. Stiassny, R. A. M. Silvano, D. B. Fitzgerald, F. M. Pelicice, A. A. Agostinho, L. C. Gomes, J. S. Albert, E. Baran, M. Petrere Jr., C. Zarfl, M. Mulligan, J. P. Sullivan, C. C. Arantes, L. M. Sousa, A. A. Koning, D. J. Hoeinghaus, M. Sabaj, J. G. Lundberg, J. Armbruster, M. L. Thieme, P. Petry, J. Zuanon, G. T. Vilara, J. Snoeks, C. Ou, W. Rainboth, C. S. Pavanelli, A. Akama, A. van Soesbergen & L. Sáenz, 2016. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Basin-scale planning is needed to minimize impacts in mega-diverse rivers. Science 351: 128–129.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Natália Carneiro Lacerda dos Santos
    • 1
    • 2
    Email author
  • Herick Soares de Santana
    • 1
  • Jean Carlo Gonçalves Ortega
    • 1
  • Rosa Maria Dias
    • 1
    • 2
  • Lis Fernandes Stegmann
    • 3
  • Isabela Maria da Silva Araújo
    • 4
  • William Severi
    • 4
  • Luis Mauricio Bini
    • 5
  • Luiz Carlos Gomes
    • 1
    • 6
  • Angelo Antonio Agostinho
    • 1
    • 6
  1. 1.Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais – Universidade Estadual de MaringáMaringáBrazil
  2. 2.Postdoctoral Fellowship CNPqUniversidade Estadual de MaringáMaringáBrazil
  3. 3.Programa de Pós-Graduação em Ecologia - Instituto Nacional de Pesquisas da Amazônia-INPAManausBrazil
  4. 4.Departamento de Pesca e AquiculturaPrograma de Pós-Graduação em Recursos pesqueiros e Aquicultura - Universidade Federal Rural de PernambucoRecifeBrazil
  5. 5.Departamento de Ecologia, Instituto de Ciências BiológicasUniversidade Federal de GoiásGoiâniaBrazil
  6. 6.Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura – Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais – Universidade Estadual de MaringáMaringáBrazil

Personalised recommendations