Advertisement

Hydrobiologia

, Volume 802, Issue 1, pp 221–233 | Cite as

Could artificial plant beds favour microcrustaceans during biomanipulation of eutrophic shallow lakes?

  • David Balayla
  • Thomas Boll
  • Carolina Trochine
  • Erik Jeppesen
Primary Research Paper

Abstract

Introduction of artificial plants may facilitate the transition from a turbid to a clear-water state in shallow lakes, particularly when plant establishment is delayed. We investigated the usefulness of artificial plants as a restoration tool in an experimental setup mimicking open submerged plant beds with high plant density [80%, HPD] and low plant density [20%, LPD] in shallow Lake Vaeng, Denmark, having undergone biomanipulation in the form of extensive fish removal. Biological measures of the fish, and of both free-swimming (FSM) and plant-attached microcrustaceans (PAM) within the experimental beds and in the lake, were obtained from before, during and after biomanipulation. We found that microcrustacean measures (density, biomass and Cladocera:FSM) were significantly larger in the HPD beds, before and during fish removal, while the effect of plants was not significant after biomanipulation, with low fish biomass. On PAM, these effects were less pronounced and only significant after biomanipulation. Microcrustaceans were larger-bodied at HPD in all years, for both FSM and PAM. In conclusion, artificial plant beds acted as an effective microcrustacea refuge against fish, particularly for the FSM at HPD and in the years with high fish densities, providing further evidence that artificial plant beds could assist lake restoration efforts.

Keywords

Microcrustacea Fish predation Cladocerans Plant-associated microcrustaceans Body size 

Notes

Acknowledgements

For valuable help in the field, we thank Sandra Brucet, Ayşe İdil Çakıroğlu, Lissa Skov Hansen, Frank Landkildehus, Eti Levi, Lúcia Lobão, Xristina Papadaki, Ulla Kvist Pedersen, Tommy Silberg, Ülkü Nihan Tavşanoğlu, Kirsten Landkildehus Thomsen, Korhan Özkan and Marcelo Guerrieri. We also thank Ulla Kvist Pedersen and Lissa Skov Hansen for help in the laboratory, Erling Pedersen for help in the workshop, Søren Erik Larsen for statistical advice and Anne Mette Poulsen for carefully revising the English manuscript. The study was funded by the European Commission project ENDURE (Marie Curie Individual fellowship MEIF-CT-2006-038366, to D.B.) and the Danish Centre for Lake Restoration CLEAR (a Villum Kann Rasmussen Centre of Excellence project), The Danish Research Council for Nature and Universe (272-08-0406) and MARS (Managing Aquatic ecosystems and water Resources under multiple Stress) funded under the 7th EU Framework Programme, Theme 6 (Environment including Climate Change), Contract No.: 603378 (http://www.mars-project.eu). C.T. is a researcher for the Argentinean Research Council ‘CONICET’ and received a postdoctoral grant from Unesco-L’Oréal. We dedicate the paper to the late Brian Moss, a giant in limnology, a great and wise mentor and a great friend. Brian Moss introduced us to the idea of horizontal migration of zooplankton 30+ years ago and guided the first author through his PhD study.

References

  1. Balayla, D. & B. Moss, 2003. Spatial patterns and population dynamics of plant-associated microcrustacea (Cladocera) in an English shallow lake (Little Mere, Cheshire). Aquatic Ecology 37: 417–435.CrossRefGoogle Scholar
  2. Balayla, D. & B. Moss, 2004. Relative importance of grazing on algae by plant-associated and open-water microcrustacea (Cladocera). Archiv für Hydrobiologie 161: 199–224.CrossRefGoogle Scholar
  3. Beklioğlu, M. & B. Moss, 1996. Existence of a macrophyte-dominated clear water state over a very wide range of nutrient concentrations in a small shallow lake. Hydrobiologia 337: 93–106.CrossRefGoogle Scholar
  4. Boll, T., D. Balayla, F. Ø. Andersen & E. Jeppesen, 2012. Can artificial plant beds be used as a tool to enhance macroinvertebrate food resources for perch (Perca fluviatilis L.) during the initial phase of lake restoration by cyprinid removal? Hydrobiologia 679: 175–186.CrossRefGoogle Scholar
  5. Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.Google Scholar
  6. Brooks, L. & I. Dodson, 1965. Predation, body size and composition of the plankton. Science 50: 28–35.CrossRefGoogle Scholar
  7. Burks, R. L., D. M. Lodge, E. Jeppesen & T. Lauridsen, 2002. Diel horizontal migration of zooplankton: costs and benefits of inhabiting littoral zones. Freshwater Biology 47: 343–365.CrossRefGoogle Scholar
  8. Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Elser, M. M. Elser, D. M. Lodge, D. Kretchmer, X. He & C. N. von Ende, 1987. Regulation of lake primary productivity by food-web structure. Ecology 68: 1863–1867.CrossRefGoogle Scholar
  9. Diehl, S., 1988. Foraging efficiency of three freshwater fishes: effects of structural complexity and light. Oikos 53: 207–214.CrossRefGoogle Scholar
  10. Hall, D. J., S. T. Threlkeld, C. W. Burns & P. H. Crowley, 1976. The size-efficiency hypothesis and the size-structure of zooplankton communities. Annual Review of Ecological Systematics 7: 177–208.CrossRefGoogle Scholar
  11. Hansen, A., E. Jeppesen, S. Bosselmann & P. Andersen, 1992. Zooplankton i søer - metoder og artsliste. Prøvetagning, bearbejdning og rapportering ved undersøgelser af zoplankton i søer. Miljøprojekt nr. 205. Miljøstyrelsen. 116 s. (in Danish) [Zooplankton in lakes - methods and species list. Sampling, processing and reporting for zooplankton investigations in lakes].Google Scholar
  12. Hansson, L. A., H. Annadotter, E. Bergman, S. F. Hamrin, E. Jeppesen, T. Kairesalo, E. Luokkanen, P.-Å. Nilsson, M. Søndergaard & J. Strand, 1998. Biomanipulation as an application of food chain theory: constraints, synthesis and recommendations for temperate lakes. Ecosystems 1: 558–574.CrossRefGoogle Scholar
  13. Hessen, D., B. A. Faafeng, P. Brettum & T. Andersen, 1995. Replacement of herbivore zooplankton species along gradients of ecosystem productivity and fish predation pressure. Canadian Journal of Fisheries and Aquatic Sciences 52: 733–742.CrossRefGoogle Scholar
  14. Hilt, S., E. M. Gross, M. Hupfer, H. Morscheid, J. Mählmann, A. Melzer, J. Poltz, S. Sandrock, E.-M. Scharfg, S. Schneider & K. van de Weyer, 2006. Restoration of submerged vegetation in shallow eutrophic lakes – A guideline and state of the art in Germany. Limnologica 36: 155–171.CrossRefGoogle Scholar
  15. Jeppesen, E., M. Søndergaard, E. Mortensen, P. Kristensen, B. Riemann, H. J. Jensen, J. P. Müller, O. Sortkjær, J. P. Jensen, K. Christoffersen, S. Bosselmann & E. Dall, 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes. 1. Cross-analysis of three Danish case studies. Hydrobiologia 200(201): 205–218.CrossRefGoogle Scholar
  16. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342(343): 151–164.CrossRefGoogle Scholar
  17. Jeppesen, E., M. Søndergaard, J. P. Jensen, K. Havens, O. Anneville, L. Carvalho, M. F. Coveney, R. Deneke, M. Dokulil, B. Foy, D. Gerdeaux, S. E. Hampton, K. Kangur, J. Köhler, S. Körner, E. Lammens, T. L. Lauridsen, M. Manca, R. Miracle, B. Moss, P. Nõges, G. Persson, G. Phillips, R. Portielje, S. Romo, C. L. Schelske, D. Straile, I. Tatrai, E. Willén & M. Winder, 2005. Lakes’ response to reduced nutrient loading - an analysis of contemporary long term data from 35 case studies. Freshwater Biology 50: 1747–1771.CrossRefGoogle Scholar
  18. Jeppesen, E., M. Søndergaard, T. L. Lauridsen, T. A. Davidson, Z. Liu, N. Mazzeo, C. Trochine, K. Özkan, H. S. Jensen, D. Trolle, F. Starling, X. Lazzaro, L. S. Johansson, R. Bjerring, L. Liboriussen, S. E. Larsen, F. Landkildehus, S. Egemose & M. Meerhoff, 2012. Biomanipulation as a restoration tool to combat eutrophication: recent advances and future challenges. Advances in Ecological Research 47: 411–488.CrossRefGoogle Scholar
  19. Kankaala, P., A. Vasama, K. Eskonen & L. Hyytinen, 1990. Zooplankton of Lake Ala-Kitka (NE-Finland) in relation to phytoplankton and predation by vendace (Coregonus albula). Aqua Fennica 20: 81–94.Google Scholar
  20. Lauridsen, T. & I. Buenk, 1996. Diel changes in the horizontal distribution of zooplankton in the littoral zone of two shallow eutrophic lakes. Archiv für Hydrobiologie 137: 161–176.Google Scholar
  21. Lauridsen, T., E. Jeppesen & M. Søndergaard, 1994. Colonization and succession of submerged macrophytes in shallow Lake Væng during the first five years following fish-manipulation. Hydrobiologia 275–276: 33–42.Google Scholar
  22. Lauridsen, T. L., L. J. Pedersen, E. Jeppesen & M. Søndergaard, 1996. The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. Journal of Plankton Research 18: 2283–2294.CrossRefGoogle Scholar
  23. Lauridsen, T. L., J. P. Jensen, E. Jeppesen & M. Søndergaard, 2003. Submerged macrophytes in Danish lakes following nutrient loading reductions and biomanipulation. Hydrobiologia 506(509): 641–649.CrossRefGoogle Scholar
  24. Leah, R. T., B. Moss & D. E. Forrest, 1980. The role of predation in causing major changes in the limnology of a hyper-eutrophic lake. Internationale Revue der Gesamten Hydrobiologie 65: 223–247.CrossRefGoogle Scholar
  25. McCauley, E., 1984. The estimation of the abundance and biomass of zooplankton in samples. In Downing, J. A. & F. H. Rigler (eds), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. Blackwell, Oxford.Google Scholar
  26. Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200(201): 367–377.CrossRefGoogle Scholar
  27. Nurminen, L. & J. Horppila, 2006. Efficiency of fish feeding on plant-attached prey: effects of inorganic turbidity and plant-mediated changes in the light environment. Limnology and Oceanography 51(3): 1550–1555.CrossRefGoogle Scholar
  28. Perrow, M. R., A. J. D. Jowitt, J. H. Stansfield & G. L. Phillips, 1999. The practical importance of the interactions between fish, zooplankton and macrophytes in shallow lake restoration. Hydrobiologia 395(396): 199–210.CrossRefGoogle Scholar
  29. Sagrario, G., M. De Los Ángeles, E. Balseiro, R. Ituarte & E. Spivak, 2009. Macrophytes as refuge or risky area for zooplankton: a balance set by littoral predacious macroinvertebrates. Freshwater Biology 54: 1042–1053.CrossRefGoogle Scholar
  30. Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.CrossRefPubMedGoogle Scholar
  31. Scheinin, M., S. B. Scyphers, L. Kauppi, K. L. Heck Jr. & J. Mattila, 2011. The relationship between vegetation density and its protective value depends on the densities and traits of prey and predators. Oikos 121(7): 1093–1102.CrossRefGoogle Scholar
  32. Schou, M. O., C. Risholt, T. L. Lauridsen, M. Søndergaard, P. Grønkjær, L. Jacobsen, S. Berg, C. Skov, S. Brucet & E. Jeppesen, 2009. Restoring lakes by using artificial plant beds: habitat selection of zooplankton in a clear and a turbid shallow lake. Freshwater Biology 54: 1520–1521.CrossRefGoogle Scholar
  33. Schriver, P., J. Bøgestrand, E. Jeppesen & M. Søndergaard, 1995. Impact of submerged macrophytes on fish-zooplankton- phytoplankton interactions – large-scale enclosure experiments in a shallow eutrophic lake. Freshwater Biology 33: 255–270.CrossRefGoogle Scholar
  34. Stansfield, J. H., M. R. Perrow, L. D. Tench, A. J. D. Jowitt & A. A. L. Taylor, 1997. Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure. Hydrobiologia 342(343): 229–240.CrossRefGoogle Scholar
  35. Søndergaard, M., E. Jeppesen, T. L. Lauridsen, C. Skov, E. H. Van Nes, R. Roijackers, L. Lammens & R. Portielje, 2007. Lake restoration in Denmark and The Netherlands: successes, failures and long-term effects. Journal of Applied Ecology 44: 1095–1105.CrossRefGoogle Scholar
  36. Søndergaard, M., L. Liboriussen, A. R. Pedersen & E. Jeppesen, 2008. Lake restoration by fish removal: short and Long-term effects in 36 Danish lakes. Ecosystems 11: 1291–1305.CrossRefGoogle Scholar
  37. Søndergaard, M., T. L. Lauridsen, L. S. Johansson & E. Jeppesen, 2017. Repeated fish removal to restore lakes: case study Lake Væng, Denmark - two biomanipulations during 30 years of monitoring. Water 9: 43.CrossRefGoogle Scholar
  38. Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnology and Oceanography 29: 472–486.CrossRefGoogle Scholar
  39. Winfield, I. J., 1986. The influence of simulated aquatic macrophytes on the zooplankton consumption rate of juvenile roach, Rutilus rutilus, rudd, Scardinius erythrophthalmus, and perch, Perca fluviatilis. Journal of Fish Biology 29: 37–48.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of BioscienceAarhus UniversitySilkeborgDenmark
  2. 2.Institute of BiologyUniversity of Southern DenmarkOdense MDenmark
  3. 3.Arctic Research CentreAarhus UniversityAarhus CDenmark
  4. 4.Sino-Danish Centre for Education and Research (SDC)BeijingChina
  5. 5.Laboratorio de Limnología, Instituto de Investigaciones en Biodiversidad y Medioambiente-Consejo Nacional de Investigaciones Científicas y TécnicasUniversidad Nacional del ComahueBarilocheArgentina
  6. 6.Water and Nature, COWI A/SAarhus CDenmark

Personalised recommendations