Advertisement

Hydrobiologia

, Volume 802, Issue 1, pp 175–198 | Cite as

Test of some ecological concepts on the longitudinal distribution of zooplankton along a lowland water course

  • Maïwen Le CozEmail author
  • S. Chambord
  • P. Meire
  • T. Maris
  • F. Azémar
  • J. Ovaert
  • E. Buffan-Dubau
  • J. C. Kromkamp
  • A. C. Sossou
  • J. Prygiel
  • G. Spronk
  • S. Lamothe
  • B. Ouddane
  • S. Rabodonirina
  • S. Net
  • D. Dumoulin
  • J. Peene
  • S. Souissi
  • M. Tackx
Primary Research Paper

Abstract

The distribution of zooplankton communities from the source to the mouth of a lowland water course, the Scheldt, was used to test some concepts on the longitudinal distribution of organisms along both estuarine (Remane’s diversity concept) and riverine reaches (River Continuum Concept (RCC), Riverine Ecosystem Synthesis (RES)). Substantial zooplankton densities were found in both April and June samples all along the water course, and not only in the lower reaches as suggested by the RCC. Based on the zooplankton communities, and using hierarchical classifications and Generalized Linear Model, several successive zones influenced by different physical and chemical variables and trophic conditions could be distinguished along the Scheldt, in agreement with the RES model: the non-tidal riverine, the tidal freshwater, the tidal salinity gradient, and the marine zones. Over the entire freshwater reach, rotifers were numerically dominant during both samplings; crustaceans became more abundant in June than in April, specifically in the downstream reaches. Highest total zooplankton abundance and diversity were found in the tidal freshwater reach, lowest in the brackish water reach, in accordance with Remane’s concept. An influence of the tributaries on zooplankton communities is suggested, directly by import or dilution of zooplankton communities or through changing environmental conditions.

Keywords

Zooplankton distribution River Continuum Concept Remane’s diagram Riverine Ecosystem Synthesis Freshwater tidal estuary 

Notes

Acknowledgements

The study was partially financed by the Nord–Pas de Calais Region, the ‘Foundation for Biodiversity Research (FRB, France), and the ‘Agence de l’Eau Artois Picardie’ through the BIOFOZI project, by the Flemisch Administration for Waterways and Maritime Affairs, division Zeeschelde (W&Z) through the OMES project and by Rijkswaterstaat (RWS) the Netherlands for the Westerschelde work. M. Le Coz received a PhD scholarship from the French government.

References

  1. Akopian, M., J. Garnier & R. Pourriot, 2002. Cinétique du zooplancton dans un continuum aquatique: de la Marne et son réservoir à l’estuaire de la Seine. Comptes Rendus Biologies 325: 807–818.CrossRefPubMedGoogle Scholar
  2. Attrill, M. J., 2002. A testable linear model for diversity trends in estuaries. Ecology 71: 262–269.Google Scholar
  3. Attrill, M. J. & S. D. Rundle, 2002. Ecotone or ecocline: ecological boundaries in estuaries. Estuarine, Coastal and Shelf Science 55: 929–936.CrossRefGoogle Scholar
  4. Baldwin, D. S. & A. M. Mitchell, 2000. The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river–floodplain systems: a synthesis. Regulated Rivers: Research & Management 16: 457–467.CrossRefGoogle Scholar
  5. Bērziņš, B. & B. Pejler, 1989. Rotifer occurrence in relation to oxygen content. Hydrobiologia 183: 165–172.CrossRefGoogle Scholar
  6. Billen, G., J. Garnier & V. Rousseau, 2005. Nutrient fluxes and water quality in the drainage network of the Scheldt basin over the last 50 years. Hydrobiologia 540: 47–67.CrossRefGoogle Scholar
  7. Bray, J. R. & J. T. Curtis, 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27: 325–349.CrossRefGoogle Scholar
  8. Breitburg, D. L., T. Loher, C. A. Pacey & A. Gerstein, 1997. Varying effects of low dissolved oxygen on trophic interactions in an estuarine food web. Ecological Monographs 67: 489–507.CrossRefGoogle Scholar
  9. Castel, J. & A. Feurtet, 1989. Dynamics of the copepod Eurytemora affinis hirundoides in the Gironde estuary: origin and fate of its production. Scientia Marina (Barcelona) 53: 577–584.Google Scholar
  10. Chambord, S., T. Maris, F. Colas, T. Van Engeland, A.-C. Sossou, F. Azémar, M. Le Coz, T. Cox, L. Buisson, S. Souissi, P. Meire & M. Tackx, 2016. Mesozooplankton affinities in a recovering freshwater estuary. Estuarine, Coastal and Shelf Science 177: 47–59.CrossRefGoogle Scholar
  11. Cox, T. J. S., T. Maris, K. Soetaert, D. J. Conley, S. Van Damme, P. Meire, J. J. Middelburg, M. Vos & E. Struyf, 2009. A macro-tidal freshwater ecosystem recovering from hypereutrophication: the Schelde case study. Biogeosciences 6: 2935–2948.CrossRefGoogle Scholar
  12. David, V., B. Sautour, P. Chardy & M. Leconte, 2005. Long-term changes of the zooplankton variability in a turbid environment: the Gironde estuary (France). Estuarine, Coastal and Shelf Science 64: 171–184.CrossRefGoogle Scholar
  13. Descy, J.-P. & V. Gosselain, 1994. Development and ecological importance of phytoplankton in a large lowland river (River Meuse, Belgium). Hydrobiologia 289: 139–155.CrossRefGoogle Scholar
  14. de Ruyter van Steveninck, E. D., W. Admiraal, L. Breebaart, G. M. J. Tubbing & B. van Zanten, 1992. Plankton in the River Rhine: structural and functional changes observed during downstream transport. Journal Plankton Research 14: 1351–1368.CrossRefGoogle Scholar
  15. Devreker, D., S. Souissi, J. C. Molinero & F. Nkubito, 2008. Trade-offs of the copepod Eurytemora affinis in mega-tidal estuaries: insights from high frequency sampling in the Seine estuary. Journal of Plankton Research 30: 1329–1342.CrossRefGoogle Scholar
  16. Devreker, D., S. Souissi, J. C. Molinero, D. Beyrend-Dur, F. Gomez & J. Forget-Leray, 2010. Tidal and annual variability of the population structure of Eurytemora affinis in the middle part of the Seine Estuary during 2005. Estuarine, Coastal and Shelf Science 89: 245–255.CrossRefGoogle Scholar
  17. Ekau, W., H. Auel, H.-O. Pörtner & D. Gilbert, 2010. Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7: 1669–1699.CrossRefGoogle Scholar
  18. Elliott, M. & D. S. McLusky, 2002. The need for definitions in understanding estuaries. Estuarine, Coastal and Shelf Science 55: 815–827.CrossRefGoogle Scholar
  19. Elliott, M. & A. K. Whitfield, 2011. Challenging paradigms in estuarine ecology and management. Estuarine, Coastal and Shelf Science 94: 306–314.CrossRefGoogle Scholar
  20. Fairbridge, R. W., 1980. The estuary: its definition and geodynamic cycle. Chemistry and Biogeochemistry of Estuaries 1136.Google Scholar
  21. Franklin, P., M. Dunbar & P. Whitehead, 2008. Flow controls on lowland river macrophytes: a review. Science of the Total Environment 400: 369–378.CrossRefPubMedGoogle Scholar
  22. Gasparini, S., J. Castel & X. Irigoien, 1999. Impact of suspended particulate matter on egg production of the estuarine copepod, Eurytemora affinis. Journal of Marine Systems 22: 195–205.CrossRefGoogle Scholar
  23. Geider, R. J. & J. La Roche, 2002. Redfield revisited: variability of C [ratio] N [ratio] P in marine microalgae and its biochemical basis. European Journal of Phycology 37: 1–17.CrossRefGoogle Scholar
  24. Gosselain, V., P. B. Hamilton & J.-P. Descy, 2000. Estimating phytoplankton carbon from microscopic counts: an application for riverine systems. Hydrobiologia 438: 75–90.CrossRefGoogle Scholar
  25. Gulati, R. D., A. L. Ooms-Wilms, O. F. R. van Tongeren, G. Postema & K. Siewertsen, 1992. The dynamics and role of limnetic zooplankton in Loosdrecht Lakes (The Netherlands). Hydrobiologia 233: 69–86.CrossRefGoogle Scholar
  26. Hansen, B., T. Wernberg-Møller & L. Wittrup, 1997. Particle grazing efficiency and specific growth efficiency of the rotifer Brachionus plicatilis (Muller). Journal of Experimental Marine Biology and Ecology 215: 217–233.CrossRefGoogle Scholar
  27. Hedgpeth, J. W., 1967. Ecological aspects of the Laguna Madre, a hypersaline estuary. Estuaries 83: 408–419.Google Scholar
  28. Heip, C., 1988. Biota and abiotic environment in the Westerschelde estuary. Hydrobiological Bulletin 22: 31–34.CrossRefGoogle Scholar
  29. Hoffman, M. & P. Meire, 1997. De oevers langs de Zeeschelde inventarisatie van de huidige oeverstructuren. Water 95: 131–137.Google Scholar
  30. Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106: 110–127.Google Scholar
  31. Kiffney, P. M., C. M. Greene, J. E. Hall & J. R. Davies, 2006. Tributary streams create spatial discontinuities in habitat, biological productivity, and diversity in mainstem rivers. Canadian Special Publication of Fisheries and Aquatic Sciences 63: 2518–2530.CrossRefGoogle Scholar
  32. Kim, H.-W. & G.-J. Joo, 2000. The longitudinal distribution and community dynamics of zooplankton in a regulated large river: a case study of the Nakdong River (Korea). Hydrobiologia 438: 171–184.CrossRefGoogle Scholar
  33. Kobayashi, T., R. J. Shiel, P. Gibbs & P. I. Dixon, 1998. Freshwater zooplankton in the Hawkesbury-Nepean River: comparison of community structure with other rivers. Hydrobiologia 377: 133–145.CrossRefGoogle Scholar
  34. Laprise, R. & J. J. Dodson, 1994. Environmental variability as a factor controlling spatial patterns in distribution and species diversity of zooplankton in the St. Lawrence Estuary. Marine Ecology-Progress Series 107: 67–67.CrossRefGoogle Scholar
  35. Lee, C. E., 1999. Rapid and repeated invasions of fresh water by the Copepod Eurytemora affinis. Evolution 53: 1423–1434.CrossRefPubMedGoogle Scholar
  36. Lee, C. E. & M. A. Bell, 1999. Causes and consequences of recent freshwater invasions by saltwater animals. Trends in Ecology & Evolution 14: 284–288.CrossRefGoogle Scholar
  37. Majdi, N., W. Traunspurger, S. Boyer, B. Mialet, M. Tackx, R. Fernandez, S. Gehner, L. Ten-Hage & E. Buffan-Dubau, 2011. Response of biofilm-dwelling nematodes to habitat changes in the Garonne River, France: influence of hydrodynamics and microalgal availability. Hydrobiologia 673: 229–244.CrossRefGoogle Scholar
  38. Meire, P., T. Ysebaert, S. V. Damme, E. V. den Bergh, T. Maris & E. Struyf, 2005. The Scheldt estuary: a description of a changing ecosystem. Hydrobiologia 540: 1–11.CrossRefGoogle Scholar
  39. Mialet, B., F. Azémar, T. Maris, C. Sossou, P. Ruiz, M. Lionard, S. Van Damme, A. Lecerf, K. Muylaert, N. Toumi, P. Meire & M. Tackx, 2010. Spatial spring distribution of the copepod Eurytemora affinis (Copepoda, Calanoida) in a restoring estuary, the Scheldt (Belgium). Estuarine, Coastal and Shelf Science 88: 116–124.CrossRefGoogle Scholar
  40. Mialet, B., J. Gouzou, F. Azémar, T. Maris, C. Sossou, N. Toumi, S. Van Damme, P. Meire & M. Tackx, 2011. Response of zooplankton to improving water quality in the Scheldt estuary (Belgium). Estuarine, Coastal and Shelf Science 93: 47–57.CrossRefGoogle Scholar
  41. Minshall, G. W., R. C. Petersen, K. W. Cummins, T. L. Bott, J. R. Sedell, C. E. Cushing & R. L. Vannote, 1983. Interbiome comparison of stream ecosystem dynamics. Ecological Monographs 53: 1–25.CrossRefGoogle Scholar
  42. Minshall, G. W., K. W. Cummins, R. C. Petersen, C. E. Cushing, D. A. Bruns, J. R. Sedell & R. L. Vannote, 1985. Developments in stream ecosystem theory. Canadian Journal of Fisheries and Aquatic Sciences 42: 1045–1055.CrossRefGoogle Scholar
  43. Morgan, C. A., J. R. Cordell & C. A. Simenstad, 1997. Sink or swim? Copepod population maintenance in the Columbia River estuarine turbidity-maxima region. Marine Biology 129: 309–317.CrossRefGoogle Scholar
  44. Muylaert, K., K. Sabbe & W. Vyverman, 2000. Spatial and temporal dynamics of phytoplankton communities in a freshwater tidal estuary (Schelde, Belgium). Estuarine, Coastal and Shelf Science 50: 673–687.CrossRefGoogle Scholar
  45. Muylaert, K., M. Tackx & W. Vyverman, 2005. Phytoplankton growth rates in the freshwater tidal reaches of the Schelde estuary (Belgium) estimated using a simple light-limited primary production model. Hydrobiologia 540: 127–140.CrossRefGoogle Scholar
  46. Pace, M. L., 1986. An empirical analysis of zooplankton community size structure across lake trophic gradients. Limnology and Oceanography 31: 45–55.CrossRefGoogle Scholar
  47. Perillo, G. M. E., 1995. Definition and geomorphologic classification of estuaries. In Perillo, G. M. E. (ed.), Geomorphology and Sedimentology of Estuaries. Developments in Sedimentology, Vol. 53. Elsevier, Amsterdam: 17–47.CrossRefGoogle Scholar
  48. R Core Team, 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  49. Remane, A., 1934. Die brackwasserfauna. Verhandlungen der Deutschen Zoologischen Gesellschaft 36: 34–74.Google Scholar
  50. Riemann, B., P. Simonsen & L. Stensgaard, 1989. The carbon and chlorophyll content of phytoplankton from various nutrient regimes. Journal of Plankton Research 11: 1037–1045.CrossRefGoogle Scholar
  51. Rice, S. P., R. I. Ferguson & T. B. Hoei, 2006. Tributary control of physical heterogeneity and biological diversity at river confluences. Canadian Journal of Fisheries and Aquatic Sciences 63: 2553–2566.CrossRefGoogle Scholar
  52. Rice, S. P., M. T. Greenwood & C. B. Joyce, 2001. Tributaries, sediment sources, and the longitudinal organisation of macroinvertebrate fauna along river systems. Canadian Journal of Fisheries and Aquatic Sciences 58: 824–840.CrossRefGoogle Scholar
  53. Roman, M. R., A. L. Gauzens, W. K. Rhinehart & J. R. White, 1993. Effects of low oxygen waters on Chesapeake Bay zooplankton. Limnology and Oceanography 38: 1603–1614.CrossRefGoogle Scholar
  54. Rzoska, J., 1978. On the Nature of Rivers with Case Stories of the Nile. Zaire and Amazon Junk, The Hague.CrossRefGoogle Scholar
  55. Shifrin, N. S. & S. W. Chisholm, 1981. Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light-dark cycles. Journal of Phycology 17: 374–384.CrossRefGoogle Scholar
  56. Soetaert, K. & P. M. J. Herman, 1995. Estimating estuarine residence times in the Westerschelde (The Netherlands) using a box model with fixed dispersion coefficients. Hydrobiologia 311: 215–224.CrossRefGoogle Scholar
  57. Soetaert, K. & P. Van Rijswijk, 1993. Spatial and temporal patterns of the zooplankton in the Westerschelde estuary. Marine Ecology Progress Series 97: 47–59.CrossRefGoogle Scholar
  58. Sørensen, T. A., 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analyses of the vegetation on Danish commons. Det Kongelige Danske Videnskabernes Selskabs Biologiske Skrifter 5: 1–34.Google Scholar
  59. Tackx, M. L. M., P. J. M. Herman, S. Gasparini, X. Irigoien, R. Billiones & M. H. Daro, 2003. Selective feeding of Eurytemora affinis (Copepoda, Calanoida) in temperate estuaries: model and field observations. Estuarine, Coastal and Shelf Science 56: 305–311.CrossRefGoogle Scholar
  60. Tackx, M. L. M., N. de Pauw, R. van Mieghem, F. Azémar, A. Hannouti, S. van Damme, F. Fiers, N. Daro, & P. Meire, 2004. Zooplankton in the Schelde estuary, Belgium and The Netherlands. Spatial and temporal patterns. Journal of Plankton Research 26: 133–141.CrossRefGoogle Scholar
  61. Telesh, I. V., H. Schubert & S. O. Skarlato, 2011. Revisiting Remane’s concept: evidence for high plankton diversity and a protistan species maximum in the horohalinicum of the Baltic Sea. Marine Ecology Progress Series 421: 1–11.CrossRefGoogle Scholar
  62. Thorp, J. H. & M. D. Delong, 1994. The Riverine Productivity Model: an heuristic view of carbon sources and organic processing in large river ecosystems. Oikos 70: 305–308.CrossRefGoogle Scholar
  63. Thorp, J. H., M. C. Thoms & M. D. Delong, 2006. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Research and Applications 22: 123–147.CrossRefGoogle Scholar
  64. Tornwall, B., E. Sokol, J. Skelton & B. L. Brown, 2015. Trends in stream biodiversity research since the River Continuum Concept. Diversity 7: 16–35.CrossRefGoogle Scholar
  65. Van Damme, S., E. Struyf, T. Maris, T. Ysebaert, F. Dehairs, M. Tackx, C. Heip & P. Meire, 2005. Spatial and temporal patterns of water quality along the estuarine salinity gradient of the Scheldt estuary (Belgium and The Netherlands): results of an integrated monitoring approach. Hydrobiologia 540: 29–45.CrossRefGoogle Scholar
  66. Vanderploeg, H. A., S. A. Ludsin, S. A. Ruberg, T. O. Höök, S. A. Pothoven, S. B. Brandt, G. A. Lang, J. R. Liebig & J. F. Cavaletto, 2009. Hypoxia affects spatial distributions and overlap of pelagic fish, zooplankton, and phytoplankton in Lake Erie. Journal of Experimental Marine Biology and Ecology 381(Supplement): S92–S107.CrossRefGoogle Scholar
  67. van Gremberghe, I., J. Van Wichelen, K. Van der Gucht, P. Vanormelingen, S. D’hondt, C. Boutte, A. Wilmotte & W. Vyverman, 2007. Covariation between zooplankton community composition and cyanobacterial community dynamics in Lake Blaarmeersen (Belgium). FEMS Microbiology Ecology 63: 222–237.CrossRefPubMedGoogle Scholar
  68. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The River Continuum Concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.CrossRefGoogle Scholar
  69. Walsh, C., R. Mac Nally & M. C. Walsh, 2008. The hier. part Package.Google Scholar
  70. Walz, N., 1997. Rotifer life history strategies and evolution in freshwater plankton communities. In Streit, B., T. Städler & C. M. Lively (eds.), Evolutionary Ecology of Freshwater Animals. Birkhäuser Verlag, Basel: 119–149.CrossRefGoogle Scholar
  71. Ward, J. V. & J. A. Stanford, 1983. The serial discontinuity concept of lotic ecosystems. Dynamics of lotic ecosystems 10: 29–42.Google Scholar
  72. Ward, J. V. & J. A. Stanford, 1995. The serial discontinuity concept: extending the model to floodplain rivers. Regulated Rivers: Research & Management 10: 159–168.CrossRefGoogle Scholar
  73. Whitfield, A. K., M. Elliott, A. Basset, S. J. M. Blaber & R. J. West, 2012. Paradigms in estuarine ecology – a review of the Remane diagram with a suggested revised model for estuaries. Estuarine, Coastal and Shelf Science 97: 78–90.CrossRefGoogle Scholar
  74. Winkler, G., J. J. Dodson, N. Bertrand, D. Thivierge & W. F. Vincent, 2003. Trophic coupling across the St. Lawrence River estuarine transition zone. Marine Ecology Progress Series 251: 59–73.CrossRefGoogle Scholar
  75. Winkler, G., J. J. Dodson & C. E. Lee, 2008. Heterogeneity within the native range: population genetic analyses of sympatric invasive and noninvasive clades of the freshwater invading copepod Eurytemora affinis. Molecular Ecology 17: 415–430.CrossRefPubMedGoogle Scholar
  76. Wright, S. W. & S. W. Jeffrey, 1997. High-resolution HPLC system for chlorophylls and carotenoids of marine phytoplankton.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Maïwen Le Coz
    • 1
    • 2
    Email author return OK on get
  • S. Chambord
    • 1
    • 2
    • 3
  • P. Meire
    • 3
  • T. Maris
    • 3
  • F. Azémar
    • 1
  • J. Ovaert
    • 1
  • E. Buffan-Dubau
    • 1
  • J. C. Kromkamp
    • 4
  • A. C. Sossou
    • 1
    • 3
  • J. Prygiel
    • 5
    • 6
  • G. Spronk
    • 7
  • S. Lamothe
    • 1
  • B. Ouddane
    • 6
  • S. Rabodonirina
    • 6
  • S. Net
    • 6
  • D. Dumoulin
    • 6
  • J. Peene
    • 4
  • S. Souissi
    • 2
  • M. Tackx
    • 1
  1. 1.ECOLAB, Université de Toulouse, CNRS, INPT, UPSToulouseFrance
  2. 2.Univ. Lille, CNRS, Univ. Littoral Côte d’Opale, UMR 8187, LOG, Laboratoire d’Océanologie et de GéosciencesWimereuxFrance
  3. 3.University of Antwerp, ECOBE (Ecosystem Management Research Group) Department of BiologyAntwerpBelgium
  4. 4.Nioz Royal Netherlands Institute for Sea ResearchYersekeThe Netherlands
  5. 5.Agence de l’Eau Artois-PicardieDouaiFrance
  6. 6.Université Lille 1- Sciences et Technologies, LASIR (Laboratoire de Spectrochimie Infrarouge et Raman) – UMR 8516Villeneuve d’Ascq CedexFrance
  7. 7.RijkswaterstaatLelystadThe Netherlands

Personalised recommendations