Hydrobiologia

, Volume 802, Issue 1, pp 85–95 | Cite as

What drives detrital decomposition in neotropical tank bromeliads?

  • Céline Leroy
  • Bruno Corbara
  • Olivier Dézerald
  • M. Kurtis Trzcinski
  • Jean-François Carrias
  • Alain Dejean
  • Régis Céréghino
Primary Research Paper

Abstract

Decomposition experiments that control leaf litter species across environments help to disentangle the roles of litter traits and consumer diversity, but once we account for leaf litter effects, they tell us little about the variance in decomposition explained by shifts in environmental conditions versus food-web structure. We evaluated how habitat, food-web structure, leaf litter species, and the interactions between these factors affect litter mass loss in a neotropical ecosystem. We used water-filled bromeliads to conduct a reciprocal transplant experiment of two litter species between an open and a forested habitat in French Guiana, and coarse- and fine-mesh enclosures embedded within bromeliads to exclude invertebrates or allow them to colonize leaf litter disks. Soft Melastomataceae leaves decomposed faster in their home habitat, whereas tough Eperua leaves decomposed equally in both habitats. Bacterial densities did not differ significantly between the two habitats. Significant shifts in the identity and biomass of invertebrate detritivores across habitats did not generate differences in leaf litter decomposition, which was essentially microbial. Despite the obvious effects of habitats on food-web structure, ecosystem processes are not necessarily affected. Our results pose the question of when does environmental determinism matter for ecosystem functions, and when does it not.

Keywords

Context dependency Ecosystem function Food webs Leaf litter Phytotelmata Rainforest 

Notes

Acknowledgements

We thank Andrea Yockey Dejean for proofreading the English text, and Arthur Compin for preparing Fig. 1. We are grateful to the members of Hydréco (Laboratoire Environnement Petit Saut) for field and technical support. Two anonymous reviewers made valuable comments on an earlier version of the manuscript. Financial support was provided by the Agence Nationale de la Recherche throught the Rainwebs project (grant ANR-12-BSV7-0022-01) and an “Investissement d’Avenir” grant (CEBA: ANR-10-LABX-25-01). OD’s financial support was provided by a PhD fellowship from the Centre National de la Recherche Scientifique and the Fond Social Européen.

References

  1. Atwood, T. B., E. Hammill, H. S. Greig, P. Kratina, J. B. Shurin, D. S. Srivastava & J. S. Richardson, 2013. Predator-induced reduction of freshwater carbon dioxide emissions. Nature Geoscience 6: 191–194.CrossRefGoogle Scholar
  2. Atwood, T. B., E. Hammill, D. S. Srivastava & J. S. Richardson, 2014. Competitive displacement alters top-down effects on carbon dioxide concentrations in a freshwater ecosystem. Oecologia 175: 353–361.CrossRefPubMedGoogle Scholar
  3. Ayres, E., H. Steltzer, B. L. Simmons, R. T. Simpson, J. M. Steinweg, M. D. Wallenstein, N. Nate Mellor, W. J. Parton, J. C. Moore & D. H. Wall, 2009. Home-field advantage accelerates leaf litter decomposition in forests. Soil Biology and Biochemistry 41: 606–610.CrossRefGoogle Scholar
  4. Benzing, D. H., 1990. Vascular Epiphytes: General Biology and Related Biota. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  5. Boyero, L., R. G. Pearson, D. Dudgeon, M. A. S. Graça, M. O. Gessner, R. J. Albariño, V. Ferreira, C. M. Yule, A. J. Boulton, M. Arunachalam, M. Callisto, E. Chauvet, A. Ramírez, J. Chará, M. S. Moretti, J. F. J. Gonçalves, J. E. Helson, A. M. Chará-Serna, A. C. Encalada, J. N. Davies, S. Lamothe, A. Cornejo, A. O. Y. Li, L. M. Buria, V. D. Villanueva, M. C. Zúñiga & C. M. Pringle, 2011. Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology 92: 1839–1848.CrossRefPubMedGoogle Scholar
  6. Brouard, O., A.-H. Le Jeune, C. Leroy, R. Céréghino, O. Roux, L. Pélozuelo, A. Dejean, B. Corbara & J.-F. Carrias, 2011. Are algae relevant to the detritus-based food web in tank-bromeliads? PLoS ONE 6(5): e20129.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brouard, O., R. Céréghino, B. Corbara, C. Leroy, L. Pélozuelo, A. Dejean & J.-F. Carrias, 2012. Understory environments influence functional diversity in tank-bromeliad ecosystems. Freshwater Biology 57: 815–823.CrossRefGoogle Scholar
  8. Céréghino, R., C. Leroy, J.-F. Carrias, L. Pélozuelo, C. Segura, C. Bosc, A. Dejean & B. Corbara, 2011. Ant-plant mutualisms promote functional diversity in phytotelm communities. Functional Ecology 25: 954–963.CrossRefGoogle Scholar
  9. Coq, S., J. M. Souquet, E. Meudec, V. Cheynier & S. Hättenschwiler, 2010. Interspecific variation in leaf litter tannins drives decomposition in a tropical rain forest of French Guiana. Ecology 91: 2080–2091.CrossRefPubMedGoogle Scholar
  10. de Toledo Castanho, C. & A. A. de Oliveira, 2008. Relative effect of litter quality, forest type and their interaction on leaf decomposition in south-east Brazilian forests. Journal of Tropical Ecology 24: 149–156.CrossRefGoogle Scholar
  11. Dedieu, N., S. Clavier, R. Vigouroux, P. Cerdan & R. Céréghino, 2016. A multimetric macroinvertebrate index for the implementation of the European water framework directive in French Guiana, East-Amazonia. River Research and Applications 32: 501–515.CrossRefGoogle Scholar
  12. Dézerald, O., C. Leroy, B. Corbara, J.-F. Carrias, L. Pelozuelo, A. Dejean & R. Céréghino, 2013. Food-web structure in relation to environmental gradients and predator-prey ratios in tank-bromeliad ecosystems. Plos ONE 8: e71735.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dézerald, O., S. Talaga, C. Leroy, J.-F. Carrias, B. Corbara, A. Dejean & R. Céréghino, 2014. Environmental determinants of macroinvertebrate diversity in small water bodies: insights from tank-bromeliads. Hydrobiologia 723: 77–86.CrossRefGoogle Scholar
  14. Dézerald, O., C. Leroy, B. Corbara, A. Dejean, S. Talaga & R. Céréghino, 2017. Environmental drivers of invertebrate population dynamics in neotropical tank bromeliads. Freshwatrer Biology 62: 229–242.CrossRefGoogle Scholar
  15. Farjalla, V. F., D. S. Srivastava, N. A. C. Marino, F. D. Azevedo, V. Dib, P. M. Lopes, A. S. Rosado, R. L. Bozelli & F. A. Esteves, 2012. Ecological determinism increases with organism size. Ecology 93: 1752–1759.CrossRefPubMedGoogle Scholar
  16. Farjalla, V. F., A. L. González, R. Céréghino, O. Dézerald, N. A. C. Marino, G. C. Piccoli, B. A. Richardson, M. J. Richardson, G. Q. Romero & D. S. Srivastava, 2016. Terrestrial support of aquatic food webs depends on light inputs: a geographically-replicated test using tank bromeliads. Ecology 97: 2147–2156.CrossRefPubMedGoogle Scholar
  17. Ferreira, V. & E. Chauvet, 2011. Future increase in temperature more than decrease in litter quality can affect microbial litter decomposition in streams. Oecologia 67: 279–291.CrossRefGoogle Scholar
  18. Geraldes, P., C. Pascoal & F. Cassio, 2012. Effects of increased temperature and aquatic fungal diversity on litter decomposition. Fungal Ecology 5: 734–740.CrossRefGoogle Scholar
  19. Gessner, M. O., E. Chauvet & M. Dobson, 1999. A perspective on leaf litter breakdown in streams. Oikos 85: 377–384.CrossRefGoogle Scholar
  20. Gessner, M. O., C. M. Swan, C. K. Dang, B. G. McKie, R. D. Bardgett, D. H. Wall & S. Hättenschwiler, 2010. Diversity meets decomposition. Trends in ecology & evolution 25: 372–380.CrossRefGoogle Scholar
  21. Gholz, H. L., D. A. Wedin, S. M. Smitherman, M. E. Harmon & W. J. Parton, 2000. Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology 6: 751–765.CrossRefGoogle Scholar
  22. Givnish, T. J., M. H. Barfuss, B. V. Ee, R. Riina, K. Schulte, R. Horres, P. A. Gonsiska, R. S. Jabaily, D. M. Crayn, J. A. Smith, K. Winter, G. K. Brown, T. M. Evans, B. K. Holst, H. Luther, W. Till, G. Zizka, P. E. Berry & K. J. Sytsma, 2011. Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: insights from an eight-locus plastid phylogeny. American Journal of Botany 98: 872–895.CrossRefPubMedGoogle Scholar
  23. Gonçalves, J. F., M. A. S. Graça & M. Callisto, 2007. Litter decomposition in a Cerrado savannah stream is retarded by leaf toughness, low dissolved nutrients and a low density of shredders. Freshwater Biology 52: 1440–1451.CrossRefGoogle Scholar
  24. Hättenschwiler, S. & H. B. Jorgensen, 2010. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. Journal of Ecology 98: 754–763.CrossRefGoogle Scholar
  25. Hättenschwiler, S., A. V. Tiunov & S. Scheu, 2005. Biodiversity and litter decomposition in terrestrial ecosystems. Annual Review of Ecology, Evolution, and Systematics 36: 191–218.CrossRefGoogle Scholar
  26. Jabiol, J., B. Corbara, A. Dejean & R. Céréghino, 2009. Structure of aquatic insect communities in tank-bromeliads in a East-Amazonian rainforest in French Guiana. Forest Ecology and Management 257: 351–360.CrossRefGoogle Scholar
  27. Jabiol, J., A. Bruder, M. O. Gessner, M. Makkonen, B. G. McKie, E. T. H. M. Peeters, V. C. A. Vos & E. Chauvet, 2013. Diversity patterns of leaf-associated aquatic hyphomycetes along a broad latitudinal gradient. Fungal Ecology 6: 439–448.CrossRefGoogle Scholar
  28. Jocqué, M., A. Kernahan, A. Nobes, C. Willians & R. Field, 2010. How effective are non-destructive sampling methods to assess aquatic invertebrate diversity in bromeliads? Hydrobiologia 649: 293–300.CrossRefGoogle Scholar
  29. Karaus, U., L. Adler & K. Tockner, 2005. Concave islands: habitat heterogeneity of parafluvial ponds in a grave-bed river. Wetlands 25: 26–37.CrossRefGoogle Scholar
  30. Lecerf, A., G. Marie, J. S. Kominoski, C. J. LeRoy, C. Bernadette & C. M. Swan, 2011. Incubation time, functional litter diversity, and habitat characteristics predict litter-mixing effects on decomposition. Ecology 92: 160–169.CrossRefPubMedGoogle Scholar
  31. LeCraw, R. M., G. Q. Romero & D. S. Srivastava, 2017. Geographic shifts in the effects of habitat size on trophic structure and decomposition. Ecography. doi: 10.1111/ecog.02796.Google Scholar
  32. Leroy, C., B. Corbara, A. Dejean & R. Céréghino, 2009. Ants mediate foliar structure and nitrogen acquisition in a tank-bromeliad. New Phytologist 183: 1124–1133.CrossRefPubMedGoogle Scholar
  33. Merritt, R. W. & K. W. Cummins, 1996. An introduction to the aquatic insects of North America. Kendall/Hunt Publishing Company, Dubuque.Google Scholar
  34. Moore, J. C., E. L. Berlow, D. C. Coleman, P. C. de Ruiter, Q. Dong, A. Hastings, N. C. Johnson, K. S. McCann, K. Melville, P. J. Morin, K. Nadelhoffer, A. D. Rosemond, D. M. Post, J. L. Sabo, K. M. Scow, M. J. Vanni & D. H. Wall, 2004. Detritus, trophic dynamics and biodiversity. Ecology Letters 7: 584–600.CrossRefGoogle Scholar
  35. Ngai, J. T. & D. S. Srivastava, 2006. Predators accelerate nutrient cycling in a bromeliad ecosystem. Science 314: 963.CrossRefPubMedGoogle Scholar
  36. O’Connor, N. E. & I. Donohue, 2013. Environmental context determines multi-trophic effects of consumer species loss. Global Change Biology 19: 431–440.CrossRefPubMedGoogle Scholar
  37. Pan, X., Y. B. Song, G. F. Liu, Y. K. Hu, X. H. Ye, W. K. Cornwell, A. Prinzing, M. Dong & J. H. Cornelissen, 2015. Functional traits drive the contribution of solar radiation to leaf litter decomposition among multiple arid-zone species. Scientific reports 5: 13217.CrossRefPubMedPubMedCentralGoogle Scholar
  38. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.Rproject.org/ (Accessed 28 April 2015).
  39. Richardson, B., C. Rogers & M. Richardson, 2000. Nutrients, diversity, and community structure of two phytotelm systems in a lower montane forest, Puerto Rico. Ecological Entomology 25: 348–356.CrossRefGoogle Scholar
  40. Richardson, B. A., M. J. Richardson, G. González, A. B. Shiels & D. S. Srivastava, 2010. A canopy trimming experiment in Puerto Rico: the response of litter invertebrate communities to canopy loss and debris deposition in a tropical forest subject to hurricanes. Ecosystems 13: 286–301.CrossRefGoogle Scholar
  41. Rosemond, A. D., C. M. Pringle, A. Ramírez & M. J. Paul, 2001. A test of top-down and bottom-up control in a detritus-based food web. Ecology 82: 2279–2293.CrossRefGoogle Scholar
  42. Srivastava, D., 2006. Habitat structure, trophic structure and ecosystem function: interactive effects in a bromeliad–insect community. Oecologia 149: 493–504.CrossRefPubMedGoogle Scholar
  43. Srivastava, D., J. Kolasa, J. Bengtsson, A. Gonzalez, S. Lawler, T. Miller, P. Munguia, T. Romanuk, D. Schneider & M. Trzcinski, 2004. Are natural microcosms useful model systems for ecology? Trends in Ecology and Evolution 19: 379–384.CrossRefPubMedGoogle Scholar
  44. Strickland, M. S., E. Osbern, C. Lauber, N. Fierer & M. A. Bradford, 2009. Litter quality in the eye of the beholder: initial decomposition rates as a function of inoculum characteristics. Functional Ecology 23: 627–636.CrossRefGoogle Scholar
  45. Talaga, S., O. Dézerald, A. Carteron, F. Petitclerc, C. Leroy, R. Céréghino & A. Dejean, 2015. Tank bromeliads as natural microcosms: a facultative association with ants influences the aquatic invertebrate community structure. Comptes Rendus Biologies 338: 696–700.CrossRefPubMedGoogle Scholar
  46. Taylor, B. R. & E. Chauvet, 2014. Relative influence of shredders and fungi on leaf litter decomposition along a river altitudinal gradient. Hydrobiologia 721: 239–250.CrossRefGoogle Scholar
  47. Touron-Poncet, H., C. Bernadet, A. Compin, N. Bargier & R. Céréghino, 2014. Implementing the water framework directive in overseas Europe: a multimetric macroinvertebrate index for river bioassessment in Caribbean islands. Limnologica 47: 34–43.CrossRefGoogle Scholar
  48. Trzcinski, M. K., D. S. Srivastava, B. Corbara, O. Dézerald, C. Leroy, J.-F. Carrias, A. Dejean & R. Céréghino, 2016. The effects of food web structure on ecosystem function exceeds those of precipitation. Journal of Animal Ecology 85: 1147–1160.CrossRefPubMedGoogle Scholar
  49. Veen, G. F., G. T. Freschet, A. Ordonez & D. A. Wardle, 2015. Litter quality and environmental controls of home-field advantage effects on litter decomposition. Oikos 124: 187–195.CrossRefGoogle Scholar
  50. Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 1997. Multiple trophic levels for a forested stream linked to terrestrial litter inputs. Science 277: 102–104.CrossRefGoogle Scholar
  51. Wilkinson, D. M., 1998. Fragments of an entangled bank: do ecologists study most of ecology? Oikos 82: 393–394.CrossRefGoogle Scholar
  52. Wobbrock, J. O., L. Findlater, D. Gergle & J. J. Higgins, 2011. The Aligned Rank Transform for nonparametric factorial analyses using only ANOVA procedures. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM Press, Vancouver, British Columbia, New York: 143–146.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Céline Leroy
    • 1
    • 2
    • 6
  • Bruno Corbara
    • 3
  • Olivier Dézerald
    • 4
  • M. Kurtis Trzcinski
    • 5
  • Jean-François Carrias
    • 3
  • Alain Dejean
    • 2
    • 5
  • Régis Céréghino
    • 5
  1. 1.AMAP, IRD, CIRAD, CNRS, INRA, Université MontpellierMontpellierFrance
  2. 2.UMR Ecologie des Forêts de Guyane (AgroParisTech, CIRAD, CNRS, INRA, Université de GuyaneUniversité des Antilles)Kourou CedexFrance
  3. 3.Université Clermont Auvergne, CNRS, LMGE (Laboratoire Microorganismes : Génome et Environnement)Clermont-FerrandFrance
  4. 4.Biology Department and Center for Computational and Integrative BiologyRutgers, The State University of NJNew BrunswickUSA
  5. 5.Ecolab, Laboratoire Ecologie Fonctionnelle et EnvironnementUniversité de Toulouse, CNRS, INPToulouseFrance
  6. 6.IRD – UMR AMAPKourou CedexFrance

Personalised recommendations