Advertisement

Hydrobiologia

, Volume 803, Issue 1, pp 105–120 | Cite as

Impacts of mangrove encroachment and mosquito impoundment management on coastal protection services

  • Cheryl L. Doughty
  • Kyle C. Cavanaugh
  • Carlton R. Hall
  • Ilka C. Feller
  • Samantha K. Chapman
MANGROVES IN CHANGING ENVIRONMENTS

Abstract

The ecosystem services afforded by coastal wetlands are threatened by climate change and other anthropogenic stressors. The Kennedy Space Center and Merritt Island National Wildlife Refuge in east central Florida offer a representative site for investigating how changes to vegetation distribution interact with management to impact coastal protection. Here, salt marshes are converting to mangroves, and mosquito impoundment structures are being modified. The resulting changes to vegetation composition and topography influence coastal protection services in wetlands. We used a model-based assessment of wave attenuation and erosion to compare vegetation (mangrove, salt marsh) and impoundment state (intact, graded). Our findings suggest that the habitat needed to attenuate 90% of wave height is significantly larger for salt marshes than mangroves. Erosion prevention was significantly higher (470%) in scenarios with mangroves than in salt marshes. Intact berms attenuated waves over shorter distances, but did not significantly reduce erosion. Differences in coastal protection were driven more by vegetation than by impoundment state. Overall, our findings reveal that mangroves provide more coastal protection services, and therefore more coastal protection value, than salt marshes in east central Florida. Other coastal regions undergoing similar habitat conversion may also benefit from increased coastal protection in the future.

Keywords

Mangrove Salt marsh Coastal management Wave attenuation Erosion prevention Ecosystem service value 

Notes

Acknowledgements

Funding for this work was provided by Grants from the National Aeronautics and Space Administration (NASA) Climate and Biological Response Program (NNX11AO94G, NNX12AF55G) and New Investigator Program (NNX16AN04G) and the National Science Foundation Macrosystems Biology Program (EF 1065821). This work was conducted as part of NASA’s Climate Adaptation Science Investigators (CASI) Workgroup. Cheryl Doughty was supported by the University of California, Los Angeles Graduate Summer Research Mentorship Program. We would like to thank Glenn Coldren, Loraé Simpson, Joseph Funk, and Regina Kukola for support in field collections. We also acknowledge Jim Lyon from the US Fish and Wildlife Service, and Lynne Phillips for continued support from the NASA Kennedy Space Center Environmental Planning Branch, Ecological Program.

Supplementary material

10750_2017_3225_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 14 kb)
10750_2017_3225_MOESM2_ESM.docx (15 kb)
Supplementary material 2 (DOCX 14 kb)
10750_2017_3225_MOESM3_ESM.tif (1.6 mb)
Supplementary material 3 (TIFF 1640 kb)

References

  1. Alongi, D. M., 2008. Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science 76: 1–13.CrossRefGoogle Scholar
  2. Alsina, J. M. & T. E. Baldock, 2007. Improved representation of breaking wave energy dissipation in parametric wave transformation models. Coastal Engineering 54: 765–769.CrossRefGoogle Scholar
  3. Arkema, K. K., G. Guannel, G. Verutes, S. A. Wood, A. Guerry, M. Ruckelshaus, P. Kareiva, M. Lacayo & J. M. Silver, 2013. Coastal habitats shield people and property from sea-level rise and storms. Nature Climate Change 3: 913–918.CrossRefGoogle Scholar
  4. Badola, R. & S. A. Hussain, 2005. Valuing ecosystem functions: an empirical study on the storm protection function of Bhitarkanika Mangrove Ecosystem, India. Environmental Conservation 32: 85–92.CrossRefGoogle Scholar
  5. Barbier, E. B., 2007. Valuing ecosystem services as productive inputs. Economic Policy 22: 177–229.CrossRefGoogle Scholar
  6. Barbier, E. B., 2016. The protective service of mangrove ecosystems: a review of valuation methods: Marine Pollution Bulletin special issue: “Turning the tide on mangrove loss”. Marine Pollution Bulletin [available on internet at http://www.sciencedirect.com/science/article/pii/S0025326X16300224].
  7. Barbier, E. B. & G. M. Heal, 2006. Valuing ecosystem services. The Economists’ Voice 3: 1–6.Google Scholar
  8. Barbier, E. B., S. D. Hacker, C. J. Kennedy, E. W. Koch, A. C. Stier & B. R. Silliman, 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81: 169–193.CrossRefGoogle Scholar
  9. Battjes, J. & M. J. F. Stive, 1985. Calibration and verification of a dissipation model for random breaking waves. Journal of Geophysical Research 90: 9159–9167.CrossRefGoogle Scholar
  10. Bender, M. A., T. R. Knutson, R. E. Tuleya, J. J. Sirutis, G. A. Vecchi, S. T. Garner & I. M. Held, 2010. Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science 327: 454–458 [available on internet at http://www.sciencemag.org/content/327/5964/454.abstract].
  11. Breininger, D., M. Barkaszi, R. Smith & D. Oddy, 1994. Endangered and Potentially Endangered Wildlife on John F. Kennedy Space Center and Faunal Integrity as a Goal for Maintaining Biological Diversity. NASA Report TM-109204 [available on internet at http://ntrs.nasa.gov/search.jsp?R=19940031915].
  12. Brockmeyer, R. E., J. R. Rey, R. W. Virnstein, R. G. Gilmore & L. Earnest, 1996. Rehabilitation of impounded estuarine wetlands by hydrologic reconnection to the Indian River Lagoon, Florida (USA). Wetlands Ecology and Management 4: 93–109.CrossRefGoogle Scholar
  13. Cavanaugh, K. C., J. R. Kellner, A. J. Forde, D. S. Gruner, J. D. Parker, W. Rodriguez & I. C. Feller, 2014. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc Natl Acad Sci USA 111: 723–727 [available on internet at http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3896164&tool=pmcentrez&rendertype=abstract].
  14. Cavanaugh, K. C., J. D. Parker, S. C. Cook-Patton, I. C. Feller, A. P. Williams & J. R. Kellner, 2015. Integrating physiological threshold experiments with climate modeling to project mangrove species’ range expansion. Global Change Biology 21: 1928–1938.CrossRefPubMedGoogle Scholar
  15. Cheong, S., B. Silliman, P. P. Wong, B. van Wesenbeeck, C. Kim & G. Guannel, 2013. Coastal adaptation with ecological engineering. Nature Climate Change 3: 787–791.CrossRefGoogle Scholar
  16. Coldren, G. A., C. Barreto, D. Wykoff, E. Morrissey, J. Adam Langley, I. C. Feller & S. K. Chapman, 2016. Chronic warming stimulates growth of marsh grasses more than mangroves in a coastal wetland ecotone. Ecology. doi: 10.1002/ecy.1539.PubMedGoogle Scholar
  17. Comeaux, R. S., M. A. Allison & T. S. Bianchi, 2012. Mangrove expansion in the Gulf of Mexico with climate change: implications for wetland health and resistance to rising sea levels. Estuarine, Coastal and Shelf Science 96: 81–95.CrossRefGoogle Scholar
  18. Cooper, N. J. & J. S. Pethick, 2005. Sediment budget approach to addressing coastal erosion problems in St. Ouen’s Bay, Jersey, Channel Islands. Journal of Coastal Research 211: 112–122.CrossRefGoogle Scholar
  19. Costanza, R., O. Pérez-Maqueo, M. L. Martinez, P. Sutton, S. J. Anderson & K. Mulder, 2008. The value of coastal wetlands for hurricane protection. Ambio 37: 241–248.CrossRefPubMedGoogle Scholar
  20. Crain, C. M., B. S. Halpern, M. W. Beck & C. V. Kappel, 2009. Understanding and managing human threats to the coastal marine environment. Annals of the New York Academy of Sciences 1162: 39–62.CrossRefPubMedGoogle Scholar
  21. Danielsen, F., M. K. Sørensen, M. F. Olwig, V. Selvam, F. Parish, N. D. Burgess, T. Hiraishi, V. M. Karunagaran, M. S. Rasmussen, L. B. Hansen, A. Quarto & N. Suryadiputra, 2005. The Asian tsunami: a protective role for coastal vegetation. Science 310: 643.CrossRefPubMedGoogle Scholar
  22. Das, S. & J. Vincent, 2009. Mangroves protected villages and reduced death toll during Indian super cyclone. Proceedings of the National Academy of Sciences of USA 106: 7357–7360 [available on internet at https://scholar.google.com/scholar?hl=en&q=das+and+vincent+2009+mangroves&btnG=&as_sdt=1%252C5&as_sdtp=#0].
  23. Day, J. W., R. R. Christian, D. M. Boesch, A. Yáñez-Arancibia, J. Morris, R. R. Twilley, L. Naylor, L. Schaffner & C. Stevenson, 2008. Consequences of climate change on the ecogeomorphology of coastal wetlands. Estuaries and Coasts 31: 477–491.CrossRefGoogle Scholar
  24. de Groot, R., L. Brander, S. van der Ploeg, R. Costanza, F. Bernard, L. Braat, M. Christie, N. Crossman, A. Ghermandi, L. Hein, S. Hussain, P. Kumar, A. McVittie, R. Portela, L. C. Rodriguez, P. ten Brink & P. van Beukering, 2012. Global estimates of the value of ecosystems and their services in monetary units. Ecosystem Services 1: 50–61.CrossRefGoogle Scholar
  25. Dean, R. G. & C. J. Bender, 2006. Static wave setup with emphasis on damping effects by vegetation and bottom friction. Coastal Engineering 53: 149–156.CrossRefGoogle Scholar
  26. Doughty, C. L., J. A. Langley, W. S. Walker, I. C. Feller, R. Schaub & S. K. Chapman, 2016. Mangrove range expansion rapidly increases coastal wetland carbon storage. Estuaries and Coasts 39: 385–396 [available on internet at http://link.springer.com/10.1007/s12237-015-9993-8].
  27. Duarte, C. M., I. J. Losada, I. E. Hendriks, I. Mazarrasa & N. Marbà, 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change 3: 961–968.CrossRefGoogle Scholar
  28. Gedan, K. B., M. L. Kirwan, E. Wolanski, E. B. Barbier & B. R. Silliman, 2011. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Climatic Change 106: 7–29.CrossRefGoogle Scholar
  29. Gómez-Baggethun, E. & D. N. Barton, 2013. Classifying and valuing ecosystem services for urban planning. Ecological Economics 86: 235–245.CrossRefGoogle Scholar
  30. Guannel, G., P. Ruggiero, J. Faries, K. Arkema, M. Pinsky, G. Gelfenbaum, A. Guerry & C.-K. Kim, 2015. Integrated modeling framework to quantify the coastal protection services supplied by vegetation. Journal of Geophysical Research: Oceans 120: 324–345.Google Scholar
  31. Guannel, G., K. Arkema, P. Ruggiero & G. Verutes, 2016. The power of three: coral reefs, seagrasses and mangroves protect coastal regions and increase their resilience. PLoS ONE 11: e0158094.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hall, C., J. Provancha, D. Oddy, R. Lowers & J. Drese, 2001. Canaveral National Seashore Water Quality and Aquatic Resource Inventory. NASA Technical Memorandum 2001-210261 [available on internet at http://ntrs.nasa.gov/search.jsp?R=20010073452].
  33. Hall, C. R. C., P. A. Schmalzer, D. D. R. Breininger, B. W. B. Duncan, J. H. Drese, D. A. Scheidt, E. A. Reyier, K. G. Holloway-Adkins, D. M. Oddy, J. A. Provancha, T. E. Foster & E. D. Stolen, 2014. Ecological Impacts of the Space Shuttle Program at John F. Kennedy Space Center, Florida [available on internet at http://ntrs.nasa.gov/search.jsp?R=20140012489].
  34. Halpern, B. S., S. Walbridge, K. A. Selkoe, C. V. Kappel, F. Micheli, C. D’Agrosa, J. F. Bruno, K. S. Casey, C. Ebert, H. E. Fox, R. Fujita, D. Heinemann, H. S. Lenihan, E. M. P. Madin, M. T. Perry, E. R. Selig, M. Spalding, R. Steneck & R. Watson, 2008. A global map of human impact on marine ecosystems. Science 319: 948–952.CrossRefPubMedGoogle Scholar
  35. Hazen and Sawyer, P.C. (2008). Indian River Lagoon Economic Assessment and Analysis Update. Indian River Lagoon National Estuary Program. Final Report. Contract No. 24706. http://www.sjrwmd.com/indianriverlagoon/pdfs/IRL_Economic_Assessment_2007.pdf
  36. Horstman, E. M., C. M. Dohmen-Janssen, P. M. F. Narra, N. J. F. van den Berg, M. Siemerink & S. J. M. H. Hulscher, 2014. Wave attenuation in mangroves: a quantitative approach to field observations. Coastal Engineering 94: 47–62.CrossRefGoogle Scholar
  37. Huckle, H. F., H. D. Dollar & R. F. Pendleton, 1974. Soil Survey of Brevard County, Florida. USDA, Soil Conservation Service, Washington, DC.Google Scholar
  38. Jones, H. P., D. G. Hole & E. S. Zavaleta, 2012. Harnessing nature to help people adapt to climate change. Nature Climate Change 2: 504–509.CrossRefGoogle Scholar
  39. Koch, E. W., E. B. Barbier, B. R. Silliman, D. J. Reed, G. M. E. Perillo, S. D. Hacker, E. F. Granek, J. H. Primavera, N. Muthiga, S. Polasky, B. S. Halpern, C. J. Kennedy, C. V. Kappel & E. Wolanski, 2009. Non-linearity in ecosystem services: temporal and spatial variability in coastal protection. Frontiers in Ecology and the Environment 7: 29–37.CrossRefGoogle Scholar
  40. Krauss, K. W., A. S. From, T. W. Doyle, T. J. Doyle & M. J. Barry, 2011. Sea-level rise and landscape change influence mangrove encroachment onto marsh in the Ten Thousand Islands region of Florida, USA. Journal of Coastal Conservation 15: 629–638.CrossRefGoogle Scholar
  41. Leonardi, N., N. K. Ganju & S. Fagherazzi, 2015. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes. Proceedings of the National Academy of Sciences of USA 113: 201510095.Google Scholar
  42. Lewandowsky, S., J. S. Risbey & N. Oreskes, 2016. The pause in global warming: turning a routine fluctuation into a problem for science. Bulletin of the American Meteorological Society 97: 723–733.CrossRefGoogle Scholar
  43. Lovell, S. T. & J. R. Taylor, 2013. Supplying urban ecosystem services through multifunctional green infrastructure in the United States. Landscape Ecology 28: 1447–1463.CrossRefGoogle Scholar
  44. Mazda, Y., E. Wolanski, B. King, A. Sase, D. Ohtsuka & M. Magi, 1997. Drag force due to vegetation in mangrove swamps. Mangroves and Salt Marshes 1: 193–199.CrossRefGoogle Scholar
  45. Mazda, Y., M. Magi, Y. Ikeda, T. Kurokawa & T. Asano, 2006. Wave reduction in a mangrove forest dominated by Sonneratia sp. Wetlands Ecology and Management 14: 365–378.CrossRefGoogle Scholar
  46. Mendez, F. J. & I. J. Losada, 2004. An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields. Coastal Engineering 51: 103–118.CrossRefGoogle Scholar
  47. Mikkelsen, P. M. & J. Cracraft, 2001. Marine biodiversity and the need for systematic inventories. Bulletin of Marine Science 69(2): 525–534.Google Scholar
  48. Möller, I. & T. Spencer, 2002. Wave dissipation over macro-tidal saltmarshes: effects of marsh edge typology and vegetation change. Journal of Coastal Research 36: 506–521.Google Scholar
  49. Morrisey, D. J., A. Swales, S. Dittmann, M. A. Morrison, C. E. Lovelock & C. M. Beard, 2010. The ecology and management of temperate mangroves. Oceanography and Marine Biology: An Annual Review 48: 43–160.Google Scholar
  50. NASA, 2010. John F. Kennedy Space Center. Environmental Resources Document. KSC-PLN-1911 Revised Edition.Google Scholar
  51. Osland, M. J., N. Enwright, R. H. Day & T. W. Doyle, 2013. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States. Global Change Biology 19: 1482–1494.CrossRefPubMedGoogle Scholar
  52. Osland, M. J., N. M. Enwright, R. H. Day, C. A. Gabler, C. L. Stagg & J. B. Grace, 2016a. Beyond just sea-level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change. Global Change Biology. doi: 10.1111/gcb.13084.PubMedGoogle Scholar
  53. Osland, M. J., L. C. Feher, K. T. Griffith, K. C. Cavanaugh, N. M. Enwright, R. H. Day, C. L. Stagg, K. W. Krauss, R. J. Howard, J. B. Grace & K. Rogers, 2016b. Climatic controls on the global distribution, abundance, and species richness of mangrove forests. Ecological Monographs. doi: 10.1002/ecm.1248.Google Scholar
  54. Parmesan, C. & G. Yohe, 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37.CrossRefPubMedGoogle Scholar
  55. Pinsky, M. L., G. Guannel & K. K. Arkema, 2013. Quantifying wave attenuation to inform coastal habitat conservation. Ecosphere 4: 1–16.CrossRefGoogle Scholar
  56. Poppleton, J., A. Shuey & H. Sweet, 1977. Vegetation of central Florida’s east coast; a checklist of the vascular plants. Florida Science 40: 362–389.Google Scholar
  57. Resio, D. T. & J. J. Westerink, 2008. Modeling the physics of storm surges. Physics Today 7: 3–9.Google Scholar
  58. Rey, J. R. & T. Kain, 1989. A Guide to the Salt Marsh Impoundments of Florida. Florida Medical Entomology Laboratory, Vero Beach.Google Scholar
  59. Rey, J. R., D. B. Carlson & R. E. Brockmeyer, 2012. Coastal wetland management in Florida: environmental concerns and human health. Wetlands Ecology and Management 20: 197–211.CrossRefGoogle Scholar
  60. Rodriguez, W., I. C. Feller & K. C. Cavanaugh, 2016. Spatio-temporal changes of a mangrove–saltmarsh ecotone in the northeastern coast of Florida, USA. Global Ecology and Conservation 7: 245–261.CrossRefGoogle Scholar
  61. Rogers, K., N. Saintilan & C. D. Woodroffe, 2014. Surface elevation change and vegetation distribution dynamics in a subtropical coastal wetland: implications for coastal wetland response to climate change. Estuarine, Coastal and Shelf Science 149: 46–56.CrossRefGoogle Scholar
  62. Rosenzweig, C., R. M. Horton, D. A. Bader, M. E. Brown, R. DeYoung, O. Dominguez, M. Fellows, L. Friedl, W. Graham, C. Hall, S. Higuchi, L. Iraci, G. Jedlovec, J. Kaye, M. Loewenstein, T. Mace, C. Milesi, W. Patzert, P. W. Stackhouse & K. Toufectis, 2014. Enhancing climate resilience at NASA centers: a collaboration between science and stewardship. Bulletin of the American Meteorological Society 95: 1351–1363.CrossRefGoogle Scholar
  63. Saintilan, N. & K. Rogers, 2015. Woody plant encroachment of grasslands: a comparison of terrestrial and wetland settings. New Phytologist 205: 1062–1070.CrossRefPubMedGoogle Scholar
  64. Saintilan, N., N. C. Wilson, K. Rogers, A. Rajkaran & K. W. Krauss, 2014. Mangrove expansion and salt marsh decline at mangrove poleward limits. Global Change Biology 20: 147–157.CrossRefPubMedGoogle Scholar
  65. Saleh, F. & M. P. Weinstein, 2016. The role of nature-based infrastructure (NBI) in coastal resiliency planning: a literature review. Journal of Environmental Management 1–11 [available on internet at http://linkinghub.elsevier.com/retrieve/pii/S0301479716307484].
  66. Scavia, D., J. C. Field, D. F. Boesch, R. W. Buddemeier, D. R. Cayan, M. Fogarty, M. A. Harwell, R. W. Howarth, D. J. Reed, T. C. Royer, A. H. Sallenger, J. G. Titus, C. Town & W. Virginia, 2002. Climate change impacts on U.S. coastal and marine ecosystems. Estuaries 25: 149–164.CrossRefGoogle Scholar
  67. Schmalzer, P. A., 1995. Biodiversity of saline and brackish marshes of the Indian River Lagoon: historic and current patterns. Bulletin of Marine Science 57(1): 37–48.Google Scholar
  68. Schmalzer, P. A., M. A. Hensley & C. A. Dunlevy, 2001. Background characteristics of soils of Kennedy Space Center, Merritt Island, Florida: selected elements and physical properties. Florida Scientist 64: 161–190.Google Scholar
  69. Sharp, R., H. T. Tallis, T. Ricketts, A. D. Guerry, S. A. Wood, R. Chaplin-Kramer, E. Nelson, D. Ennaanay, S. Wolny, N. Olwero, K. Vigerstol, D. Pennington, G. Mendoza, J. Aukema, J. Foster, J. Forrest, D. Cameron, K. Arkema, E. Lonsdorf & C. Kennedy, 2016. InVEST 3.3.2 User’s Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund.Google Scholar
  70. Shepard, C. C., C. M. Crain & M. W. Beck, 2011. The protective role of coastal marshes: a systematic review and meta-analysis. PLoS ONE 6: 272–283.Google Scholar
  71. Smith, N. P. N., 1983. Tidal and low-frequency net displacement in a coastal lagoon. Estuaries 6: 180–189 [available on internet at http://link.springer.com/article/10.2307/1351510].
  72. Smith, N. P., 1993. Tidal and nontidal flushing of Florida’s Indian River Lagoon. Estuaries 16: 739–746.CrossRefGoogle Scholar
  73. Spalding, M., A. McIvor, F. H. Tonneijck, S. Tol & P. van Eijk, 2014a. Mangroves for Coastal Defence: Guidelines for Coastal Managers and Policy Makers. Wetlands International and the Nature Conservancy.Google Scholar
  74. Spalding, M. D., S. Ruffo, C. Lacambra, I. Meliane, L. Z. Hale, C. C. Shepard & M. W. Beck, 2014b. The role of ecosystems in coastal protection: adapting to climate change and coastal hazards. Ocean and Coastal Management 90: 50–57.CrossRefGoogle Scholar
  75. Steward, J. S., R. W. Virnstein, L. J. Morris & E. F. Lowe, 2005. Setting seagrass depth, coverage, and light targets for the Indian River Lagoon System, Florida. Estuaries 28: 923–935.CrossRefGoogle Scholar
  76. Stockdon, H. F., R. A. Holman, P. A. Howd & A. H. Sallenger, 2006. Empirical parameterization of setup, swash, and runup. Coastal Engineering 53: 573–588.CrossRefGoogle Scholar
  77. Sutton-Grier, A. E., K. Wowk & H. Bamford, 2015. Future of our coasts: the potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environmental Science and Policy 51: 137–148.CrossRefGoogle Scholar
  78. Tempest, J. A., I. Möller & T. Spencer, 2015. A review of plant-flow interactions on salt marshes: the importance of vegetation structure and plant mechanical characteristics. Wiley Interdisciplinary Reviews: Water 2: 669–681 [available on internet at http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=CitingArticles&qid=1&SID=X2XaHQz772lIDnruRuT&page=1&doc=2].
  79. Walther, G., 2004. Plants in a warmer world. Perspectives in Plant Ecology, Evolution and Systematics 6: 169–185.CrossRefGoogle Scholar
  80. Wamsley, T. V., M. A. Cialone, J. M. Smith, B. A. Ebersole & A. S. Grzegorzewski, 2009. Influence of landscape restoration and degradation on storm surge and waves in southern Louisiana. Natural Hazards 51: 207–224.CrossRefGoogle Scholar
  81. Wamsley, T. V., M. A. Cialone, J. M. Smith, J. H. Atkinson & J. D. Rosati, 2010. The potential of wetlands in reducing storm surge. Ocean Engineering 37: 59–68.CrossRefGoogle Scholar
  82. Whitehouse, R., S. Richard, W. Roberts & H. Mitchener, 2000. Dynamics of estuarine muds [available on internet at http://eprints.hrwallingford.co.uk/830/].
  83. Williams, A. A., S. F. Eastman & W. E. Eash-loucks, 2014. Record northernmost endemic mangroves on the United States Atlantic Coast with a note on latitudinal migration. Southeastern Naturalist 13: 56–63.CrossRefGoogle Scholar
  84. Wong, P. P., I. J. Losada, J. P. Gattuso, J. Hinkel, A. Khattabi, K. L. McInnes, Y. Saito & A. Sallenger, 2014. Coastal systems and low-lying areas. In Field, C. B., V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea & L. L. White (eds), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge: 361–409.Google Scholar
  85. Woodroffe, C. D., K. Rogers, K. L. McKee, C. E. Lovelock, I. A. Mendelssohn & N. Saintilan, 2016. Mangrove sedimentation and response to relative sea-level rise. Annual Review of Marine Science 8: 243–266.CrossRefPubMedGoogle Scholar
  86. Woodward, R. T. & Y.-S. Wui, 2001. Economic value of wetland services: a meta analysis. Ecological Economics 37: 257–270.CrossRefGoogle Scholar
  87. United States Fish and Wildlife Service, 1999. Coastal Salt Marsh. South Florida Multi-species Recovery Plan. United States Fish and Wildlife Service, Atlanta.Google Scholar
  88. Yi, S., W. Sun, K. Heki & A. Qian, 2015. An increase in the rate of global mean sea level rise since 2010. Geophysical Research Letters 42: 3998–4006.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of GeographyUniversity of California, Los AngelesLos AngelesUSA
  2. 2.Kennedy Space Center, Ecological Program, IMSS-300Kennedy Space CenterTitusvilleUSA
  3. 3.Smithsonian Environmental Research CenterSmithsonian InstitutionEdgewaterUSA
  4. 4.Department of BiologyVillanova UniversityVillanovaUSA

Personalised recommendations