Advertisement

Hydrobiologia

, Volume 799, Issue 1, pp 123–133 | Cite as

Aquatic invertebrate communities exhibit both resistance and resilience to seasonal drying in an intermittent coastal stream

  • Michael T. Bogan
  • Jason L. Hwan
  • Kristina Cervantes-Yoshida
  • Julian Ponce
  • Stephanie M. Carlson
Primary Research Paper

Abstract

Species inhabiting intermittent streams must survive flow cessation and drying in situ (resistance) or recolonize temporary habitats when flow returns (resilience). Some studies have found that species are resistant to seasonal drying and can persist in small remnant pools after flow ceases, while others observed rapid declines in species richness when flow ceases. However, relatively few studies have demonstrated both resistance across dry seasons and resilience across multiple wet and dry cycles. Here, we quantify seasonal and interannual changes in aquatic invertebrate community structure from 2009 to 2012 in a coastal California intermittent stream. We predicted that temporary pools and riffles would have lower richness and distinct assemblages when compared to perennial pools, and that richness would decline across the dry season. Temporary riffles exhibited lower richness values than pools, but we found no richness differences, and small compositional differences, between perennial and temporary pools. Furthermore, invertebrate richness, density, and composition changed significantly in temporary pools only immediately before drying, when depths declined >80%. These results suggest that invertebrate communities at John West Fork were not only resilient (exhibiting recovery in <6 months) to flow cessation, but also were resistant to declining water levels across the dry season.

Keywords

California Drought Recovery Seasonal variation Temporary habitat 

Notes

Acknowledgements

Thanks to Sébastien Nusslé for statistical and coding assistance with linear mixed modeling efforts. MT Bogan was supported by a David H. Smith Conservation Research Fellowship. JL Hwan and K Yoshida-Cervantes were supported by NSF Graduate Research Fellowships (#0946797 and 1106400, respectively). J Ponce was supported by the UC Berkeley Biology Scholars Program. SM Carlson was supported by a Rose Hills Program grant from UC Berkeley. This manuscript was greatly improved by the comments of two anonymous reviewers.

References

  1. Arscott, D. B., S. T. Larned, M. R. Scarsbrook & P. Lambert, 2010. Aquatic invertebrate community structure along an intermittence gradient: Selwyn River, New Zealand. Journal of the North American Benthological Society 29: 530–545.CrossRefGoogle Scholar
  2. Bates, D., M. Maechler, B. M. Bolker & S. Walker, 2014. _lme4: Linear mixed-effects models using Eigen and S4_. Retrieved from http://CRAN.R-project.org/package=lme4.
  3. Bêche, L. A., E. P. McElravy & V. H. Resh, 2006. Long-term seasonal variation in the biological traits of benthic-macroinvertebrates in two Mediterranean climate streams in California, USA. Freshwater Biology 51: 56–75.CrossRefGoogle Scholar
  4. Bêche, L. A., P. G. Connors, V. H. Resh & A. M. Merenlender, 2009. Resilience of fishes and invertebrates to prolonged drought in two California streams. Ecography 32: 778–788.CrossRefGoogle Scholar
  5. Belmecheri, S., F. Babst, E. R. Wahl, D. W. Stahle & V. Trouet, 2016. Multi-century evaluation of Sierra Nevada snowpack. Nature Climate Change 6: 2–3.CrossRefGoogle Scholar
  6. Boersma, K. S., M. T. Bogan, B. A. Henrichs & D. A. Lytle, 2014. Invertebrate assemblages of pools in arid-land streams have high functional redundancy and are resistant to severe drying. Freshwater Biology 59: 491–501.CrossRefGoogle Scholar
  7. Bogan, M. T. & D. A. Lytle, 2007. Seasonal flow variation allows ‘time-sharing’ by disparate aquatic insect communities in montane desert streams. Freshwater Biology 52: 290–304.CrossRefGoogle Scholar
  8. Bogan, M. T. & D. A. Lytle, 2011. Severe drought drives novel community trajectories in desert stream pools. Freshwater Biology 56: 2070–2081.CrossRefGoogle Scholar
  9. Bogan, M. T. & K. S. Boersma, 2012. Aerial dispersal of aquatic invertebrates along and away from arid-land streams. Freshwater Science 31: 1131–1144.CrossRefGoogle Scholar
  10. Bogan, M. T., K. S. Boersma & D. A. Lytle, 2013. Flow intermittency alters longitudinal patterns of invertebrate diversity and assemblage composition in an arid-land stream network. Freshwater Biology 58: 1016–1028.CrossRefGoogle Scholar
  11. Bogan, M. T., K. S. Boersma & D. A. Lytle, 2015a. Resistance and resilience of invertebrate communities to seasonal and supraseasonal drought in arid-land headwater streams. Freshwater Biology 60: 2547–2558.CrossRefGoogle Scholar
  12. Bogan, M. T., J. L. Hwan & S. M. Carlson, 2015b. High aquatic biodiversity in an intermittent coastal headwater stream at Golden Gate National Recreation Area, California. Northwest Science 89: 188–197.CrossRefGoogle Scholar
  13. Bonada, N., M. Rieradevall, N. Prat & V. H. Resh, 2006. Benthic macroinvertebrate assemblages and macrohabitat connectivity in Mediterranean-climate streams of northern California. Journal of the North American Benthological Society 25: 32–43.CrossRefGoogle Scholar
  14. Boulton, A. J., 2003. Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshwater Biology 48: 1173–1185.CrossRefGoogle Scholar
  15. Boulton, A. J. & P. S. Lake, 1990. The ecology of two intermittent streams in Victoria, Australia. I. Multivariate analyses of physicochemical features. Freshwater Biology 24: 123–141.CrossRefGoogle Scholar
  16. Boulton, A. J. & P. S. Lake, 2008. Effects of drought on stream insects and its ecological consequences. In Lancaster, J. & R. A. Briers (eds), Aquatic Insects: Challenges to Populations. CABI, Oxfordshire: 81–102.CrossRefGoogle Scholar
  17. Chester, E. T. & B. J. Robson, 2011. Drought refuges, spatial scale and recolonisation by invertebrates in non-perennial streams. Freshwater Biology 56: 2094–2104.CrossRefGoogle Scholar
  18. Csabai, Z., P. Boda, B. Bernath, G. Kriska & G. Horvath, 2006. A ‘polarisation sun-dial’ dictates optimal time of day for dispersal by flying aquatic insects. Freshwater Biology 51: 1341–1350.CrossRefGoogle Scholar
  19. Datry, T., S. T. Larned, K. M. Fritz, M. T. Bogan, P. J. Wood, E. I. Meyer & A. N. Santos, 2014. Broad-scale patterns of invertebrate richness and community composition in temporary rivers: effects of flow intermittence. Ecography 37: 94–104.CrossRefGoogle Scholar
  20. Datry, T., K. M. Fritz & C. Leigh, 2016a. Challenges, developments and perspectives in intermittent river ecology. Freshwater Biology. doi: 10.1111/fwb.12789.Google Scholar
  21. Datry, T., N. Moya, J. Zubieta & T. Oberdorff, 2016b. Determinants of local and regional communities in intermittent and perennial headwaters of the Bolivian Amazon. Freshwater Biology. doi: 10.1111/fwb.12706.Google Scholar
  22. del Rosario, R. B. & V. H. Resh, 2000. Invertebrates in intermittent and perennial streams: is the hyporheic zone a refuge from drying? Journal of the North American Benthological Society 19: 680–696.CrossRefGoogle Scholar
  23. Drummond, L. R., A. R. McIntosh & S. T. Larned, 2015. Invertebrate community dynamics and insect emergence in response to pool drying in a temporary river. Freshwater Biology 60: 1596–1612.CrossRefGoogle Scholar
  24. Fritz, K. M. & W. K. Dodds, 2004. Resistance and resilience of macroinvertebrate assemblages to drying and flood in a tallgrass prairie stream system. Hydrobiologia 527: 99–112.CrossRefGoogle Scholar
  25. Garcia-Roger, E. M., M. M. Sanchez-Montoya, N. Cid, S. Erba, I. Karaouzas, I. Verkaik, M. Rieradevall, R. Gomez, M. L. Suárez, M. R. Vidal-Abarca, D. DeMartini, A. Buffagni, N. Skoulikidis, N. Bonada & N. Prat, 2013. Spatial scale effects on taxonomic and biological trait diversity of aquatic macroinvertebrates in Mediterranean streams. Fundamental and Applied Limnology 183: 89–105.CrossRefGoogle Scholar
  26. Griffin, D. & K. J. Anchukaitis, 2014. How unusual is the 2012-2014 California drought? Geophysical Research Letters 41: 9017–9023.CrossRefGoogle Scholar
  27. Hershler, R. & T. J. Frest, 1996. A review of the North American freshwater snail genus Fluminicola (Hydrobiidae). Smithsonian Contributions in Zoology 583: 1–41.CrossRefGoogle Scholar
  28. Hershkovitz, Y. & A. Gasith, 2013. Resistance, resilience, and community dynamics in Mediterranean-climate streams. Hydrobiologia 719: 59–75.CrossRefGoogle Scholar
  29. Hwan, J. L. & S. M. Carlson, 2016. Fragmentation of an intermittent stream during seasonal drought: intra-annual and interannual patterns and biological consequences. River Research and Applications 32: 856–870.CrossRefGoogle Scholar
  30. Johnstone, J. A. & T. E. Dawson, 2010. Climatic context and ecological implications of summer fog decline in the coast redwood region. Proceedings of the National Academy of Sciences 107: 4533–4538.CrossRefGoogle Scholar
  31. Kuznetsova, A., P. B. Brockhoff & R. H. B. Christensen, 2014. Tests in Linear Mixed Effects Models. Retrieved from http://CRAN.R-project.org/package=lmerTest.
  32. Lake, P. S., 2011. Drought and Aquatic Ecosystems: Effects and Responses. Wiley-Blackwell, West Sussex.CrossRefGoogle Scholar
  33. Larned, S. T., T. Datry, D. B. Arscott & K. Tockner, 2010. Emerging concepts in temporary-river ecology. Freshwater Biology 55: 717–738.CrossRefGoogle Scholar
  34. Ledger, M. E., R. M. L. Harris, P. D. Armitage & A. M. Milner, 2012. Climate change impacts on community resilience: evidence from a drought disturbance experiment. Advances in Ecological Research 46: 211–258.CrossRefGoogle Scholar
  35. Love, J. W., C. M. Taylor & M. P. Warren Jr., 2008. Effects of summer drought on fish and macroinvertebrate assemblage properties in upland Ouachita Mountain streams, USA. American Midland Naturalist 160: 265–277.CrossRefGoogle Scholar
  36. Mazor, R. D., E. D. Stein, P. R. Ode & K. Schiff, 2014. Integrating intermittent streams into watershed assessments: applicability of an index of biotic integrity. Freshwater Science 33: 459–474.CrossRefGoogle Scholar
  37. McCune, B. & J. B. Grace, 2002. Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, OR.Google Scholar
  38. McCune, B. & M. J. Mefford, 1999. PC-ORD: Multivariate Analysis of Ecological Data. Version 4.0. MjM Software. Gleneden Beach, OR, USA.Google Scholar
  39. Mielke, P. W. & K. J. Berry, 2001. Permutation Methods: A Distance Function Approach. Springer, Berlin.CrossRefGoogle Scholar
  40. Miller, A. M. & S. W. Golladay, 1996. Effects of spates and drying on macroinvertebrate assemblages of an intermittent and a perennial prairie stream. Journal of the North American Benthological Society 15: 670–689.CrossRefGoogle Scholar
  41. Minckley, W. L. & W. E. Barber, 1971. Some aspects of the biology of the longfin dace, a cyprinid fish characteristics of streams of the Sonoran Desert. The Southwestern Naturalist 15: 459–464.CrossRefGoogle Scholar
  42. R Core Team, 2013. R: A language and environment for statistical computing. Retrieved from http://www.R-project.org/.
  43. Resh, V. H., A. V. Brown, A. P. Covich, M. E. Gurtz, H. W. Li, G. W. Minshall, S. R. Reice, A. L. Sheldon, B. J. Wallace & R. C. Wissmar, 1988. The role of disturbance in stream ecology. Journal of the North American Benthological Society 7: 433–455.CrossRefGoogle Scholar
  44. Resh, V. H., L. A. Bêche, J. E. Lawrence, R. D. Mazor, E. P. McElravy, A. P. O’Dowd, D. Rudnick & S. M. Carlson, 2013. Long-term population and community patterns of benthic macroinvertebrates and fishes in Northern California Mediterranean-climate streams. Hydrobiologia 719: 93–118.CrossRefGoogle Scholar
  45. Sheldon, F., S. E. Bunn, J. M. Hughes, A. H. Arthington, S. R. Balcombe & C. S. Fellows, 2010. Ecological roles and threats to aquatic refugia in arid landscapes: dryland river waterholes. Marine and Freshwater Research 61: 885–895.CrossRefGoogle Scholar
  46. Smith, R. E. W. & R. G. Pearson, 1987. The macro-invertebrate communities of temporary pools in an intermittent stream in tropical Queensland. Hydrobiologia 150: 45–61.CrossRefGoogle Scholar
  47. Sponseller, R. A., N. B. Grimm, A. J. Boulton & J. L. Sabo, 2010. Responses of macroinvertebrate communities to long-term flow variability in a Sonoran Desert stream. Global Change Biology 16: 2891–2900.CrossRefGoogle Scholar
  48. Storey, R. G., 2016. Macroinvertebrate community responses to duration, intensity, and timing of annual dry events in intermittent forest and pasture streams. Aquatic Sciences 78: 395–414.CrossRefGoogle Scholar
  49. Stubbington, R. & T. Datry, 2013. The macroinvertebrate seedbank promotes community persistence in temporary rivers across climate zones. Freshwater Biology 58: 1202–1220.CrossRefGoogle Scholar
  50. Vander Vorste, R., F. Malard & T. Datry, 2016. Is drift the primary process promoting the resilience of river invertebrate communities? A manipulative field experiment in an intermittent alluvial river. Freshwater Biology 61: 1276–1292.CrossRefGoogle Scholar
  51. Wiggins, G. B., 1996. Larvae of the North American Caddisfly Genera (Trichoptera). University of Toronto Press, Toronto.Google Scholar
  52. Williams, D. D., 2006. The Biology of Temporary Waters. Oxford University Press, Oxford.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Michael T. Bogan
    • 1
    • 2
  • Jason L. Hwan
    • 2
    • 3
  • Kristina Cervantes-Yoshida
    • 2
    • 4
  • Julian Ponce
    • 2
  • Stephanie M. Carlson
    • 2
  1. 1.School of Natural Resources and the EnvironmentUniversity of ArizonaTucsonUSA
  2. 2.Department of Environmental SciencePolicy and Management University of CaliforniaBerkeleyUSA
  3. 3.Instream Flow ProgramCalifornia Department of Fish and WildlifeSacramentoUSA
  4. 4.San Francisco Bay Regional Water Quality Control BoardOaklandUSA

Personalised recommendations