Advertisement

Hydrobiologia

, Volume 797, Issue 1, pp 289–301 | Cite as

Flow magnitude and variability influence growth of two freshwater fish species in a large regulated floodplain river

  • Zeb TonkinEmail author
  • Adrian Kitchingman
  • Jarod Lyon
  • Joanne Kearns
  • Graeme Hackett
  • Justin O’Mahony
  • Paul D. Moloney
  • Kyne Krusic-Golub
  • Tomas Bird
Primary Research Paper

Abstract

Fish are often targets for environmental watering outcomes under the premise that aspects of the flow regime are linked to key components of their life-history. This study examined the conceptual link between variability in river discharge and fish productivity by measuring annual growth patterns (generated using sclerochronology over a 22-year period) of two native freshwater cod Maccullochella spp. species over a range of flow conditions in a regulated Australian floodplain River. We found a positive relationship between fish growth, flow variability and river discharge. Flow variability during spring and summer-autumn, as well as their antecedent values, was particularly important in explaining annual growth of the nationally endangered Maccullochella macquariensis. Growth of Maccullochella peelii displayed similar patterns, though were more closely aligned with spring discharge. These results are consistent with the general view that increased river regulation, due to its suppression of flow magnitude and variability, has been a major contributing factor in the decline of native fish populations throughout the world. Our results provide support and guidance for the use of environmental water delivery, and have broad application to rivers worldwide for which any quantification of ecological impacts of regulation, and responses to water management remain scarce.

Keywords

River regulation Environmental flows Murray cod Trout cod Flood pulse concept Productivity Murray–Darling Basin 

Notes

Acknowledgements

We acknowledge the Murray–Darling Basin Authority for funding and their continued support in this research. We would also thank the large number of ARI staff for field assistance and John Koehn (ARI) and John Morrongiello (University of Melbourne) and two anonymous reviewers for constructive comments on early drafts. This work was conducted under NSW Fisheries Scientific Research Permit F93/158(C)-8.0 and OUT13/4461, Victorian Fisheries Research Permit RP827, FFG Research Permit 10005913 and DEPI Animal Ethics 07/23 and 11/02.

Supplementary material

10750_2017_3192_MOESM1_ESM.docx (471 kb)
Supplementary material 1 (DOCX 470 kb)

References

  1. Ali, M., A. Nicieza & R. J. Wootton, 2003. Compensatory growth in fishes: A response to growth depression. Fish and Fisheries 4: 147–190.CrossRefGoogle Scholar
  2. Anderson, J., A. Morison & D. Ray, 1992a. Validation of the use of thin-sectioned Otoliths for determining the age and growth of Golden Perch, Macquaria ambigua (Perciformes: Percichthyidae), in the Lower Murray-Darling Basin, Australia. Marine and Freshwater Research 43: 1103–1128.CrossRefGoogle Scholar
  3. Anderson, J., A. Morison & D. Ray, 1992b. Age and growth of Murray Cod, Maccullochella peelii (Perciformes: Percichthyidae), in the Lower Murray-Darling Basin, Australia, from thin-sectioned otoliths. Marine and Freshwater Research 43: 983–1013.CrossRefGoogle Scholar
  4. Arthington, A. H. & B. J. Pusey, 2003. Flow restoration and protection in Australian rivers. River Research and Applications 19: 377–395.CrossRefGoogle Scholar
  5. Arthington, A. H., S. E. Bunn, L. N. Poff & R. J. Naiman, 2006. The challenge of providing environmental flow rules to sustain river ecosystems. Ecological Applications 16: 1311–1318.CrossRefPubMedGoogle Scholar
  6. Balcombe, S., J. Lobegeiger, S. Marshall, J. Marshall, D. Ly & D. Jones, 2012. Fish body condition and recruitment success reflect antecedent flows in an Australian dryland river. Fisheries Science 78: 841–847.CrossRefGoogle Scholar
  7. Barton, K. 2013. MuMIn: Multi-model inference [available on internet at http://CRAN.R-project.org/package=MuMIn].
  8. Bates, D., M. Maechler, B. Bolker & S. Walker, S. 2013. lme4: Linear mixed-effects models using Eigen and S4. CRAN [available on internet at http://CRAN.R-project.org/package=lme4].
  9. Bayley, P. B., 1991. The flood pulse advantage and the restoration of river-floodplain systems. Regulated Rivers 6: 75–86.CrossRefGoogle Scholar
  10. Bond, N. R., P. S. Lake & A. H. Arthington, 2008. The impacts of drought on freshwater ecosystems: An Australian perspective. Hydrobiologia 600: 3–16.CrossRefGoogle Scholar
  11. Bradford, M. J., P. S. Higgins, J. Korman & J. Sneep, 2011. Test of an environmental flow release in a British Columbia river: Does more water mean more fish? Freshwater Biology 56: 2119–2134.CrossRefGoogle Scholar
  12. Bunn, S. E., M. C. Thoms, S. K. Hamilton & S. J. Capon, 2006. Flow variability in dryland rivers: Boom, bust and the bits in between. River Research and Applications 22: 179–186.CrossRefGoogle Scholar
  13. Burnham, K. P. & D. R. Anderson, 1998. Model selection and inference: A practical information-theoretic approach. Springer-Verlag, New York.CrossRefGoogle Scholar
  14. Burnham, K. P. & D. R. Anderson, 2010. Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach, 2nd ed. Springer, New York.Google Scholar
  15. Close, A., 1990. The impact of man on the natural flow regime. In Mackay, N. & D. Eastburn (eds), The Murray. Murray-Darling Basin Commission, Canberra: 61–76.Google Scholar
  16. Cook, R., N. Ning, D. Nielsen, B. Gawne & L. Vilizzi 2012. Changes to the structure and function of Murray-Darling Basin rivers in response to the transition from drought. Final Report prepared for the Murray-Darling Basin Authority and Department of Sustainability, Environment, Water, Population and Communities by The Murray-Darling Freshwater Research Centre, MDFRC Publication 4/2012, March, pp 71.Google Scholar
  17. Cottingham, P., G. Hannan, T. Hillman, J. Koehn, L. Metzling, J. Roberts & I. Rutherfurd, 2001. Report of the Ovens scientific panel on environmental condition and flows of the Ovens River. Cooperative Research Centre for Freshwater Ecology Technical Report 9/2001.Google Scholar
  18. Crook, D. A. & B. M. Gillanders, 2013. Age and Growth. In Humphries, P. & K. Walker (eds), Ecology of Australian Freshwater Fishes. CSIRO Publishing, Collingwood.Google Scholar
  19. Cushing, D. H., 1990. Plankton production and year-class strength in fish populations: An update of the match/mismatch hypothesis. Advances in Marine Biology 26: 249–293.CrossRefGoogle Scholar
  20. Fleming, I. A., 1996. Reproductive strategies of Atlantic salmon: Ecology and evolution. Reviews in Fish Biology and Fisheries 6: 379–416.CrossRefGoogle Scholar
  21. Gehrke, P. C., P. Brown, C. B. Schiller, D. B. Moffatt & A. M. Bruce, 1995. River regulation and fish communities in the Murray-Darling River system, Australia. Regulated Rivers 11: 363–375.CrossRefGoogle Scholar
  22. Harrisson, K. A., J. D. L. Yen, A. Pavlova, M. L. Rourke, D. Gilligan, B. A. Ingram, J. Lyon, Z. Tonkin & P. Sunnucks, 2016. Identifying environmental correlates of intraspecific genetic variation. Heredity 117: 155–164.CrossRefPubMedGoogle Scholar
  23. Humphries, P., H. Keckeis & B. Finlayson, 2014. The river wave concept: Integrating river ecosystem models. BioScience 64: 870–882.CrossRefGoogle Scholar
  24. Jonsson, B., 2006. Life-history effects of migratory costs in anadromous brown trout. Journal of Fish Biology 69: 860–869.CrossRefGoogle Scholar
  25. Jonsson, B. & N. Jonsson, 1993. Partial migration: Niche shift versus sexual maturation in fishes. Reviews in Fish Biology and Fisheries 3: 348–365.CrossRefGoogle Scholar
  26. Jørgensen, C. & Ø. Fiksen, 2006. State-dependent energy allocation in cod (Gadus morhua). Canadian Journal of Fisheries and Aquatic Sciences 63: 186–199.CrossRefGoogle Scholar
  27. Junk, W. J. & K. M. Wantzen, 2006. The flood pulse concept: New aspects, approaches and applications—an update. In Batzer, D. P. & R. R. Sharitz (eds), Ecology of Freshwater and Estuarine Wetlands. University of California Press, Berkeley: 117–140.Google Scholar
  28. Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106: 110–127.Google Scholar
  29. King, A. J., Z. Tonkin & J. Mahoney, 2009. Environmental flow enhances native fish spawning and recruitment in the Murray River, Australia. River Research and Applications 25: 1205–1218.CrossRefGoogle Scholar
  30. King, A. J., K. A. Ward, P. O’Connor, D. Green, Z. Tonkin & J. Mahoney, 2010. Adaptive management of an environmental watering event to enhance native fish spawning and recruitment. Freshwater Biology 55: 17–31.CrossRefGoogle Scholar
  31. Koehn, J. D. & W. G. O'Connor, 1990. Biological information for management of native freshwater fish in Victoria. Victorian Government Printing Office, Melbourne, Australia, pp 165.Google Scholar
  32. Koehn, J. D., S. J. Nicol, J. A. McKenzie, J. A. Lieschke, J. P. Lyon & K. Pomorin, 2008. Spatial ecology of an endangered native Australian Percichthyid, the trout cod Maccullochella macquariensis. Endangered Species Research 4: 219–225.CrossRefGoogle Scholar
  33. Koehn, J. D., A. J. King, L. Beesley, C. Copeland, B. P. Zampatti & M. Mallen-Cooper, 2014. Flows for native fish in the Murray-Darling basin: Lessons and considerations for future management. Ecological Management and Restoration 15: 40–50.CrossRefGoogle Scholar
  34. Lintemans, M., 2007. Fishes of the Murray-Darling Basin: An introductory guide. Murray-Darling Basin Commission, Canberra.Google Scholar
  35. Lyon, J. P., C. Todd, S. J. Nicol, A. MacDonald, D. Stoessel, B. A. Ingram, R. J. Barker & C. J. A. Bradshaw, 2012. Reintroduction success of threatened Australian trout cod (Maccullochella macquariensis) based on growth and reproduction. Marine and Freshwater Research 63: 598–605.CrossRefGoogle Scholar
  36. Lyon, J. P., T. Bird, S. Nicol, J. Kearns, J. O’Mahony, C. R. Todd, I. G. Cowx & C. J. A. Bradshaw, 2014. Efficiency of electrofishing in turbid lowland rivers: Implications for measuring temporal change in fish populations. Canadian Journal of Fisheries and Aquatic Sciences 71: 878–886.CrossRefGoogle Scholar
  37. Maclean, A. & N. B. Metcalfe, 2001. Social status, access to food, and compensatory growth in juvenile Atlantic salmon. Journal of Fish Biology 58: 1331–1346.CrossRefGoogle Scholar
  38. Mallen-Cooper, M. & I. G. Stuart, 2003. Age, growth and non-flood recruitment of two potamodromous fishes in a large semi-arid/temperate river system. River Research and Applications 19: 697–719.CrossRefGoogle Scholar
  39. MDBA 2014. Daily flow and temperature data. [available on internet at http://www.mdba.gov.au/river-data/live-river-data] (accessed 2nd June 2014).
  40. McMahon, T. A. & B. L. Finlayson, 2003. Droughts and antidroughts: The low flow hydrology of Australian rivers. Freshwater Biology 48: 1147–1160.CrossRefGoogle Scholar
  41. Murphy, B. & B. Timbal, 2008. A review of recent climate variability and climate change in southeastern Australia. International Journal of Climatology 28: 859–879.CrossRefGoogle Scholar
  42. Nakagawa, S. & H. Schielzeth, 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution 4: 133–142.CrossRefGoogle Scholar
  43. Naiman, R. J., J. J. Latterell, N. E. Pettit & J. D. Olden, 2008. Flow variability and the biophysical vitality of river systems. Comptes Rendus Geoscience 340: 629–643.CrossRefGoogle Scholar
  44. Nicol, S. J., R. J. Barrker, J. D. Koehn & M. A. Burgman, 2007. Structural habitat selection by the critically endangered trout cod, Maccullochella macquariensis Cuvier. Biological Conservation 138: 30–37.CrossRefGoogle Scholar
  45. Ning, N. P., B. Gawne, R. Cook & D. Nielsen, 2013. Zooplankton dynamics in response to the transition from drought to flooding in four Murray-Darling Basin rivers affected by differing levels of flow regulation. Hydrobiologia 702: 45–62.CrossRefGoogle Scholar
  46. Poff, N. L. & J. K. H. Zimmerman, 2010. Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flows. Freshwater Biology 55: 194–205.CrossRefGoogle Scholar
  47. Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks & J. C. Stromberg, 1997. The natural flow regime: A paradigm for river conservation and restoration. BioScience 47: 769–784.CrossRefGoogle Scholar
  48. Poff, L. N., J. D. Allan, M. A. Palmer, D. D. Hart, B. D. Richter, A. H. Arthington, K. H. Rogers, J. L. Meyer & J. A. Stanford, 2003. River flows and water wars: Emerging science for environmental decision making. Frontiers in Ecology and Environment 1: 298–306.CrossRefGoogle Scholar
  49. Poff, N. L., B. D. Richter, A. H. Aarthington, S. E. Bunn, R. J. Naiman, E. Kendy, M. Acreman, C. Apse, B. P. Bledsoe, M. C. Freeman, J. Henriksen, R. B. Jacobson, J. G. Kennen, D. M. Merritt, J. H. O’Keeffe, J. D. Olden, K. Rogers, R. E. Tharme & A. Warner, 2010. The ecological limits of hydrologic alteration (ELOHA): A new framework for developing regional environmental flow standards. Freshwater Biology 55: 147–170.CrossRefGoogle Scholar
  50. R Development Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna [available on internet at http://www.R-project.org].
  51. Robertson, A. I., P. Bacon & G. Heagney, 2001. Responses of floodplain primary production to floods of different frequency and seasonal timing. Journal of Applied Ecology 38: 126–136.CrossRefGoogle Scholar
  52. Rood, S. B., C. R. Gourley, E. M. Ammon, L. G. Heki, J. R. Klotz, M. L. Morrison, D. Mosley, G. G. Scoppettone, S. Swanson & P. L. Wagner, 2003. Flows for floodplain forests: A successful riparian restoration. BioScience 53: 647–656.CrossRefGoogle Scholar
  53. Rutherfurd, I. D., 1994. Inherited controls on the form of a large, low energy river: The Murray River, Australia. In the variability of large alluvial rivers. In Schumm, S. A. & B. R. Winkley (eds), The Variability of Large Alluvial Rivers. ASCE Press, New York: 177–197.Google Scholar
  54. Stanford, J. A., J. V. Ward, W. J. Liss, C. A. Frissell, R. N. Williams, J. A. Lichatowich & C. C. Coutant, 1996. A general protocol for restoration of regulated rivers. Regulated River 12: 391–413.CrossRefGoogle Scholar
  55. Tockner, K., F. Malard & J. V. Ward, 2000. An extension of the flood pulse concept. Hydrological Processes 14: 2861–2883.CrossRefGoogle Scholar
  56. Tonkin, Z., A. J. King & D. S. L. Ramsey, 2008. Otolith increment width responses of juvenile Australian smelt Retropinna semoni to sudden changes in food levels: The importance of feeding history. Journal of Fish Biology 73: 853–860.CrossRefGoogle Scholar
  57. Tonkin, Z. D., A. J. King, A. I. Robertson & D. S. L. Ramsey, 2011. Early fish growth varies in response to components of the flow regime in a temperate floodplain river. Freshwater Biology 56: 1769–1782.CrossRefGoogle Scholar
  58. Turchini, G. M., D. S. Francis & S. S. De Silva, 2007. Finishing diets stimulate compensatory growth: Results of a study on Murray cod, Maccullochella peelii peelii. Aquaculture Nutrition 13: 351–360.CrossRefGoogle Scholar
  59. Walker, K. F. & M. C. Thoms, 1993. Environmental effects of flow regulation on the lower River Murray, Australia. Regulated Rivers 8: 103–119.CrossRefGoogle Scholar
  60. Wootton, R. J., 1998. Ecology of Teleost Fishes, 2nd ed. Kluwer Academic Publishers, Dordrecht: 386.Google Scholar
  61. Yin, X. A., Z. F. Yang & G. E. Petts, 2012. Optimizing environmental flows below dams. River Research and Applications 28: 703–716.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Environment, Land, Water and PlanningArthur Rylah Institute for Environmental ResearchHeidelbergAustralia
  2. 2.Fish Aging Services Pty LtdQueenscliffAustralia
  3. 3.Department of GeographyUniversity of SouthamptonSouthamptonUK

Personalised recommendations