Advertisement

Hydrobiologia

, Volume 797, Issue 1, pp 265–275 | Cite as

Modelling the growth of a protogynous sparid species, Spondyliosoma cantharus (Teleostei: Sparidae)

  • Ana Neves
  • Ana Rita Vieira
  • Vera Sequeira
  • Rafaela Barros Paiva
  • Leonel Serrano Gordo
Primary Research Paper

Abstract

Age determination of fish species is a key process for fisheries management and the accuracy of assessments is highly dependent on age estimates. To model complex life histories such as protogynous hermaphroditism, the growth curve to fit the age-length data should be carefully chosen. For the first time, the first annual growth increment of Spondyliosoma cantharus was validated and several growth functions were applied, in order to find the best growth model. S. cantharus specimens ranged from 2.1 to 38 cm total length and were aged from 0 to 17 years. For the growth functions applied, the hyperbolic modifications of von Bertalanffy curve showed the best fit to the data. Under this model, a change in growth occurs at 8 years, which corresponds to the average age for sex reversal in the species. Estimated total mortality was similar for the two years studied, varying between 0.65 and 0.69 year−1. Natural mortality was estimated by the updated Hoenignls t max-based estimator and the Paulynls-T estimator, ranged between 0.26 and 0.37 year−1. Fishing mortality (0.28–0.43 year−1) and exploitation rate (0.43–0.62) were relatively high, indicating that although the species is not a main target its management needs careful attention.

Keywords

Growth modelling Hermaphroditism Mortality Von Bertalanffy curve modifications 

Notes

Acknowledgements

The authors are grateful to Dr. Ricardo Lemos for his help on applying the 5VBGF and to the two anonymous reviewers whose valuable comments and suggestions help to improve this manuscript. This study was partially supported by Fundação para a Ciência e a Tecnologia (FCT), through the strategic project UID/MAR/04292/2013 granted to MARE and the grants attributed to Ana Rita Vieira (SFRH/BD/73506/2010), Vera Sequeira (SFRH/BPD/70200/2010), Rafaela Barros Paiva (SFRH/BD/80268/2011), and Ana Neves (SFRH/BD/92769/2013).

References

  1. Abecasis, D., L. Bentes, R. Coelho, C. Correia, P. G. Lino, P. Monteiro, J. M. S. Gonçalves, J. Ribeiro & K. Erzini, 2008. Ageing seabreams: a comparative study between scales and otoliths. Fisheries Research 89: 37–48.CrossRefGoogle Scholar
  2. Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle. In Petrov, B. N. & F. Csaki (eds), Second International Symposium on Information Theory. Akademiai Kiado, Budapest: 267–281.Google Scholar
  3. Alonzo, S. H. & M. Mangel, 2004. The effects of size-selective fisheries on the stock dynamics of and sperm limitation in sex changing fish: California sheephead (Semicossyphus pulcher) as an illustrative example. Fishery Bulletin 102: 1–13.Google Scholar
  4. Alós, J., M. Palmer, S. Balle, A. M. Grau & B. Morales-Nin, 2010. Individual growth pattern and variability in Serranus scriba: a Bayesian analysis. ICES Journal of Marine Science 67: 502–512.CrossRefGoogle Scholar
  5. Baty, F., C. Ritz, S. Charles, M. Brutsche, J.-P. Flandrois & M.-L. Delignette-Muller, 2015. A toolbox for nonlinear regression in R: the package nlstools. Journal of Statistical Software 66: 1–21.CrossRefGoogle Scholar
  6. Bauchot, M. L. & J. C. Hureau, 1986. Sparidae. In Whitehead, P. J. P., M. L. Bauchot, J. C. Hureau, J. Nielsen & E. Tortonese (eds), Fishes of the North-Eastern Atlantic and the Mediterranean. UNESCO, Paris: 883–907.Google Scholar
  7. Beamish, R. J. & D. A. Fournier, 1981. A method for comparing the precision of a set of age determinations. Canadian Journal of Fisheries and Aquatic Sciences 38: 982–983.CrossRefGoogle Scholar
  8. Bilge, G., S. Yapıcı, H. Filiz & H. Cerim, 2014. Weight–length relations for 103 fish species from the southern Aegean Sea, Turkey. Acta Ichthyologica Et Piscatoria 44: 263–269.CrossRefGoogle Scholar
  9. Bradai, M. N., M. Ghorbel, O. Jarboui & A. Bouain, 1998. Croissance de trois espèces de sparidés: Diplodus puntazzo, Diplodus vulgaris et Spondyliosoma cantharus du golfe de Gabès (Tunisie). In Lleonart, J. (ed.), Dynamique des populations marines, Vol. 35. Zaragoza: CIHEAM, Cahiers Options Méditerranéennes: 51–56.Google Scholar
  10. Boughamou, N., F. Derbal & M. H. Kara, 2015. Age, growth and reproduction of the black sea bream Spondyliosoma cantharus (Linnaeus, 1758) (Sparidae) in the Gulf of Annaba (Algeria). Journal of Applied Ichthyology 31: 773–779.CrossRefGoogle Scholar
  11. Campana, S. E., 2001. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology 59: 197–242.CrossRefGoogle Scholar
  12. Campana, S. E., M. C. Annand & J. I. McMillan, 1995. Graphical and statistical methods for determining the consistency of age determinations. Transactions of the American Fisheries Society 124: 131–138.CrossRefGoogle Scholar
  13. Campos, A., P. Fonseca, T. Fonseca & J. Parente, 2007. Definition of fleet components in the Portuguese bottom trawl fishery. Fisheries Research 83: 185–191.CrossRefGoogle Scholar
  14. Chapman, D. G. & D. S. Robson, 1960. The analysis of a catch curve. Biometrics 16: 354–368.CrossRefGoogle Scholar
  15. Charnov, E. L., 2008. Fish growth: Bertalanffy k is proportional to reproductive effort. Environmental Biology of Fishes 83: 185–187.CrossRefGoogle Scholar
  16. Chang, W. Y. B., 1982. A statistical method for evaluating the reproducibility of age determination. Canadian Journal of Fisheries and Aquatic Sciences 39: 1208–1210.CrossRefGoogle Scholar
  17. Derbal, F., S. Madache, N. Boughamou & M. H. Kara, 2010. Lenght-weight Relationships and Reproduction of Three Coastal Sparidae (Diplodus cervinus cervinus, Boops boops, and Spondyliosoma cantharus) of the Eastern Coast of Algeria. In Ceccaldi, H.-J., I. Dekeyser, M. Girault & G. Stora (eds), Global Change: Mankind-Marine Environment Interactions, Proceedings of the 13th French-Japanese Oceanography Symposium: 367–369.Google Scholar
  18. DGRM, 2016. Tamanhos Mínimos. Direcção Geral de Recursos Naturais, Segurança e Serviços Marítimos. https://www.dgrm.mm.gov.pt/xeo/attachfileu.jsp?look_parentBoui=3200231&att_display=n&att_download=y. Accessed 27.02.17
  19. Dulčić, J. & M. K. Kraljević, 1996. Growth of the black sea bream Spondyliosoma cantharus (L.) in the eastern middle Adriatic. Archive of Fishery and Marine Research 44: 279–293.Google Scholar
  20. Dunn, A., R. Francis & I. J. Doonan, 2002. Comparison of the Chapman-Robson and regression estimators of Z from catch-curve data when non-sampling stochastic error is present. Fisheries Research 59: 149–159.CrossRefGoogle Scholar
  21. Gayanilo, F. C., P. Sparre & D. Pauly, 2005. FAO-ICLARM Stock Assessment Tools II: User’s Guide. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
  22. Gislason, H., N. Daan, J. C. Rice & J. G. Pope, 2010. Size, growth, temperature and the natural mortality of marine fish. Fish and Fisheries 11: 149–158.CrossRefGoogle Scholar
  23. Gonçalves, J. M. S. & K. Erzini, 2000. The reproductive biology of Spondyliosoma cantharus (L.) from the SW Coast of Portugal. Scientia Marina 64: 403–411.CrossRefGoogle Scholar
  24. Gordo, L. S. & H. N. Cabral, 2001. The fish assemblage structure of a hydrologically altered coastal lagoon: the Óbidos lagoon (Portugal). Hydrobiologia 459: 125–133.CrossRefGoogle Scholar
  25. Higgins, R. M., E. Diogo & J. Isidro, 2015. Modelling growth in fish with complex life histories. Reviews in Fish Biology and Fisheries 25: 449–462.CrossRefGoogle Scholar
  26. Hoenig, J. M., M. J. Morgan & C. A. Brown, 1995. Analysing differences between two age determination methods by tests of symmetry. Canadian Journal of Fisheries and Aquatic Sciences 52: 364–368.CrossRefGoogle Scholar
  27. Hoffman, S. G., M. P. Schildauer & R. R. Warner, 1985. The costs of changing sex and the ontogeny of males under contest competition for mates. Evolution 39: 915–927.CrossRefPubMedGoogle Scholar
  28. Huse, I., A. C. Gundersen & K. H. Nedreaas, 1999. Relative selectivity of Greenland halibut (Reinhardtius hippoglossoides, Walbaum) by trawls, longlines and gillnets. Fisheries Research 44: 75–93.CrossRefGoogle Scholar
  29. Johnson, K. F., C. C. Monnahan, C. R. McGilliard, K. A. Vert-pre, S. C. Anderson, C. J. Cunningham, F. Hurtado-Ferro, R. R. Licandeo, M. L. Muradian, K. Ono, C. S. Szuwalski, J. L. Valero, A. R. Whitten & A. E. Punt, 2015. Time-varying natural mortality in fisheries stock assessment models: identifying a default approach. ICES Journal of Marine Science 72: 137–150.CrossRefGoogle Scholar
  30. King, M., 2007. Bhattacharya Plots. In: Fisheries Biology, Assessment and Management, 2nd edn, Blackwell Publishing Ltd., Oxford, UK: 368–371.Google Scholar
  31. Labropoulou, M. & C. Papaconstantinou, 2000. Comparison of otolith growth and somatic growth in two macrourid fishes. Fisheries Research 46: 177–188.CrossRefGoogle Scholar
  32. Lorenzo, J. M. & J. M. G. Pajuelo, 1997. Edad y crecimiento de la chopa Spondyliosoma cantharus (Linnaeus, 1758) (Sparidae) en las islas Canarias. Boletín. Instituto Español de Oceanografía 13: 67–73.Google Scholar
  33. Maunder, M. N. & K. R. Piner, 2015. Contemporary fisheries stock assessment: many issues still remain. ICES Journal of Marine Science 72: 7–18.CrossRefGoogle Scholar
  34. Minte-Vera, C. V., M. N. Maunder, J. M. Casselman & S. E. Campana, 2016. Growth functions that incorporate the cost of reproduction. Fisheries Research 180: 31–44.CrossRefGoogle Scholar
  35. Morales-Nin, B., 2001. Mediterranean deep-water fish age determination and age validation: the state of the art. Fisheries Research 51: 377–383.CrossRefGoogle Scholar
  36. Mouine-Oueslati, N., R. Ahlem, C. Ines, M.-H. Ktari & N. Chakroun-Marzouk, 2015. Age and growth of Spondyliosoma cantharus (Sparidae) in the Gulf of Tunis. Scientia Marina 79: 319–324.CrossRefGoogle Scholar
  37. Murphy, M. D., 1997. Bias in Chapman-Robson and least squares estimators of mortality rates for steady state populations. Fishery Bulletin 95: 863–868.Google Scholar
  38. Ogle, D.H., 2016. FSA: Fisheries Stock Analysis. R package version 0.8.8.Google Scholar
  39. Pajuelo, J. G. & J. M. Lorenzo, 1999. Life history of black seabream Spondyliosoma cantharus (Linnaeus, 1758), off the Canary Islands, Central-east Atlantic. Environmental Biology of Fishes 54: 325–336.CrossRefGoogle Scholar
  40. Panfili, J. & B. Morales-Nin, 2002. Validation and verification methods. B. Semi-direct validation. In Panfili, J., H. Pontual, H. Troadec & P. J. Wright (eds), Manual of fish sclerochronology. Ifremer-lRD coedition, Brest, France: 129–133.Google Scholar
  41. Rasband, W.S., 1997–2016. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA. http://imagej.nih.gov/ij/
  42. Ricker, W. E., 1975. Computation and interpretation of biological statistics of fish populations. Bulletin of the Fisheries Research Board of Canada 191: 29–73.Google Scholar
  43. Samamé, M., 1977. Determinación de la edad y crecimiento de la sardine Sardinops sagax (J). Boletin del Instituto del Mar del Peru 3: 95–112.Google Scholar
  44. Soriano, M., J. Moreau, J. M. Hoenig & D. Pauly, 1992. New functions for the analysis of two-phase growth of juvenile and adult fishes, with application to Nile Perch. Transactions of the American Fisheries Society 121: 486–493.CrossRefGoogle Scholar
  45. Smith, M. W., A. Y. Then, C. Wor, G. Ralph, K. H. Pollock & J. M. Hoenig, 2012. Recommendations for catch-curve analysis. North American Journal of Fisheries Management 32: 956–967.CrossRefGoogle Scholar
  46. Then, A. Y., J. M. Hoenig, N. G. Hall & D. A. Hewitt, 2015. Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species. ICES Journal of Marine Science 72: 82–92.CrossRefGoogle Scholar
  47. Veiga, P., J. M. S. Gonçalves & K. Erzini, 2011. Short-term hooking mortality of three marine fish species (Sparidae) caught by recreational angling in the south Portugal. Fisheries Research 108: 58–64.CrossRefGoogle Scholar
  48. von Bertalanffy, L., 1938. A quantitative theory of organic growth (inquiries of growth laws II). Human Biology 10: 181–213.Google Scholar
  49. Zar, J. H., 1996. Biostatistical analysis, 3rd ed. Prentice Hall, Upper Saddle River.Google Scholar
  50. Zuur, G., R. J. Fryer, R. S. T. Ferro & T. Tokai, 2001. Modeling the size selectivities of a trawl codend and an associated square mesh panel. ICES Journal of Marine Science 58: 657–671.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Departamento de Biologia Animal, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  2. 2.MARE – Marine and Environmental Sciences Centre, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal

Personalised recommendations