Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Sediment distribution in shallow estuaries at fine scale: in situ evidence of the effects of three-dimensional structural complexity of mangrove pneumatophores

  • 415 Accesses

  • 5 Citations

Abstract

One of the main services offered by mangroves is their capacity for trapping sediment. We investigated how spatial complexity of pneumatophores of Avicennia marina may influence fine-scale sediment particle size distribution. Using realistic three-dimensional models captured from pneumatophore patches, indices of complexity (the area/volume ratio, the Getis-Ord Gi* statistic) were calculated to quantify mangrove root structural complexity in five 1 × 1 m2 plots. The complexity of pneumatophores in 16 0.25 × 0.25 m2 subplots in each of the 5 plots was measured and its relationship with the relative abundance of fine sediment particles (clay and silt, <63 µm) was assessed. Results showed the complexity of the neighbouring subplots in the direction of incoming water was a major factor driving the trapping of suspended silt and clay, thus underpinning the function of mangrove aboveground structures in the distribution of fine particles. This simple low-cost technique to measure the complexity of mangroves demonstrates how further investigations may quantify the relationship between this complexity and their capacity to trap sediment with data derived from actual real-world models rather than based on simplistic, simulated structures. This information will be valuable in guiding future efforts in mangrove rehabilitation and restoration.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bakker, W., C. Hulsbergen, P. Roelse, C. De Smit & J. Svasek, 1984. Permeable groynes: experiments and practice in the Netherlands. Coastal Engineering Proceedings 1.

  2. Bouma, T., L. Van Duren, S. Temmerman, T. Claverie, A. Blanco-Garcia, T. Ysebaert & P. Herman, 2007. Spatial flow and sedimentation patterns within patches of epibenthic structures: combining field, flume and modelling experiments. Continental Shelf Research 27: 1020–1045.

  3. Feagin, R., S. Lozada-Bernard, T. Ravens, I. Möller, K. Yeager & A. Baird, 2009. Does vegetation prevent wave erosion of salt marsh edges? Proceedings of the National Academy of Sciences of USA 106: 10109–10113.

  4. Ferrari, R., D. McKinnon, H. He, R. N. Smith, P. Corke, M. González-Rivero, P. J. Mumby & B. Upcroft, 2016. Quantifying multiscale habitat structural complexity: a cost-effective framework for underwater 3D modelling. Remote Sensing 8: 113.

  5. Fleming, I., A. G. Finstad, S. Einum, L. M. Sættem & B. A. Hellen, 2010. Spatial distribution of Atlantic salmon (Salmo salar) breeders: among-and within-river variation and predicted consequences for offspring habitat availability. Canadian Journal of Fisheries and Aquatic Sciences 67: 1993–2001.

  6. Furukawa, K. & E. Wolanski, 1996. Sedimentation in mangrove forests. Mangroves and Salt Marshes 1: 3–10.

  7. Furukawa, K., E. Wolanski & H. Mueller, 1997. Currents and sediment transport in mangrove forests. Estuarine, Coastal and Shelf Science 44: 301–310.

  8. Gedan, K. B., M. L. Kirwan, E. Wolanski, E. B. Barbier & B. R. Silliman, 2011. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Climatic Change 106: 7–29.

  9. Giri, C., E. Ochieng, L. L. Tieszen, Z. Zhu, A. Singh, T. Loveland, J. Masek & N. Duke, 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography 20: 154–159.

  10. Gruwez, V., B. Verheyen, P. Wauters & A. Bolle, 2014. 2DH morphodynamic time-dependent hindcast modelling of a groyne system in Ghana. Paper Presented at the 11th International Conference on Hydroscience and Engineering.

  11. Gu, Z.-P., R. Akahori & S. Ikeda, 2011. Study on the transport of suspended sediment in an open channel flow with permeable spur dikes. International Journal of Sediment Research 26: 96–111.

  12. Kamal, S., S. Y. Lee & J. Warnken, 2014. Investigating three-dimensional mesoscale habitat complexity and its ecological implications using low-cost RGB-D sensor technology. Methods in Ecology and Evolution 5: 845–853.

  13. Kathiresan, K., 2003. How do mangrove forests induce sedimentation? Revista de biologia tropical 51: 355–359.

  14. Krauss, K. W., J. A. Allen & D. R. Cahoon, 2003. Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests. Estuarine, Coastal and Shelf Science 56: 251–259.

  15. Kumara, M., L. Jayatissa, K. Krauss, D. Phillips & M. Huxham, 2010. High mangrove density enhances surface accretion, surface elevation change, and tree survival in coastal areas susceptible to sea-level rise. Oecologia 164: 545–553.

  16. Lee, S. Y., J. H. Primavera, F. Dahdouh-Guebas, K. McKee, J. O. Bosire, S. Cannicci, K. Diele, F. Fromard, N. Koedam, C. Marchand, I. Mendelssohn, N. Mukherjee & S. Record, 2014. Ecological role and services of tropical mangrove ecosystems: a reassessment. Global Ecology and Biogeography 23: 726–743.

  17. Liénard, J., K. Lynn, N. Strigul, B. K. Norris, D. Gatziolis, J. C. Mullarney, K. R. Bryan & S. M. Henderson, 2016. Efficient three-dimensional reconstruction of aquatic vegetation geometry: estimating morphological parameters influencing hydrodynamic drag. Estuarine, Coastal and Shelf Science 178: 77–85.

  18. Lovelock, C. E., D. R. Cahoon, D. A. Friess, G. R. Guntenspergen, K. W. Krauss, R. Reef, K. Rogers, M. L. Saunders, F. Sidik & A. Swales, 2015. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526: 559–563.

  19. Lyimo, T. & D. Mushi, 2007. Sulfide concentration and redox potential patterns in mangrove forests of Dar es Salaam: effects on Avicennia marina and Rhizophora mucronata seedling establishment. Western Indian Ocean Journal of Marine Science 4: 163–174.

  20. Lynch, J. C., J. R. Meriwether, B. A. McKee, F. Veraherrera & R. R. Twilley, 1989. Recent accretion in mangrove ecosystem based on Cs-137 and Pb-210. Estuaries 12: 284–299.

  21. Nagelkerken, I., A. M. De Schryver, M. C. Verweij, F. Dahdouh-Guebas, G. van der Velde & N. Koedam, 2010. Differences in root architecture influence attraction of fishes to mangroves: a field experiment mimicking roots of different length, orientation, and complexity. Journal of Experimental Marine Biology and Ecology 396: 27–34.

  22. Nepf, H. M., 2012. Flow and transport in regions with aquatic vegetation. Annual Review of Fluid Mechanics 44: 123–142.

  23. Nguyen, H. Y. T., D. M. Cao & K. Schmitt, 2013. Soil particle-size composition and coastal erosion and accretion study in Soc Trang Mangrove Forests. Journal of Coastal Conservation 17: 93–104.

  24. Ohira, W., K. Honda, M. Nagai & A. Ratanasuwan, 2013. Mangrove stilt root morphology modeling for estimating hydraulic drag in tsunami inundation simulation. Trees 27: 141–148.

  25. Ong, M. C., B. Y. Kamaruzzaman & M. S. Noor Azhar, 2012. Sediment characteristic studies in the surface sediment from Kemaman Mangrove Forest, Terengganu, Malaysia. Oriental Journal of Chemistry 28: 1639–1644.

  26. Phillips, D. H., M. P. Kumara, L. P. Jayatissa, K. W. Krauss & M. Huxham, 2017. Impacts of mangrove density on surface sediment accretion, belowground biomass and biogeochemistry in Puttalam Lagoon, Sri Lanka. Wetlands 1–13 (in press).

  27. Pielou, E., 1966. Shannon’s formula as a measure of specific diversity: its use and misuse. American Naturalist 100: 463–465.

  28. Quartel, S., A. Kroon, P. G. E. F. Augustinus, P. Van Santen & N. H. Tri, 2007. Wave attenuation in coastal mangroves in the Red River Delta, Vietnam. Journal of Asian Earth Sciences 29: 576–584.

  29. Rogers, K., N. Saintilan & H. Heijnis, 2005. Mangrove encroachment of salt marsh in Western Port Bay, Victoria: the role of sedimentation, subsidence, and sea level rise. Estuaries 28: 551–559.

  30. Scoffin, T. P., 1970. The trapping and binding of subtidal carbonate sediments by marine vegetation in Bimini Lagoon, Bahamas. Journal of Sedimentary Research 40: 249–273.

  31. Spenceley, A., 1977. The role of pneumatophores in sedimentary processes. Marine Geology 24: 31–37.

  32. Uijttewaal, W. S., 2005. Effects of groyne layout on the flow in groyne fields: laboratory experiments. Journal of Hydraulic Engineering 131: 782–791.

  33. Van Santen, P., P. G. E. F. Augustinus, B. M. Janssen-Stelder, S. Quartel & N. H. Tri, 2007. Sedimentation in an estuarine mangrove system. Journal of Asian Earth Sciences 29: 566–575.

  34. Warren, J. H. & A. J. Underwood, 1986. Effects of burrowing crabs on the topography of mangrove swamps in New South Wales. Journal of Experimental Marine Biology and Ecology 102: 223–235.

  35. Wolanski, E., 1992. Hydrodynamics of mangrove swamps and their coastal waters. Hydrobiologia 247: 141–161.

  36. Wolanski, E., 1995. Transport of sediment in mangrove swamps. Hydrobiologia 295: 31–42.

  37. Wolanski, E., N. N. Huan, N. H. Nhan & N. N. Thuy, 1996. Fine-sediment dynamics in the Mekong River Estuary, Vietnam. Estuarine, Coastal and Shelf Science 43: 565–582.

  38. Young, B. M. & E. L. Harvey, 1996. A spatial analysis of the relationship between mangrove (Avicennia marina var. australasica) physiognomy and sediment accretion in the Hauraki Plains, New Zealand. Estuarine, Coastal and Shelf Science 42: 231–246.

Download references

Acknowledgements

We thank the Catchment Management Unit of the City of Gold Coast for support during the field surveys. SK and MB were supported by Postgraduate Scholarships from Griffith University. SYL acknowledges financial support from the Urban Marine Fish Habitat Research Program of Queensland Fisheries.

Author information

Correspondence to Shing Yip Lee.

Additional information

Guest editors: K. W. Krauss, I. C. Feller, D. A. Friess & R. R. Lewis III / Causes and Consequences of Mangrove Ecosystem Responses to an Ever-Changing Climate

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kamal, S., Warnken, J., Bakhtiyari, M. et al. Sediment distribution in shallow estuaries at fine scale: in situ evidence of the effects of three-dimensional structural complexity of mangrove pneumatophores. Hydrobiologia 803, 121–132 (2017). https://doi.org/10.1007/s10750-017-3178-3

Download citation

Keywords

  • Mangrove
  • Particle size
  • Sediment trapping
  • Structural complexity
  • 3D models