, Volume 797, Issue 1, pp 199–213 | Cite as

Temporal and spatial variation in recreational catches of anadromous brown trout, Salmo trutta, in Norwegian rivers

  • Jaime Otero
  • Jan Henning L’Abée-Lund
  • Asbjørn Vøllestad
Primary Research Paper


Overall, it has been shown that production of diadromous fishes is declining within the North Atlantic basin reaching the lowest levels in recent years compared to their historic baselines. However, these decreases in abundance, ascribed to numerous factors, are species specific and might differ across each species’ distributional range. Here we used recreational angling catch data for anadromous brown trout Salmo trutta in multiple Norwegian rivers having relatively high annual reported catches to elucidate its spatio-temporal patterns since the late 1960s. Rivers lacking or having very low annual catch reports for various reasons were not included. The catches have increased at a rate of ~15% per decade though trends varied geographically with larger increases at northern latitudes and decreases at more southern latitudes. Larger catches were obtained at elevated levels of runoff during summer and early autumn, and at positive NAO phase during the year preceding the catch. Additionally, higher average catch and more pronounced increasing temporal trends in catches were obtained in larger rivers with shallower slopes, respectively. Furthermore, stronger relationships with runoff occurred in steeper rivers. Other factors such as Gyrodactylosis or fish farming seemed not to have detectable signals in the overall pattern of brown trout catches.


Brown trout Catches Discharge Sea surface temperature NAO Habitat characteristics Norway 



We acknowledge Stein Beldring and Sille Marie Myreng at Norwegian Water Resources and Energy Directorate for computing water discharges and glacier area, respectively. This study is part of the Norwegian Research Council Project no 183989/S30. J.O. acknowledges additional funding from the Norwegian Water Resources and Energy Directorate (NVE), and support by a ‘Junta para la Ampliación de Estudios’ fellowship (JAE-Doc programme 2011) from the CSIC and ESF. Three anonymous reviewers greatly improved earlier versions of this manuscript.

Supplementary material

10750_2017_3176_MOESM1_ESM.pdf (2.1 mb)
Supplementary material 1 (PDF 2104 kb)


  1. Aas, Ø., S. Einum, A. Klemetsen & J. Skurdal, 2011. Atlantic Salmon Ecology. Blackwell Publishing Ltd, Oxford.Google Scholar
  2. Alm, G., 1959. Connection between maturity, size and age in fishes. Report from the Institute of Freshwater Research. Drottninghold 40: 5–145.Google Scholar
  3. Almodóvar, A., G. G. Nicola, D. Ayllón & B. Elvira, 2012. Global warming threatens the persistence of Mediterranean brown trout. Global Change Biology 18: 1549–1560.CrossRefGoogle Scholar
  4. Beaugrand, G. & P. C. Reid, 2012. Relationships between North Atlantic salmon, plankton, and hydroclimatic change in the Northeast Atlantic. ICES Journal of Marine Science 69: 1549–1562.CrossRefGoogle Scholar
  5. Borgstrøm, R. & J. Museth, 2005. Accumulated snow and summer temperature – critical factors for recruitment to high mountain populations of brown trout (Salmo trutta L.). Ecology of Freshwater Fish 14: 375–384.CrossRefGoogle Scholar
  6. Cattanéo, F., N. Lamouroux, P. Breil & H. Capra, 2002. The influence of hydrological and biotic processes on brown trout (Salmo trutta) population dynamics. Canadian Journal of Fisheries and Aquatic Sciences 59: 12–22.CrossRefGoogle Scholar
  7. Collen, B., F. Whitton, E. E. Dyer, J. E. M. Baillie, N. Cumberlidge, W. R. T. Darwall, C. Pollock, N. I. Richman, A.-M. Soulsby & M. Böhm, 2014. Global patterns of freshwater species diversity, threat and endemism. Global Ecology and Biogeography 23: 40–51.CrossRefPubMedGoogle Scholar
  8. Costello, M. J., 2009. How sea lice from salmon farms may cause wild salmonid declines in Europe and North America and be a threat to fishes elsewhere. Proceedings of the Royal Society of London B 276: 3385–3394.CrossRefGoogle Scholar
  9. Eldøy, S. H., J. G. Davidsen, E. B. Thorstad, F. Whoriskey, K. Aarestrup, T. F. Næsje, L. Rønning, A. D. Sjursen, A. H. Rikardsen & J. V. Arnekleiv, 2015. Marine migration and habitat use of anadromous brown trout (Salmo trutta). Canadian Journal of Fisheries and Aquatic Sciences 72: 1366–1378.CrossRefGoogle Scholar
  10. Elliot, J. M. & J. A. Elliot, 2010. Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects of climate change. Journal of Fish Biology 77: 1793–1817.CrossRefGoogle Scholar
  11. Finstad, B. & P. A. Bjørn, 2011. Present status and implications of salmon lice on wild salmonids in Norwegian coastal zones. In Jones, S. & R. Beamish (eds), Salmon Lice: An Integrated Approach to Understanding Parasite Abundance and Distribution. Wiley, Oxford.Google Scholar
  12. Foldvik, A., S. Einum, A. G. Finstad & O. Ugedal, 2017. Linking watershed and microhabitat characteristics: effects on production of Atlantic salmonids (Salmo salar and Salmo trutta). Ecology of Freshwater Fish 26: 260–270.CrossRefGoogle Scholar
  13. Ford, J. S. & R. A. Myers, 2008. A global assessment of salmon aquaculture impacts on wild salmonids. PLoS Biology 6: e33.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fox, J., 2003. Effect displays in R for generalised linear models. Journal of Statistical Software 8(15): 1–27.CrossRefGoogle Scholar
  15. Friedland, K. D., J. C. MacLean, L. P. Hansen, A. J. Peyronnet, L. Karlsson, D. G. Reddin, N. Ó. Maoiléidigh & J. L. McCarthy, 2009. The recruitment of Atlantic salmon in Europe. ICES Journal of Marine Science 66: 289–304.CrossRefGoogle Scholar
  16. Friedland, K. D., B. V. Shank, C. D. Todd, P. McGinnity & J. A. Nye, 2014. Differential response of continental stock complexes of Atlantic salmon (Salmo salar) to the Atlantic Multidecadal Oscillation. Journal of Marine Systems 133: 77–87.CrossRefGoogle Scholar
  17. Halvorsen, M. & L. Jørgensen, 1996. Lake-use by juvenile Atlantic salmon (Salmo salar L.) and other salmonids in northern Norway. Ecology of Freshwater Fish 5: 28–36.CrossRefGoogle Scholar
  18. Hari, R. E., D. M. Livingstone, R. Siber, P. Burkhardt-Holm & H. Güttinger, 2006. Consequences of climatic change for water temperature and brown trout populations in Alpine rivers and streams. Global Change Biology 12: 10–26.CrossRefGoogle Scholar
  19. Harris, P. D., L. Bachmann & T. A. Bakke, 2011. The parasites and pathogens of the Atlantic salmon: Lessons from Gyrodactylus salaris. In Aas, Ø., E. S. A. Klemetsen & J. Skurdal (eds), Atlantic Salmon Ecology. Blackwell Publishing Ltd., Oxford.Google Scholar
  20. Harwood, A. J., N. B. Metcalfe, J. D. Armstrong & S. W. Griffiths, 2001. Spatial and temporal effects of interspecific competition between Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) in winter. Canadian Journal of Fisheries and Aquatic Sciences 58: 1133–1140.CrossRefGoogle Scholar
  21. Harwood, A. J., N. B. Metcalfe, S. W. Griffiths & J. D. Armstrong, 2002. Intra- and inter-specific competition for winter concealment habitat in juvenile salmonids. Canadian Journal of Fisheries and Aquatic Sciences 59: 1515–1523.CrossRefGoogle Scholar
  22. Hesthagen, T., B. M. Larsen & P. Fiske, 2011. Liming restores Atlantic salmon (Salmo salar) populations in acidified Norwegian rivers. Canadian Journal of Fisheries and Aquatic Sciences 68: 224–231.CrossRefGoogle Scholar
  23. Hindar, K., J. A. Hutchings, O. H. Diserud & P. Fiske, 2011. Stock, recruitment and exploitation. In Aas, Ø., E. S. A. Klemetsen & J. Skurdal (eds), Atlantic Salmon Ecology. Blackwell Publishing Ltd., Oxford.Google Scholar
  24. Hurrell, J. W., Y. Kushnir, G. Ottersen & M. Visbeck, 2003. An overview of the North Atlantic Oscillation. In: J. W. Hurrell, Y. Kushnir, G. Ottersen & M. Visbeck (eds), The North Atlantic Oscillation: Climatic Significance and Environmental Impact. Geophysical Monograph 134, American Geophysical Union, Washington D.C.Google Scholar
  25. Ibañez, F. & M. Etienne, 1992. Le filtrage des séries chronologiques par l’analyse en composantes principales de processus (ACPP). Journal de Recherche Océanographique 16: 27–33.Google Scholar
  26. ICES, 2013. Report of the workshop on sea trout (WKTRUTTA), 12–14 November, Copenhagen, Denmark. ICES CM 2013/SSGEF:15, 242 pp.Google Scholar
  27. ICES, 2015. Report of the working group on North Atlantic salmon (WGNAS), 17–26 March, Moncton, Canada. ICES CM 2015/ACOM:09, 332 pp.Google Scholar
  28. Jansen, P. A. & T. A. Bakke, 1995. Susceptibility of brown trout to Gyrodactylus salaris (Monogenea) under experimental conditions. Journal of Fish Biology 46: 415–422.CrossRefGoogle Scholar
  29. Jensen, A. J. & A. H. Rikardsen, 2008. Do northern riverine anadromous Arctic charr Salvelinus alpinus and sea trout Salmo trutta overwinter in estuarine and marine waters? Journal of Fish Biology 73: 1810–1818.CrossRefGoogle Scholar
  30. Jensen, A. J., B. Finstad, P. Fiske, N. A. Hvidsten, A. H. Rikardsen & L. Saksgård, 2012. Timing of smolt migration in sympatric populations of Atlantic salmon (Salmo salar), brown trout (Salmo trutta), and Arctic char (Salvelinus alpinus). Canadian Journal of Fisheries and Aquatic Sciences 69: 711–723.CrossRefGoogle Scholar
  31. Jensen, J. L. A., A. H. Rikardsen, E. B. Thorstad, A. H. Suhr, J. G. Davidsen & R. Primicerio, 2014. Water temperatures influence the marine area use of Salvelinus alpinus and Salmo trutta. Journal of Fish Biology 84: 1640–1653.CrossRefPubMedGoogle Scholar
  32. Jonsson, N. & B. Jonsson, 2002. Migration of anadromous brown trout Salmo trutta in a Norwegian river. Freshwater Biology 47: 1391–1401.CrossRefGoogle Scholar
  33. Jonsson, B. & N. Jonsson, 2009a. A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow. Journal of Fish Biology 75: 2381–2447.CrossRefPubMedGoogle Scholar
  34. Jonsson, B. & N. Jonsson, 2009b. Migratory timing, marine survival and growth of anadromous brown trout Salmo trutta in the River Imsa, Norway. Journal of Fish Biology 74: 621–638.CrossRefPubMedGoogle Scholar
  35. Jonsson, B. & N. Jonsson, 2011. Ecology of Atlantic Salmon and Brown Trout. Habitat as a Template for Life Histories. Springer, New York.CrossRefGoogle Scholar
  36. Jonsson, B., N. Jonsson, E. Brodtkorb & P.-J. Ingebrigtsen, 2001. Life-history traits of brown trout vary with size of small streams. Functional Ecology 15: 310–317.CrossRefGoogle Scholar
  37. Klemetsen, A., P.-A. Amundsen, J. B. Dempson, B. Jonsson, N. Jonsson, M. F. O’Connell & E. Mortensen, 2003. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecology of Freshwater Fish 12: 1–59.CrossRefGoogle Scholar
  38. Kovach, R. P., C. C. Muhlfeld, R. Al-Chokhachy, J. B. Dunham, B. H. Letcher & J. L. Kershner, 2016. Impacts of climatic variation on trout: a global synthesis and path forward. Reviews in Fish Biology and Fisheries 26: 135–151.CrossRefGoogle Scholar
  39. L’Abée-Lund, J. H. & L. A. Vøllestad, 2017. Life history plasticity in anadromous brown trout: a Norwegian perspective. In: J. Lobón-Cerviá & N. Sanz (eds), Brown trout: biology, ecology and management. Blackwell Publishing Ltd., Oxford.Google Scholar
  40. L’Abée-Lund, J. H., L. A. Vøllestad & S. Beldring, 2004. Spatial and temporal variation in the grilse proportion of Atlantic salmon in Norwegian rivers. Transactions of the American Fisheries Society 133: 743–761.CrossRefGoogle Scholar
  41. Legendre, P. & L. Legendre, 1998. Numerical ecology, 2nd ed. Elsevier Science, Amsterdam.Google Scholar
  42. Limburg, K. E. & J. R. Waldman, 2009. Dramatic declines in North Atlantic diadromous fishes. BioScience 59: 955–965.CrossRefGoogle Scholar
  43. Lobón-Cerviá, J., 2009a. Why, when and how do fish populations decline, collapse and recover? The example of brown trout (Salmo trutta) in Rio Chaballos (northwestern Spain). Freshwater Biology 54: 1149–1162.CrossRefGoogle Scholar
  44. Lobón-Cerviá, J., 2009b. Recruitment as a driver of production dynamics in stream-resident brown trout (Salmo trutta). Freshwater Biology 54: 1692–1704.CrossRefGoogle Scholar
  45. Lousion, M. J. & R. S. Stelzer, 2016. Use of first-order tributaries by brown trout (Salmo trutta) as nursery habitat in a cold water stream network. Ecology of Freshwater Fish 25: 133–140.CrossRefGoogle Scholar
  46. Mant, R. C., D. L. Jones, B. Reynolds, S. J. Ormerod & A. S. Pullin, 2013. A systematic review of the effectiveness of liming to mitigate impacts of river acidification on fish and macro-invertebrates. Environmental Pollution 179: 285–293.CrossRefPubMedGoogle Scholar
  47. McGregor, G., G. E. Petts, A. M. Gurnell & A. M. Milner, 1995. Sensitivity of alpine stream ecosystems to climate change and human impacts. Aquatic Conservation: Marine and Freshwater Ecosystems 5: 233–247.CrossRefGoogle Scholar
  48. Nicola, G. G., A. Almodóvar & B. Elvira, 2009. Influence of hydrologic attributes on brown trout recruitment in low-latitude range margins. Oecologia 160: 515–524.CrossRefPubMedGoogle Scholar
  49. Otero, J., A. J. Jensen, J. H. L’Abée-Lund, N. C. Stenseth, G. O. Storvik & L. A. Vøllestad, 2011. Quantifying the ocean, freshwater and human effects on year-to-year variability of one-sea-winter Atlantic salmon using multiple long time series from Norwegian rivers. PLoS ONE 6: e24005.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Pinheiro, J. C. & D. M. Bates, 2000. Mixed-effects models in S and S-PLUS. Springer, New York.CrossRefGoogle Scholar
  51. Quinn, T. P., 2005. The Behavior and Ecology of Pacific Salmon and Trout. University of Washington Press, Seattle, WA.Google Scholar
  52. R Development Core Team, 2016. R: A language and environment for statistical computing. In: R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0,
  53. Rosseland, B. O. & F. Kroglund, 2011. Lessons from acidification and pesticides. In Aas, Ø., E. S. A. Klemetsen & J. Skurdal (eds), Atlantic Salmon Ecology. Blackwell Publishing Ltd., Oxford.Google Scholar
  54. Sægrov, H., K. Urdal, B. A. Hellen, S. Kalas & S. J. Saltveit, 2001. Estimating carrying capacity and presmolt production of Atlantic salmon (Salmo salar) and anadromous brown trout (Salmo trutta) in west Norwegian rivers. Nordic Journal of Freshwater Research 75: 99–108.Google Scholar
  55. Skaala, Ø., S. Kålås & R. Borgstrøm, 2014. Evidence of salmon lice-induced mortality of anadromous brown trout (Salmo trutta) in the Hardangerfjord, Norway. Marine Biology Research 10: 279–288.CrossRefGoogle Scholar
  56. Stahl, K., H. Hisdal, J. Hannaford, L. M. Tallaksen, H. A. J. van Lanen, E. Sauquet, S. Demuth, M. Fendekova & J. Jódar, 2010. Streamflow trends in Europe: evidence from a dataset of near-natural catchments. Hydrology and Earth System Sciences 14: 2367–2382.CrossRefGoogle Scholar
  57. Stenseth, N. C., G. Ottersen, J. W. Hurrell, A. Mysterud, M. Lima, K.-S. Chan, N. G. Yoccoz & B. Ådlandsvik, 2003. Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Niño Southern Oscillation and beyond. Proceedings of the Royal Society of London B 270: 2087–2096.CrossRefGoogle Scholar
  58. Straile, D., D. M. Livingstone, G. A. Weyhenmeyer & D. G. George, 2003. The response of freshwater ecosystems to climate variability associated with the North Atlantic Oscillation. In: J. W. Hurrell, Y. Kushnir, G. Ottersen & M. Visbeck (eds), The North Atlantic Oscillation: Climatic Significance and Environmental Impact. Geophysical Monograph 134, American Geophysical Union, Washington D.C.Google Scholar
  59. Thorstad, E. B., F. Økland, K. Aarestrup & T. G. Heggberget, 2008. Factors affecting the within-river spawning migration of Atlantic salmon, with emphasis on human impacts. Reviews in Fish Biology and Fisheries 18: 345–371.CrossRefGoogle Scholar
  60. Thorstad, E. B., C. D. Todd, I. Uglem, P. A. Bjørn, P. G. Gargan, K. W. Vollset, E. Halttunen, S. Kålås, M. Berg & B. Finstad, 2015. Effects of salmon lice Lepeophtheirus salmonis on wild sea trout Salmon trutta – a literature review. Aquaculture Environment Interactions 7: 91–113.CrossRefGoogle Scholar
  61. Thorstad, E. B., C. D. Todd, I. Uglem, P. A. Bjørn, P. G. Gargan, K. W. Vollset, E. Halttunen, S. Kålås, M. Berg & B. Finstad, 2016. Marine life of sea trout. Marine Biology 163: 47.CrossRefGoogle Scholar
  62. van Etten, J., 2015. gdistance: Distances and routes on geographical grids. R package version 1.1.-9.
  63. Vøllestad, L. A., D. Hirst, J. H. L’Abée-Lund, J. D. Armstrong, J. C. Maclean, A. Youngson & N. C. Stenseth, 2009. Divergent trends in anadromous salmonid populations in Norwegian and Scottish rivers. Proceedings of the Royal Society of London B 276: 1021–1027.CrossRefGoogle Scholar
  64. Vollset, K. W., R. I. Krontveit, P. A. Jansen, B. Finstad, B. T. Barlaup, O. T. Skilbrei, M. Krkošek, P. Romunstad, A. Aunsmo, A. J. Jensen & I. Dohoo, 2016. Impacts of parasites on marine survival of Atlantic salmon: a meta-analysis. Fish and Fisheries 17: 714–730.CrossRefGoogle Scholar
  65. Winfield, I. J., J. Hateley, J. M. Fletcher, J. B. James, C. W. Bean & P. Clabburn, 2010. Population trends of Arctic charr (Salvelinus alpinus) in the UK: assessing the evidence for a widespread decline in response to climate change. Hydrobiologia 650: 55–65.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES)University of OsloOsloNorway
  2. 2.Instituto de Investigaciones Marinas (IIM-CSIC)VigoSpain
  3. 3.Norwegian Water Resources and Energy Directorate (NVE)OsloNorway

Personalised recommendations