Advertisement

Hydrobiologia

, Volume 797, Issue 1, pp 183–198 | Cite as

The role of nutrient enrichment in the invasion process in intertidal rock pools

  • Raquel Vieira
  • Isabel Sousa Pinto
  • Francisco Arenas
Primary Research Paper

Abstract

Anthropogenic-mediated disturbances can induce major effects on the structure and functioning of natural systems. Understanding how stressors jointly interact to impact ecosystems has become a central interest to ecological researchers. In this study, we investigated the potential synergies between two recognised threats to the marine environment: eutrophication and biological invasions. Coastal eutrophication is usually regarded as a local stressor resulting from inland agricultural and industrial runoffs. Biological invasions are considered a global threat to coastal ecosystems, mainly derived from the increase of the spatial scale of human activities. We carried out an experimental study to investigate how nutrient supply affected the invasion success of two introduced seaweeds widely recognised as highly invasive species, Sargassum muticum and Grateloupia turuturu. In our study, we seeded experimental macroalgae assemblages with propagules from these two invaders, which were afterwards placed in rock pools under two different nutrient conditions. Results suggested that besides species-specific differences, nutrients promoted the establishment of these two introduced seaweeds. Also, the results from our structural and functional studies showed that functional impacts by invaders may occur even before structural effects are detected in the invaded communities. Even in the absence of large structural impacts associated with the invasion of S. muticum, functional effects were obvious for this species. The assemblages initially seeded with S. muticum presented higher rates of productivity and higher photosynthetic efficiency compared to the other treatments.

Keywords

Sargassum muticum Grateloupia turuturu Eutrophication Invasive seaweeds Invasion impact Rocky shores 

Notes

Acknowledgements

RV was supported by funds from the Fundação para a Ciência e Tecnologia (FCT) SFRH/BD/74266/2010. FA and ISP were funded by the European Regional Development Fund (ERDF) through the ‘Programa Operacional Factores de Competitividade’ (POFC-COMPETE) within the ‘Quadro de Referência Estratégico Nacional (QREN) and PEst-C/MAR/LA0015/2011 (by ERDF through the COMPETE Program and national FCT funds). Additional funding was obtained from FCT project CLEF (PTDC/AAC-AMB/102866/2008) and the Framework of the Structured Program of R&D&I INNOVMAR - Innovation and Sustainability in the Management and Exploitation of Marine Resources (Reference NORTE-01-0145-FEDER-000035), namely within the Research Line ECOSERVICES, supported by the Northern Regional Operational Programme (NORTE2020), through the European Regional Development Fund (ERDF).

References

  1. Anderson, M. J., 2001. Permutation tests for univariate or multivariate analysis of variance and regression. Canadian Journal of Fisheries and Aquatic Sciences 58(3): 626–639.CrossRefGoogle Scholar
  2. Araújo, R., I. Sousa-Pinto, I. Barbara & V. Quintino, 2006. Macroalgal communities of intertidal rock pools in the northwest coast of Portugal. Acta Oecologica 30: 192–202.CrossRefGoogle Scholar
  3. Araújo, R., J. Violante, R. Pereira, H. Abreu, F. Arenas & I. Sousa-Pinto, 2011. Distribution and population dynamics of the introduced seaweed Grateloupia turuturu (Halymeniaceae, Rhodophyta) along the Portuguese coast. Phycologia 50: 392–402.CrossRefGoogle Scholar
  4. Arenas, F., C. Fernandez, J. M. Rico, E. Fernandez & D. Haya, 1995. Growth and reproductive strategies of Sargassum muticum (Yendo) Fensholt and Cystoseira nodicaulis (Whit) Roberts. Scientia Marina 59: 1–8.Google Scholar
  5. Arenas, F., I. Sánchez, S. J. Hawkins & S. R. Jenkins, 2006. The invasibility of marine algal assemblages: role of functional diversity and identity. Ecology 87: 2851–2861.CrossRefPubMedGoogle Scholar
  6. Arenas, F., F. Rey & I. S. Pinto, 2009. Diversity effects beyond species richness: evidence from intertidal macroalgal assemblages. Marine Ecology Progress Series 381: 99–108.CrossRefGoogle Scholar
  7. Bates, D., M. Maechler, B. Bolker & S. C. Walker, 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67(1): 1–48.CrossRefGoogle Scholar
  8. Benedetti-Cecchi, L., 2000. Priority effects, taxonomic resolution, and the prediction of variable patterns of colonisation of algae in littoral rock pools. Oecologia 123: 265–274.CrossRefPubMedGoogle Scholar
  9. Bertocci, I., R. Araújo, M. Incera, F. Arenas, R. Pereira, H. Abreu, K. Larsen & I. Sousa-Pinto, 2012. Benthic assemblages of rock pools in northern Portugal: seasonal and between-pool variability. Scientia Marina 76: 781–789.Google Scholar
  10. Bertocci, I., Godino J. Dominguez, C. Freitas, M. Incera, R. Araújo, A. Bio, F. Arenas, I. Sousa-Pinto, P. A. Reis & R. Dominguez, 2015. The regime of climate-related disturbance and nutrient enrichment modulate macroalgal invasions in rockpools. Biological Invasions 17: 133–147.CrossRefGoogle Scholar
  11. Bokn, T. L., C. M. Duarte, M. F. Pedersen, N. Marba, F. E. Moy, C. Barron, B. Bjerkeng, J. Borum, H. Christie, S. Engelbert, F. L. Fotel, E. E. Hoell, R. Karez, K. Kersting, P. Kraufvelin, C. Lindblad, M. Olsen, K. A. Sanderud, U. Sommer & K. Sorensen, 2003. The response of experimental rocky shore communities to nutrient additions. Ecosystems 6: 577–594.CrossRefGoogle Scholar
  12. Britton-Simmons, K. H. & K. C. Abbott, 2008. Short- and long-term effects of disturbance and propagule pressure on a biological invasion. Journal of Ecology 96: 68–77.CrossRefGoogle Scholar
  13. Burke, M. J. W. & J. P. Grime, 1996. An experimental study of plant community invasibility. Ecology 77: 776–790.CrossRefGoogle Scholar
  14. Cabioch, J., A. Castric-Fey, M. T. L’Hardy-Halos & A. Rio, 1997. Grateloupia doryphora et Grateloupia filicina var. luxurians (Rodophyta, Halymeniaceae) sur les côtes de Bretagne (France). Cryptogamie, Algologie 18: 117–137.Google Scholar
  15. Cacabelos, E., C. Olabarria, M. Incera & J. S. Troncoso, 2010. Do grazers prefer invasive seaweeds? Journal of Experimental Marine Biology and Ecology 393(1–2): 182–187.CrossRefGoogle Scholar
  16. Cacabelos, E., C. Olabarria, R. M. Viejo, M. Rubal, P. Veiga, M. Incera, I. Gestoso, F. Vaz-Pinto, A. Mejia, A. H. Engelen & F. Arenas, 2013. Invasion of Sargassum muticum in intertidal rockpools: patterns along the Atlantic Iberian Peninsula. Marine Environmental Research 90: 18–26.CrossRefPubMedGoogle Scholar
  17. Carnell, P. E. & M. J. Keough, 2014. Spatially variable synergistic effects of disturbance and additional nutrients on kelp recruitment and recovery. Oecologia 175: 409–416.CrossRefPubMedGoogle Scholar
  18. Ceccherelli, G. & F. Cinelli, 1997. Short-term effects of nutrient enrichment of the sediment and interactions between the seagrass Cymodocea nodosa and the introduced green alga Caulerpa taxifolia in a Mediterranean bay. Journal of Experimental Marine Biology and Ecology 217: 165–177.CrossRefGoogle Scholar
  19. Critchley, A. T., 1983. The establishment and increase of Sargassum muticum (Yendo) Fensholt populations within the solent area of Southern Britain. An investigation of the increase in canopy cover of the alga at low water. Botanica Marina 26: 547–552.Google Scholar
  20. D’Archino, R., W. A. Nelson & G. C. D. Zuccarello, 2007. Invasive marine red alga introduced to New Zealand water: first record of Grateloupia turuturu (Halymeniaceae, Rhodophyta). New Zeland Journal of Marine and Freshwater Research 41: 35–42.CrossRefGoogle Scholar
  21. Davis, M. A. & K. Thompson, 2000. Eight ways to be a colonizer; two ways to be an invader: a proposed nomenclature for invasion ecology. Bulletin of the Ecological Society of America 81: 226–230.Google Scholar
  22. Davis, M. A., K. J. Wrage & P. B. Reich, 1998. Competition between tree seedlings and herbaceous vegetation: support for a theory of resource supply and demand. Journal of Ecology 86: 652–661.CrossRefGoogle Scholar
  23. Dethier, M. N., E. S. Graham, S. Cohen & L. M. Tear, 1993. Visual versus random-point percent cover estimations: ‘objective’ is not always better. Marine Ecology Progress Series 96: 93–100.CrossRefGoogle Scholar
  24. Deysher, L. E. & T. A. Norton, 1982. Dispersal and colonization in Sargassum muticum (Yendo) Fensholt. Journal of Experimental Marine Biology and Ecology 56(2–3): 179–195.Google Scholar
  25. Elser, J. J., M. E. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Ngai, E. W. Seabloom, J. B. Shurin & J. E. Smith, 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10(12): 1135–1142.CrossRefPubMedGoogle Scholar
  26. Engelen, A. H., A. Serebryakova, P. Ang, K. Britton-Simmons, F. Mineur, M. Pedersen, F. Arenas, C. Fernández, H. Steen, R. Svenson, H. Pavia, G. Toth, F. Viard & R. Santos, 2015. Circumglobal invasion by the brown seaweed Sargassum muticum. Oceanography and Marine Biology: Annual Reviews 53: 81–126.Google Scholar
  27. Fleishman, E., Nally R. Mac & D. D. Murphy, 2005. Relationships among non-native plants, diversity of plants and butterflies, and adequacy of spatial sampling. Biological Journal of the Linnean Society 85: 157–166.CrossRefGoogle Scholar
  28. Fong, P., J. Fong & C. Fong, 2003. Growth, nutrient storage, and release of DON by Enteromorpha intestinalis in response to pulses of nitrogen and phosphorus. Aquatic Botany 78: 83–95.CrossRefGoogle Scholar
  29. Gennaro, P. & L. Piazzi, 2011. Synergism between two anthropic impacts: Caulerpa racemosa var. cylindracea invasion and seawater nutrient enrichment. Marine Ecology Progress Series 427: 59–70.CrossRefGoogle Scholar
  30. Gennaro, P. & L. Piazzi, 2014. The indirect role of nutrients in enhancing the invasion of Caulerpa racemosa var cylindracea. Biological Invasions 16(8): 1709–1717.CrossRefGoogle Scholar
  31. Gennaro, P., L. Piazzi, E. Persia & S. Porrello, 2015. Nutrient exploitation and competition strategies of the invasive seaweed Caulerpa cylindracea. European Journal of Phycology 50(4): 384–394.CrossRefGoogle Scholar
  32. Gray, J. S., Wu R Shiu-sun & Y. Y. Or, 2002. Effects of hypoxia and organic enrichment on the coastal marine environment. Marine Ecology Progress Series 238: 249–279.CrossRefGoogle Scholar
  33. Griffin, J. N., V. Méndez, A. F. Johnson, S. R. Jenkins & A. Foggo, 2009. Functional diversity predicts overyielding effect of species combination on primary productivity. Oikos 118: 37–44.CrossRefGoogle Scholar
  34. Gross, K., G. G. Mittelbach & H. L. Reynolds, 2005. Grassland invasibility and diversity: responses to nutrients, seed input, and disturbance. Ecology 86: 476–486.CrossRefGoogle Scholar
  35. Halpern, B. S., S. Walbridge, K. A. Selkoe, C. V. Kappel, F. Micheli, C. D’Agrosa, J. F. Bruno, K. S. Casey, C. Ebert, H. E. Fox, R. Fujita, D. Heinemann, H. S. Lenihan, E. M. P. Madin, M. T. Perry, E. R. Selig, M. Spalding, R. Steneck & R. Watson, 2008. A global map of human impact on marine ecosystems. Science 319: 948–952.CrossRefPubMedGoogle Scholar
  36. Harlin, M. M. & M. Villalard-Bohnsack, 2001. Seasonal dynamics and recruitment strategies of the invasive seaweed Grateloupia doryphora (Halymeniaceae, Rhodophyta) in Narragansett Bay and Rhode Island Sound, Rhode Island, USA. Phycologia 40: 468–474.CrossRefGoogle Scholar
  37. Hobbs, R. J. & L. F. Huenneke, 1992. Disturbance, diversity, and invasion: implications for conservation. Conservation Biology 6: 324–337.CrossRefGoogle Scholar
  38. Howarth, R. W. & R. Marino, 2006. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnology and Oceanography 51: 364–376.CrossRefGoogle Scholar
  39. Incera, M., C. Olabarria, E. Cacabelos, J. Cesar & J. S. Troncoso, 2011. Distribution of Sargassum muticum on the North West coast of Spain: relationships with urbanization and community diversity. Continental Shelf Research 31: 488–495.CrossRefGoogle Scholar
  40. Kraufvelin, P., 2007. Responses to nutrient enrichment, wave action and disturbance in rocky shore communities. Aquatic Botany 87(4): 262–274.CrossRefGoogle Scholar
  41. Lambrinos, J. G., 2002. The variable invasive success of Cortaderia species in a complex landscape. Ecology 83: 518–529.CrossRefGoogle Scholar
  42. Liao, C., R. Peng, Y. Luo, X. Zhou, X. Wu, C. Fang, J. Chen & B. Li, 2008. Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytologist 177(3): 706–714.CrossRefPubMedGoogle Scholar
  43. Lodge, D. M., 1993. Biological invasions: lessons for ecology. Trends in Ecology & Evolution 8: 133–137.CrossRefGoogle Scholar
  44. Lyons, D. A., C. Arvanitidis, A. J. Blight, E. Chatzinikolaou, T. Guy-Haim, J. Kotta, H. Orav-Kotta, A. M. Queiros, G. Rilov, P. J. Somerfield & T. P. Crowe, 2014. Macroalgal blooms alter community structure and primary productivity in marine ecosystems. Global Change Biology 20: 2712–2724.CrossRefPubMedGoogle Scholar
  45. Maggi, E., L. Benedetti-Cecchi, A. Castelli, E. Chatzinikolaou, T. P. Crowe, G. Ghedini, J. Kotta, D. A. Lyons, C. Ravaglioli, G. Rilov, L. Rindi, F. Bulleri & H. MacIsaac, 2015. Ecological impacts of invading seaweeds: a meta-analysis of their effects at different trophic levels. Diversity and Distributions 21: 1–12.CrossRefGoogle Scholar
  46. Migne, A., D. Davoult, N. Spilmont, D. Menu, G. Boucher, J. P. Gattuso & H. Rybarczyk, 2002. A closed-chamber CO2-flux method for estimating intertidal primary production and respiration under emersed conditions. Marine Biology 140: 865–869.CrossRefGoogle Scholar
  47. Monteiro, C., A. H. Engelen, E. A. Serrão & R. Santos, 2009a. Habitat differences in the timing of reproduction of the invasive alga Sargassum muticum (Phaeophyta, Sargassaceae) over tidal and lunar cycles. Journal of Phycology 45: 1–7.CrossRefPubMedGoogle Scholar
  48. Monteiro, C. A., A. H. Engelen & R. O. P. Santos, 2009b. Macro- and mesoherbivores prefer native seaweeds over the invasive brown seaweed Sargassum muticum: a potential regulating role on invasions. Marine Biology 156(12): 2505–2515.CrossRefGoogle Scholar
  49. Monteiro, C. A., A. H. Engelen & R. Santos, 2012. Habitat-related differences in recruitment and survival of early recruits of the invasive Sargassum muticum (Phaeophyta, Sargassaceae) in northern Portugal. Hydrobiologia 683: 287–296.CrossRefGoogle Scholar
  50. Mulas, M. & I. Bertocci, 2016. Devil’s tongue weed (Grateloupia turuturu Yamada) in northern Portugal: passenger or driver of change in native biodiversity? Marine Environmental Research 118: 1–9.CrossRefPubMedGoogle Scholar
  51. Norton, T. A., 1977. Growth and development of Sargassum muticum (Yendo) Fensholt. Journal of Experimental Marine Biology and Ecology 26: 41–53.CrossRefGoogle Scholar
  52. Olabarria, C., I. Rodil, M. Incera & J. S. Troncoso, 2009. Limited impact of Sargassum muticum on native algal assemblages from rocky intertidal shores. Marine Environmental Research 67: 153–158.CrossRefPubMedGoogle Scholar
  53. Olabarria, C., F. Arenas, R. M. Viejo, I. Gestoso, F. Vaz-Pinto, M. Incera, M. Rubal, E. Cacabelos, P. Veiga & C. Sobrino, 2013. Response of macroalgal assemblages from rockpools to climate change: effects of persistent increase in temperature and CO2. Oikos 122: 1065–1079.CrossRefGoogle Scholar
  54. Pinheiro J., Bates D., DebRoy S., Sarkar D. & R Core Team (2017). nlme: linear and nonlinear mixed effects models. R package version 3.1-131.Google Scholar
  55. R Core Team, (2016). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/.
  56. Rodriguez, S., A. P. Martín, I. Sousa-Pinto & F. Arenas, 2016. Biodiversity effects on macroalgal productivity: exploring the roles of richness, evenness and species traits. Marine Ecology Progress Series 562: 79–91.CrossRefGoogle Scholar
  57. Rubal, M., P. Veiga, R. Vieira & I. Sousa-Pinto, 2011. Seasonal patterns of tidepool macroalgal assemblages in the North of Portugal. Consistence between species and functional group approaches. Journal of Sea Research 66: 187–194.CrossRefGoogle Scholar
  58. Salvaterra, T., D. S. Green, T. P. Crowe & E. J. O’Gorman, 2013. Impacts of the invasive alga Sargassum muticum on ecosystem functioning and food web structure. Biological Invasions 15(11): 2563–2576.CrossRefGoogle Scholar
  59. Sanchez, I. & C. Fernandez, 2005. Impact of the invasive seaweed Sargassum muticum (Phaeophyta) on an intertidal macroalgal assemblage. Journal of Phycology 41: 923–930.CrossRefGoogle Scholar
  60. Sanchez, I. & C. Fernandez, 2006. Resource availability and invasibility in an intertidal macroalgal assemblage. Marine Ecology Progress Series 313: 85–94.CrossRefGoogle Scholar
  61. Saunders, G. W. & R. D. Withall, 2006. Collections of the invasive species Grateloupia turuturu (Halymeniales, Rhodophyta) from Tasmania, Australia. Phycologia 45: 711–714.CrossRefGoogle Scholar
  62. Simon, C., E. A. Gall, G. Levavasseur & E. Deslandes, 1999. Effects of short-term variations of salinity and temperature on the photosynthetic response to the red alga Grateloupia doryphora from Brittany (France). Botanica Marina 42: 437–440.CrossRefGoogle Scholar
  63. Simon, C., E. ArGall & E. Deslandes, 2001. Expansion of the red alga Grateloupia doryphora along the coasts of Brittany (France). Hydrobiologia 443: 23–29.CrossRefGoogle Scholar
  64. Skaug H., Fournier D., Bolker B., Magnusson A. & A. Nielsen, 2016. Generalized linear mixed models using ‘AD model builder. R package version 0.8.3.3.Google Scholar
  65. South, P. M., S. A. Lilley, L. W. Tait, T. Alestra, M. J. H. Hickford, M. S. Thomsen & D. R. Schiel, 2016. Transient effects of an invasive kelp on the community structure and primary productivity of an intertidal assemblage. Marine and Freshwater Research 67: 103.CrossRefGoogle Scholar
  66. Steen, H., 2003. Intraspecific competition in Sargassum muticum (Phaeophyceae) germlings under various density, nutrient and temperature regimes. Botanica Marina 46: 36–43.CrossRefGoogle Scholar
  67. Steneck, R. S. & M. N. Dethier, 1994. A functional-group approach to the structure of algal-dominated communities. Oikos 69: 476–498.CrossRefGoogle Scholar
  68. Thompson, R. C., T. P. Crowe & S. J. Hawkin, 2002. Rocky intertidal communities: past environmental changes, present status and predictions for the next 25 years. Environmental Conservation 29: 168–191.CrossRefGoogle Scholar
  69. Tyler, A. C., J. G. Lambrinos & E. D. Grosholz, 2007. Nitrogen inputs promote the spread of an invasive marsh grass. Ecological Applications 17: 1886–1898.CrossRefPubMedGoogle Scholar
  70. Underwood, A. J., 1997. Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge.Google Scholar
  71. van Kleunen, M., E. Weber & M. Fische, 2010. A metaanalysis of trait differences between invasive and noninvasive plant species. Ecology Letters 13: 235–245.CrossRefPubMedGoogle Scholar
  72. Vaz-Pinto, F., C. Olabarria & F. Arenas, 2013. Role of top-down and bottom-up forces on the invasibility of intertidal macroalgal assemblages. Journal of Sea Research 76: 178–186.CrossRefGoogle Scholar
  73. Vaz-Pinto, F., C. Olabarria & F. Arenas, 2014. Ecosystem functioning impacts of the invasive seaweed Sargassum muticum (Fucales, Phaeophyceae). Journal of Phycology 50: 108–116.CrossRefPubMedGoogle Scholar
  74. Villalard-Bohnsack, M. & M. M. Harlin, 1997. The appearance of Grateloupia doryphora (Halymeniaceae, Rhodophyta) on the northeast coast of North America. Phycologia 36: 324–328.CrossRefGoogle Scholar
  75. Villalard-Bohnsack, M. & M. Harlin, 2001. Grateloupia doryphora (Halymeniaceae, Rhodophyta) in Rhode Island waters (USA): geographic expansion, morphological variations and associated algae. Phycologia 40: 372–380.CrossRefGoogle Scholar
  76. Vye, S. R., M. C. Emmerson, F. Arenas, J. T. Dick & N. E. O’Connor, 2015. Stressor intensity determines antagonistic interactions between species invasion and multiple stressor effects on ecosystem functioning. Oikos 124: 1005–1012.CrossRefGoogle Scholar
  77. Worm, B. & H. K. Lotze, 2006. Effects of eutrophication, grazing, and algal blooms on rocky shores. Limnology and Oceanography 51: 569–579.CrossRefGoogle Scholar
  78. Worm, B. & U. Sommer, 2000. Rapid direct and indirect effects of a single nutrient pulse in a seaweed-epiphyte-grazer system. Marine Ecology Progress Series 202: 283–288.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Raquel Vieira
    • 1
    • 2
  • Isabel Sousa Pinto
    • 1
    • 2
  • Francisco Arenas
    • 3
  1. 1.Coastal Biodiversity Group CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, University of PortoMatosinhosPortugal
  2. 2.Department of Biology, Faculty of SciencesUniversity of PortoPortoPortugal
  3. 3.Aquatic Ecology & Evolution GroupCIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, University of PortoMatosinhosPortugal

Personalised recommendations